4676 lines
		
	
	
		
			178 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4676 lines
		
	
	
		
			178 KiB
		
	
	
	
		
			C++
		
	
	
	
| // © 2016 and later: Unicode, Inc. and others.
 | |
| // License & terms of use: http://www.unicode.org/copyright.html
 | |
| //
 | |
| //  file:  regexcmp.cpp
 | |
| //
 | |
| //  Copyright (C) 2002-2016 International Business Machines Corporation and others.
 | |
| //  All Rights Reserved.
 | |
| //
 | |
| //  This file contains the ICU regular expression compiler, which is responsible
 | |
| //  for processing a regular expression pattern into the compiled form that
 | |
| //  is used by the match finding engine.
 | |
| //
 | |
| 
 | |
| #include "unicode/utypes.h"
 | |
| 
 | |
| #if !UCONFIG_NO_REGULAR_EXPRESSIONS
 | |
| 
 | |
| #include "unicode/ustring.h"
 | |
| #include "unicode/unistr.h"
 | |
| #include "unicode/uniset.h"
 | |
| #include "unicode/uchar.h"
 | |
| #include "unicode/uchriter.h"
 | |
| #include "unicode/parsepos.h"
 | |
| #include "unicode/parseerr.h"
 | |
| #include "unicode/regex.h"
 | |
| #include "unicode/utf.h"
 | |
| #include "unicode/utf16.h"
 | |
| #include "patternprops.h"
 | |
| #include "putilimp.h"
 | |
| #include "cmemory.h"
 | |
| #include "cstr.h"
 | |
| #include "cstring.h"
 | |
| #include "uvectr32.h"
 | |
| #include "uvectr64.h"
 | |
| #include "uassert.h"
 | |
| #include "uinvchar.h"
 | |
| 
 | |
| #include "regeximp.h"
 | |
| #include "regexcst.h"   // Contains state table for the regex pattern parser.
 | |
|                         //   generated by a Perl script.
 | |
| #include "regexcmp.h"
 | |
| #include "regexst.h"
 | |
| #include "regextxt.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| U_NAMESPACE_BEGIN
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  Constructor.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) :
 | |
|    fParenStack(status), fSetStack(uprv_deleteUObject, nullptr, status), fSetOpStack(status)
 | |
| {
 | |
|     // Lazy init of all shared global sets (needed for init()'s empty text)
 | |
|     RegexStaticSets::initGlobals(&status);
 | |
| 
 | |
|     fStatus           = &status;
 | |
| 
 | |
|     fRXPat            = rxp;
 | |
|     fScanIndex        = 0;
 | |
|     fLastChar         = -1;
 | |
|     fPeekChar         = -1;
 | |
|     fLineNum          = 1;
 | |
|     fCharNum          = 0;
 | |
|     fQuoteMode        = FALSE;
 | |
|     fInBackslashQuote = FALSE;
 | |
|     fModeFlags        = fRXPat->fFlags | 0x80000000;
 | |
|     fEOLComments      = TRUE;
 | |
| 
 | |
|     fMatchOpenParen   = -1;
 | |
|     fMatchCloseParen  = -1;
 | |
|     fCaptureName      = NULL;
 | |
|     fLastSetLiteral   = U_SENTINEL;
 | |
| 
 | |
|     if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) {
 | |
|         status = rxp->fDeferredStatus;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const UChar      chAmp       = 0x26;      // '&'
 | |
| static const UChar      chDash      = 0x2d;      // '-'
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  Destructor
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| RegexCompile::~RegexCompile() {
 | |
|     delete fCaptureName;         // Normally will be NULL, but can exist if pattern
 | |
|                                  //   compilation stops with a syntax error.
 | |
| }
 | |
| 
 | |
| static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) {
 | |
|     set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec));
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  Compile regex pattern.   The state machine for rexexp pattern parsing is here.
 | |
| //                           The state tables are hand-written in the file regexcst.txt,
 | |
| //                           and converted to the form used here by a perl
 | |
| //                           script regexcst.pl
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void    RegexCompile::compile(
 | |
|                          const UnicodeString &pat,   // Source pat to be compiled.
 | |
|                          UParseError &pp,            // Error position info
 | |
|                          UErrorCode &e)              // Error Code
 | |
| {
 | |
|     fRXPat->fPatternString = new UnicodeString(pat);
 | |
|     UText patternText = UTEXT_INITIALIZER;
 | |
|     utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e);
 | |
| 
 | |
|     if (U_SUCCESS(e)) {
 | |
|         compile(&patternText, pp, e);
 | |
|         utext_close(&patternText);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| //   compile, UText mode
 | |
| //     All the work is actually done here.
 | |
| //
 | |
| void    RegexCompile::compile(
 | |
|                          UText *pat,                 // Source pat to be compiled.
 | |
|                          UParseError &pp,            // Error position info
 | |
|                          UErrorCode &e)              // Error Code
 | |
| {
 | |
|     fStatus             = &e;
 | |
|     fParseErr           = &pp;
 | |
|     fStackPtr           = 0;
 | |
|     fStack[fStackPtr]   = 0;
 | |
| 
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // There should be no pattern stuff in the RegexPattern object.  They can not be reused.
 | |
|     U_ASSERT(fRXPat->fPattern == NULL || utext_nativeLength(fRXPat->fPattern) == 0);
 | |
| 
 | |
|     // Prepare the RegexPattern object to receive the compiled pattern.
 | |
|     fRXPat->fPattern        = utext_clone(fRXPat->fPattern, pat, FALSE, TRUE, fStatus);
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Initialize the pattern scanning state machine
 | |
|     fPatternLength = utext_nativeLength(pat);
 | |
|     uint16_t                state = 1;
 | |
|     const RegexTableEl      *tableEl;
 | |
| 
 | |
|     // UREGEX_LITERAL force entire pattern to be treated as a literal string.
 | |
|     if (fModeFlags & UREGEX_LITERAL) {
 | |
|         fQuoteMode = TRUE;
 | |
|     }
 | |
| 
 | |
|     nextChar(fC);                        // Fetch the first char from the pattern string.
 | |
| 
 | |
|     //
 | |
|     // Main loop for the regex pattern parsing state machine.
 | |
|     //   Runs once per state transition.
 | |
|     //   Each time through optionally performs, depending on the state table,
 | |
|     //      - an advance to the the next pattern char
 | |
|     //      - an action to be performed.
 | |
|     //      - pushing or popping a state to/from the local state return stack.
 | |
|     //   file regexcst.txt is the source for the state table.  The logic behind
 | |
|     //     recongizing the pattern syntax is there, not here.
 | |
|     //
 | |
|     for (;;) {
 | |
|         //  Bail out if anything has gone wrong.
 | |
|         //  Regex pattern parsing stops on the first error encountered.
 | |
|         if (U_FAILURE(*fStatus)) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         U_ASSERT(state != 0);
 | |
| 
 | |
|         // Find the state table element that matches the input char from the pattern, or the
 | |
|         //    class of the input character.  Start with the first table row for this
 | |
|         //    state, then linearly scan forward until we find a row that matches the
 | |
|         //    character.  The last row for each state always matches all characters, so
 | |
|         //    the search will stop there, if not before.
 | |
|         //
 | |
|         tableEl = &gRuleParseStateTable[state];
 | |
|         REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d)    state=%s ",
 | |
|             fC.fChar, fLineNum, fCharNum, RegexStateNames[state]));
 | |
| 
 | |
|         for (;;) {    // loop through table rows belonging to this state, looking for one
 | |
|                       //   that matches the current input char.
 | |
|             REGEX_SCAN_DEBUG_PRINTF(("."));
 | |
|             if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE &&   tableEl->fCharClass == fC.fChar) {
 | |
|                 // Table row specified an individual character, not a set, and
 | |
|                 //   the input character is not quoted, and
 | |
|                 //   the input character matched it.
 | |
|                 break;
 | |
|             }
 | |
|             if (tableEl->fCharClass == 255) {
 | |
|                 // Table row specified default, match anything character class.
 | |
|                 break;
 | |
|             }
 | |
|             if (tableEl->fCharClass == 254 && fC.fQuoted)  {
 | |
|                 // Table row specified "quoted" and the char was quoted.
 | |
|                 break;
 | |
|             }
 | |
|             if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1)  {
 | |
|                 // Table row specified eof and we hit eof on the input.
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 &&   // Table specs a char class &&
 | |
|                 fC.fQuoted == FALSE &&                                       //   char is not escaped &&
 | |
|                 fC.fChar != (UChar32)-1) {                                   //   char is not EOF
 | |
|                 U_ASSERT(tableEl->fCharClass <= 137);
 | |
|                 if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
 | |
|                     // Table row specified a character class, or set of characters,
 | |
|                     //   and the current char matches it.
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // No match on this row, advance to the next  row for this state,
 | |
|             tableEl++;
 | |
|         }
 | |
|         REGEX_SCAN_DEBUG_PRINTF(("\n"));
 | |
| 
 | |
|         //
 | |
|         // We've found the row of the state table that matches the current input
 | |
|         //   character from the rules string.
 | |
|         // Perform any action specified  by this row in the state table.
 | |
|         if (doParseActions(tableEl->fAction) == FALSE) {
 | |
|             // Break out of the state machine loop if the
 | |
|             //   the action signalled some kind of error, or
 | |
|             //   the action was to exit, occurs on normal end-of-rules-input.
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (tableEl->fPushState != 0) {
 | |
|             fStackPtr++;
 | |
|             if (fStackPtr >= kStackSize) {
 | |
|                 error(U_REGEX_INTERNAL_ERROR);
 | |
|                 REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n"));
 | |
|                 fStackPtr--;
 | |
|             }
 | |
|             fStack[fStackPtr] = tableEl->fPushState;
 | |
|         }
 | |
| 
 | |
|         //
 | |
|         //  NextChar.  This is where characters are actually fetched from the pattern.
 | |
|         //             Happens under control of the 'n' tag in the state table.
 | |
|         //
 | |
|         if (tableEl->fNextChar) {
 | |
|             nextChar(fC);
 | |
|         }
 | |
| 
 | |
|         // Get the next state from the table entry, or from the
 | |
|         //   state stack if the next state was specified as "pop".
 | |
|         if (tableEl->fNextState != 255) {
 | |
|             state = tableEl->fNextState;
 | |
|         } else {
 | |
|             state = fStack[fStackPtr];
 | |
|             fStackPtr--;
 | |
|             if (fStackPtr < 0) {
 | |
|                 // state stack underflow
 | |
|                 // This will occur if the user pattern has mis-matched parentheses,
 | |
|                 //   with extra close parens.
 | |
|                 //
 | |
|                 fStackPtr++;
 | |
|                 error(U_REGEX_MISMATCHED_PAREN);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         // Bail out if the pattern had errors.
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // The pattern has now been read and processed, and the compiled code generated.
 | |
|     //
 | |
| 
 | |
|     //
 | |
|     // The pattern's fFrameSize so far has accumulated the requirements for
 | |
|     //   storage for capture parentheses, counters, etc. that are encountered
 | |
|     //   in the pattern.  Add space for the two variables that are always
 | |
|     //   present in the saved state:  the input string position (int64_t) and
 | |
|     //   the position in the compiled pattern.
 | |
|     //
 | |
|     allocateStackData(RESTACKFRAME_HDRCOUNT);
 | |
| 
 | |
|     //
 | |
|     // Optimization pass 1: NOPs, back-references, and case-folding
 | |
|     //
 | |
|     stripNOPs();
 | |
| 
 | |
|     //
 | |
|     // Get bounds for the minimum and maximum length of a string that this
 | |
|     //   pattern can match.  Used to avoid looking for matches in strings that
 | |
|     //   are too short.
 | |
|     //
 | |
|     fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1);
 | |
| 
 | |
|     //
 | |
|     // Optimization pass 2: match start type
 | |
|     //
 | |
|     matchStartType();
 | |
| 
 | |
|     //
 | |
|     // Set up fast latin-1 range sets
 | |
|     //
 | |
|     int32_t numSets = fRXPat->fSets->size();
 | |
|     fRXPat->fSets8 = new Regex8BitSet[numSets];
 | |
|     // Null pointer check.
 | |
|     if (fRXPat->fSets8 == NULL) {
 | |
|         e = *fStatus = U_MEMORY_ALLOCATION_ERROR;
 | |
|         return;
 | |
|     }
 | |
|     int32_t i;
 | |
|     for (i=0; i<numSets; i++) {
 | |
|         UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i);
 | |
|         fRXPat->fSets8[i].init(s);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  doParseAction        Do some action during regex pattern parsing.
 | |
| //                       Called by the parse state machine.
 | |
| //
 | |
| //                       Generation of the match engine PCode happens here, or
 | |
| //                       in functions called from the parse actions defined here.
 | |
| //
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| UBool RegexCompile::doParseActions(int32_t action)
 | |
| {
 | |
|     UBool   returnVal = TRUE;
 | |
| 
 | |
|     switch ((Regex_PatternParseAction)action) {
 | |
| 
 | |
|     case doPatStart:
 | |
|         // Start of pattern compiles to:
 | |
|         //0   SAVE   2        Fall back to position of FAIL
 | |
|         //1   jmp    3
 | |
|         //2   FAIL            Stop if we ever reach here.
 | |
|         //3   NOP             Dummy, so start of pattern looks the same as
 | |
|         //                    the start of an ( grouping.
 | |
|         //4   NOP             Resreved, will be replaced by a save if there are
 | |
|         //                    OR | operators at the top level
 | |
|         appendOp(URX_STATE_SAVE, 2);
 | |
|         appendOp(URX_JMP,  3);
 | |
|         appendOp(URX_FAIL, 0);
 | |
| 
 | |
|         // Standard open nonCapture paren action emits the two NOPs and
 | |
|         //   sets up the paren stack frame.
 | |
|         doParseActions(doOpenNonCaptureParen);
 | |
|         break;
 | |
| 
 | |
|     case doPatFinish:
 | |
|         // We've scanned to the end of the pattern
 | |
|         //  The end of pattern compiles to:
 | |
|         //        URX_END
 | |
|         //    which will stop the runtime match engine.
 | |
|         //  Encountering end of pattern also behaves like a close paren,
 | |
|         //   and forces fixups of the State Save at the beginning of the compiled pattern
 | |
|         //   and of any OR operations at the top level.
 | |
|         //
 | |
|         handleCloseParen();
 | |
|         if (fParenStack.size() > 0) {
 | |
|             // Missing close paren in pattern.
 | |
|             error(U_REGEX_MISMATCHED_PAREN);
 | |
|         }
 | |
| 
 | |
|         // add the END operation to the compiled pattern.
 | |
|         appendOp(URX_END, 0);
 | |
| 
 | |
|         // Terminate the pattern compilation state machine.
 | |
|         returnVal = FALSE;
 | |
|         break;
 | |
| 
 | |
| 
 | |
| 
 | |
|     case doOrOperator:
 | |
|         // Scanning a '|', as in (A|B)
 | |
|         {
 | |
|             // Generate code for any pending literals preceding the '|'
 | |
|             fixLiterals(FALSE);
 | |
| 
 | |
|             // Insert a SAVE operation at the start of the pattern section preceding
 | |
|             //   this OR at this level.  This SAVE will branch the match forward
 | |
|             //   to the right hand side of the OR in the event that the left hand
 | |
|             //   side fails to match and backtracks.  Locate the position for the
 | |
|             //   save from the location on the top of the parentheses stack.
 | |
|             int32_t savePosition = fParenStack.popi();
 | |
|             int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition);
 | |
|             U_ASSERT(URX_TYPE(op) == URX_NOP);  // original contents of reserved location
 | |
|             op = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
 | |
|             fRXPat->fCompiledPat->setElementAt(op, savePosition);
 | |
| 
 | |
|             // Append an JMP operation into the compiled pattern.  The operand for
 | |
|             //  the JMP will eventually be the location following the ')' for the
 | |
|             //  group.  This will be patched in later, when the ')' is encountered.
 | |
|             appendOp(URX_JMP, 0);
 | |
| 
 | |
|             // Push the position of the newly added JMP op onto the parentheses stack.
 | |
|             // This registers if for fixup when this block's close paren is encountered.
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
 | |
| 
 | |
|             // Append a NOP to the compiled pattern.  This is the slot reserved
 | |
|             //   for a SAVE in the event that there is yet another '|' following
 | |
|             //   this one.
 | |
|             appendOp(URX_NOP, 0);
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doBeginNamedCapture:
 | |
|         // Scanning (?<letter.
 | |
|         //   The first letter of the name will come through again under doConinueNamedCapture.
 | |
|         fCaptureName = new UnicodeString();
 | |
|         if (fCaptureName == NULL) {
 | |
|             error(U_MEMORY_ALLOCATION_ERROR);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case  doContinueNamedCapture:
 | |
|         fCaptureName->append(fC.fChar);
 | |
|         break;
 | |
| 
 | |
|     case doBadNamedCapture:
 | |
|         error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
 | |
|         break;
 | |
|         
 | |
|     case doOpenCaptureParen:
 | |
|         // Open Capturing Paren, possibly named.
 | |
|         //   Compile to a
 | |
|         //      - NOP, which later may be replaced by a save-state if the
 | |
|         //         parenthesized group gets a * quantifier, followed by
 | |
|         //      - START_CAPTURE  n    where n is stack frame offset to the capture group variables.
 | |
|         //      - NOP, which may later be replaced by a save-state if there
 | |
|         //             is an '|' alternation within the parens.
 | |
|         //
 | |
|         //    Each capture group gets three slots in the save stack frame:
 | |
|         //         0: Capture Group start position (in input string being matched.)
 | |
|         //         1: Capture Group end position.
 | |
|         //         2: Start of Match-in-progress.
 | |
|         //    The first two locations are for a completed capture group, and are
 | |
|         //     referred to by back references and the like.
 | |
|         //    The third location stores the capture start position when an START_CAPTURE is
 | |
|         //      encountered.  This will be promoted to a completed capture when (and if) the corresponding
 | |
|         //      END_CAPTURE is encountered.
 | |
|         {
 | |
|             fixLiterals();
 | |
|             appendOp(URX_NOP, 0);
 | |
|             int32_t  varsLoc = allocateStackData(3);    // Reserve three slots in match stack frame.
 | |
|             appendOp(URX_START_CAPTURE, varsLoc);
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the two NOPs.  Depending on what follows in the pattern, the
 | |
|             //   NOPs may be changed to SAVE_STATE or JMP ops, with a target
 | |
|             //   address of the end of the parenthesized group.
 | |
|             fParenStack.push(fModeFlags, *fStatus);                       // Match mode state
 | |
|             fParenStack.push(capturing, *fStatus);                        // Frame type.
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus);   // The first  NOP location
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The second NOP loc
 | |
| 
 | |
|             // Save the mapping from group number to stack frame variable position.
 | |
|             fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
 | |
| 
 | |
|             // If this is a named capture group, add the name->group number mapping.
 | |
|             if (fCaptureName != NULL) {
 | |
|                 if (!fRXPat->initNamedCaptureMap()) {
 | |
|                     if (U_SUCCESS(*fStatus)) {
 | |
|                         error(fRXPat->fDeferredStatus);
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|                 int32_t groupNumber = fRXPat->fGroupMap->size();
 | |
|                 int32_t previousMapping = uhash_puti(fRXPat->fNamedCaptureMap, fCaptureName, groupNumber, fStatus);
 | |
|                 fCaptureName = NULL;    // hash table takes ownership of the name (key) string.
 | |
|                 if (previousMapping > 0 && U_SUCCESS(*fStatus)) {
 | |
|                     error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doOpenNonCaptureParen:
 | |
|         // Open non-caputuring (grouping only) Paren.
 | |
|         //   Compile to a
 | |
|         //      - NOP, which later may be replaced by a save-state if the
 | |
|         //         parenthesized group gets a * quantifier, followed by
 | |
|         //      - NOP, which may later be replaced by a save-state if there
 | |
|         //             is an '|' alternation within the parens.
 | |
|         {
 | |
|             fixLiterals();
 | |
|             appendOp(URX_NOP, 0);
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the two NOPs.
 | |
|             fParenStack.push(fModeFlags, *fStatus);                       // Match mode state
 | |
|             fParenStack.push(plain,      *fStatus);                       // Begin a new frame.
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus);   // The first  NOP location
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The second NOP loc
 | |
|         }
 | |
|          break;
 | |
| 
 | |
| 
 | |
|     case doOpenAtomicParen:
 | |
|         // Open Atomic Paren.  (?>
 | |
|         //   Compile to a
 | |
|         //      - NOP, which later may be replaced if the parenthesized group
 | |
|         //         has a quantifier, followed by
 | |
|         //      - STO_SP  save state stack position, so it can be restored at the ")"
 | |
|         //      - NOP, which may later be replaced by a save-state if there
 | |
|         //             is an '|' alternation within the parens.
 | |
|         {
 | |
|             fixLiterals();
 | |
|             appendOp(URX_NOP, 0);
 | |
|             int32_t  varLoc = allocateData(1);    // Reserve a data location for saving the state stack ptr.
 | |
|             appendOp(URX_STO_SP, varLoc);
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the two NOPs.  Depending on what follows in the pattern, the
 | |
|             //   NOPs may be changed to SAVE_STATE or JMP ops, with a target
 | |
|             //   address of the end of the parenthesized group.
 | |
|             fParenStack.push(fModeFlags, *fStatus);                       // Match mode state
 | |
|             fParenStack.push(atomic, *fStatus);                           // Frame type.
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus);   // The first NOP
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The second NOP
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doOpenLookAhead:
 | |
|         // Positive Look-ahead   (?=  stuff  )
 | |
|         //
 | |
|         //   Note:   Addition of transparent input regions, with the need to
 | |
|         //           restore the original regions when failing out of a lookahead
 | |
|         //           block, complicated this sequence.  Some combined opcodes
 | |
|         //           might make sense - or might not, lookahead aren't that common.
 | |
|         //
 | |
|         //      Caution:  min match length optimization knows about this
 | |
|         //               sequence; don't change without making updates there too.
 | |
|         //
 | |
|         // Compiles to
 | |
|         //    1    LA_START     dataLoc     Saves SP, Input Pos, Active input region.
 | |
|         //    2.   STATE_SAVE   4            on failure of lookahead, goto 4
 | |
|         //    3    JMP          6           continue ...
 | |
|         //
 | |
|         //    4.   LA_END                   Look Ahead failed.  Restore regions.
 | |
|         //    5.   BACKTRACK                and back track again.
 | |
|         //
 | |
|         //    6.   NOP              reserved for use by quantifiers on the block.
 | |
|         //                          Look-ahead can't have quantifiers, but paren stack
 | |
|         //                             compile time conventions require the slot anyhow.
 | |
|         //    7.   NOP              may be replaced if there is are '|' ops in the block.
 | |
|         //    8.     code for parenthesized stuff.
 | |
|         //    9.   LA_END
 | |
|         //
 | |
|         //  Four data slots are reserved, for saving state on entry to the look-around
 | |
|         //    0:   stack pointer on entry.
 | |
|         //    1:   input position on entry.
 | |
|         //    2:   fActiveStart, the active bounds start on entry.
 | |
|         //    3:   fActiveLimit, the active bounds limit on entry.
 | |
|         {
 | |
|             fixLiterals();
 | |
|             int32_t dataLoc = allocateData(4);
 | |
|             appendOp(URX_LA_START, dataLoc);
 | |
|             appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2);
 | |
|             appendOp(URX_JMP, fRXPat->fCompiledPat->size()+ 3);
 | |
|             appendOp(URX_LA_END, dataLoc);
 | |
|             appendOp(URX_BACKTRACK, 0);
 | |
|             appendOp(URX_NOP, 0);
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the NOPs.
 | |
|             fParenStack.push(fModeFlags, *fStatus);                       // Match mode state
 | |
|             fParenStack.push(lookAhead, *fStatus);                        // Frame type.
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus);   // The first  NOP location
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The second NOP location
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doOpenLookAheadNeg:
 | |
|         // Negated Lookahead.   (?! stuff )
 | |
|         // Compiles to
 | |
|         //    1.    LA_START    dataloc
 | |
|         //    2.    SAVE_STATE  7         // Fail within look-ahead block restores to this state,
 | |
|         //                                //   which continues with the match.
 | |
|         //    3.    NOP                   // Std. Open Paren sequence, for possible '|'
 | |
|         //    4.       code for parenthesized stuff.
 | |
|         //    5.    LA_END                // Cut back stack, remove saved state from step 2.
 | |
|         //    6.    BACKTRACK             // code in block succeeded, so neg. lookahead fails.
 | |
|         //    7.    END_LA                // Restore match region, in case look-ahead was using
 | |
|         //                                        an alternate (transparent) region.
 | |
|         //  Four data slots are reserved, for saving state on entry to the look-around
 | |
|         //    0:   stack pointer on entry.
 | |
|         //    1:   input position on entry.
 | |
|         //    2:   fActiveStart, the active bounds start on entry.
 | |
|         //    3:   fActiveLimit, the active bounds limit on entry.
 | |
|         {
 | |
|             fixLiterals();
 | |
|             int32_t dataLoc = allocateData(4);
 | |
|             appendOp(URX_LA_START, dataLoc);
 | |
|             appendOp(URX_STATE_SAVE, 0);    // dest address will be patched later.
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the StateSave and NOP.
 | |
|             fParenStack.push(fModeFlags, *fStatus);                       // Match mode state
 | |
|             fParenStack.push(negLookAhead, *fStatus);                    // Frame type
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus);   // The STATE_SAVE location
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The second NOP location
 | |
| 
 | |
|             // Instructions #5 - #7 will be added when the ')' is encountered.
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doOpenLookBehind:
 | |
|         {
 | |
|             //   Compile a (?<= look-behind open paren.
 | |
|             //
 | |
|             //          Compiles to
 | |
|             //              0       URX_LB_START     dataLoc
 | |
|             //              1       URX_LB_CONT      dataLoc
 | |
|             //              2                        MinMatchLen
 | |
|             //              3                        MaxMatchLen
 | |
|             //              4       URX_NOP          Standard '(' boilerplate.
 | |
|             //              5       URX_NOP          Reserved slot for use with '|' ops within (block).
 | |
|             //              6         <code for LookBehind expression>
 | |
|             //              7       URX_LB_END       dataLoc    # Check match len, restore input  len
 | |
|             //              8       URX_LA_END       dataLoc    # Restore stack, input pos
 | |
|             //
 | |
|             //          Allocate a block of matcher data, to contain (when running a match)
 | |
|             //              0:    Stack ptr on entry
 | |
|             //              1:    Input Index on entry
 | |
|             //              2:    fActiveStart, the active bounds start on entry.
 | |
|             //              3:    fActiveLimit, the active bounds limit on entry.
 | |
|             //              4:    Start index of match current match attempt.
 | |
|             //          The first four items must match the layout of data for LA_START / LA_END
 | |
| 
 | |
|             // Generate match code for any pending literals.
 | |
|             fixLiterals();
 | |
| 
 | |
|             // Allocate data space
 | |
|             int32_t dataLoc = allocateData(5);
 | |
| 
 | |
|             // Emit URX_LB_START
 | |
|             appendOp(URX_LB_START, dataLoc);
 | |
| 
 | |
|             // Emit URX_LB_CONT
 | |
|             appendOp(URX_LB_CONT, dataLoc);
 | |
|             appendOp(URX_RESERVED_OP, 0);    // MinMatchLength.  To be filled later.
 | |
|             appendOp(URX_RESERVED_OP, 0);    // MaxMatchLength.  To be filled later.
 | |
| 
 | |
|             // Emit the NOPs
 | |
|             appendOp(URX_NOP, 0);
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the URX_LB_CONT and the NOP.
 | |
|             fParenStack.push(fModeFlags, *fStatus);                       // Match mode state
 | |
|             fParenStack.push(lookBehind, *fStatus);                       // Frame type
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus);   // The first NOP location
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The 2nd   NOP location
 | |
| 
 | |
|             // The final two instructions will be added when the ')' is encountered.
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|     case doOpenLookBehindNeg:
 | |
|         {
 | |
|             //   Compile a (?<! negated look-behind open paren.
 | |
|             //
 | |
|             //          Compiles to
 | |
|             //              0       URX_LB_START     dataLoc    # Save entry stack, input len
 | |
|             //              1       URX_LBN_CONT     dataLoc    # Iterate possible match positions
 | |
|             //              2                        MinMatchLen
 | |
|             //              3                        MaxMatchLen
 | |
|             //              4                        continueLoc (9)
 | |
|             //              5       URX_NOP          Standard '(' boilerplate.
 | |
|             //              6       URX_NOP          Reserved slot for use with '|' ops within (block).
 | |
|             //              7         <code for LookBehind expression>
 | |
|             //              8       URX_LBN_END      dataLoc    # Check match len, cause a FAIL
 | |
|             //              9       ...
 | |
|             //
 | |
|             //          Allocate a block of matcher data, to contain (when running a match)
 | |
|             //              0:    Stack ptr on entry
 | |
|             //              1:    Input Index on entry
 | |
|             //              2:    fActiveStart, the active bounds start on entry.
 | |
|             //              3:    fActiveLimit, the active bounds limit on entry.
 | |
|             //              4:    Start index of match current match attempt.
 | |
|             //          The first four items must match the layout of data for LA_START / LA_END
 | |
| 
 | |
|             // Generate match code for any pending literals.
 | |
|             fixLiterals();
 | |
| 
 | |
|             // Allocate data space
 | |
|             int32_t dataLoc = allocateData(5);
 | |
| 
 | |
|             // Emit URX_LB_START
 | |
|             appendOp(URX_LB_START, dataLoc);
 | |
| 
 | |
|             // Emit URX_LBN_CONT
 | |
|             appendOp(URX_LBN_CONT, dataLoc);
 | |
|             appendOp(URX_RESERVED_OP, 0);    // MinMatchLength.  To be filled later.
 | |
|             appendOp(URX_RESERVED_OP, 0);    // MaxMatchLength.  To be filled later.
 | |
|             appendOp(URX_RESERVED_OP, 0);    // Continue Loc.    To be filled later.
 | |
| 
 | |
|             // Emit the NOPs
 | |
|             appendOp(URX_NOP, 0);
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the URX_LB_CONT and the NOP.
 | |
|             fParenStack.push(fModeFlags, *fStatus);                       // Match mode state
 | |
|             fParenStack.push(lookBehindN, *fStatus);                      // Frame type
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus);   // The first NOP location
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The 2nd   NOP location
 | |
| 
 | |
|             // The final two instructions will be added when the ')' is encountered.
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doConditionalExpr:
 | |
|         // Conditionals such as (?(1)a:b)
 | |
|     case doPerlInline:
 | |
|         // Perl inline-conditionals.  (?{perl code}a|b) We're not perl, no way to do them.
 | |
|         error(U_REGEX_UNIMPLEMENTED);
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doCloseParen:
 | |
|         handleCloseParen();
 | |
|         if (fParenStack.size() <= 0) {
 | |
|             //  Extra close paren, or missing open paren.
 | |
|             error(U_REGEX_MISMATCHED_PAREN);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doNOP:
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doBadOpenParenType:
 | |
|     case doRuleError:
 | |
|         error(U_REGEX_RULE_SYNTAX);
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doMismatchedParenErr:
 | |
|         error(U_REGEX_MISMATCHED_PAREN);
 | |
|         break;
 | |
| 
 | |
|     case doPlus:
 | |
|         //  Normal '+'  compiles to
 | |
|         //     1.   stuff to be repeated  (already built)
 | |
|         //     2.   jmp-sav 1
 | |
|         //     3.   ...
 | |
|         //
 | |
|         //  Or, if the item to be repeated can match a zero length string,
 | |
|         //     1.   STO_INP_LOC  data-loc
 | |
|         //     2.      body of stuff to be repeated
 | |
|         //     3.   JMP_SAV_X    2
 | |
|         //     4.   ...
 | |
| 
 | |
|         //
 | |
|         //  Or, if the item to be repeated is simple
 | |
|         //     1.   Item to be repeated.
 | |
|         //     2.   LOOP_SR_I    set number  (assuming repeated item is a set ref)
 | |
|         //     3.   LOOP_C       stack location
 | |
|         {
 | |
|             int32_t  topLoc = blockTopLoc(FALSE);        // location of item #1
 | |
|             int32_t  frameLoc;
 | |
| 
 | |
|             // Check for simple constructs, which may get special optimized code.
 | |
|             if (topLoc == fRXPat->fCompiledPat->size() - 1) {
 | |
|                 int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
 | |
| 
 | |
|                 if (URX_TYPE(repeatedOp) == URX_SETREF) {
 | |
|                     // Emit optimized code for [char set]+
 | |
|                     appendOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
 | |
|                     frameLoc = allocateStackData(1);
 | |
|                     appendOp(URX_LOOP_C, frameLoc);
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 if (URX_TYPE(repeatedOp) == URX_DOTANY ||
 | |
|                     URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
 | |
|                     URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
 | |
|                     // Emit Optimized code for .+ operations.
 | |
|                     int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
 | |
|                     if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
 | |
|                         // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
 | |
|                         loopOpI |= 1;
 | |
|                     }
 | |
|                     if (fModeFlags & UREGEX_UNIX_LINES) {
 | |
|                         loopOpI |= 2;
 | |
|                     }
 | |
|                     appendOp(loopOpI);
 | |
|                     frameLoc = allocateStackData(1);
 | |
|                     appendOp(URX_LOOP_C, frameLoc);
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|             }
 | |
| 
 | |
|             // General case.
 | |
| 
 | |
|             // Check for minimum match length of zero, which requires
 | |
|             //    extra loop-breaking code.
 | |
|             if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) {
 | |
|                 // Zero length match is possible.
 | |
|                 // Emit the code sequence that can handle it.
 | |
|                 insertOp(topLoc);
 | |
|                 frameLoc = allocateStackData(1);
 | |
| 
 | |
|                 int32_t op = buildOp(URX_STO_INP_LOC, frameLoc);
 | |
|                 fRXPat->fCompiledPat->setElementAt(op, topLoc);
 | |
| 
 | |
|                 appendOp(URX_JMP_SAV_X, topLoc+1);
 | |
|             } else {
 | |
|                 // Simpler code when the repeated body must match something non-empty
 | |
|                 appendOp(URX_JMP_SAV, topLoc);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doNGPlus:
 | |
|         //  Non-greedy '+?'  compiles to
 | |
|         //     1.   stuff to be repeated  (already built)
 | |
|         //     2.   state-save  1
 | |
|         //     3.   ...
 | |
|         {
 | |
|             int32_t topLoc      = blockTopLoc(FALSE);
 | |
|             appendOp(URX_STATE_SAVE, topLoc);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doOpt:
 | |
|         // Normal (greedy) ? quantifier.
 | |
|         //  Compiles to
 | |
|         //     1. state save 3
 | |
|         //     2.    body of optional block
 | |
|         //     3. ...
 | |
|         // Insert the state save into the compiled pattern, and we're done.
 | |
|         {
 | |
|             int32_t   saveStateLoc = blockTopLoc(TRUE);
 | |
|             int32_t   saveStateOp  = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
 | |
|             fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doNGOpt:
 | |
|         // Non-greedy ?? quantifier
 | |
|         //   compiles to
 | |
|         //    1.  jmp   4
 | |
|         //    2.     body of optional block
 | |
|         //    3   jmp   5
 | |
|         //    4.  state save 2
 | |
|         //    5    ...
 | |
|         //  This code is less than ideal, with two jmps instead of one, because we can only
 | |
|         //  insert one instruction at the top of the block being iterated.
 | |
|         {
 | |
|             int32_t  jmp1_loc = blockTopLoc(TRUE);
 | |
|             int32_t  jmp2_loc = fRXPat->fCompiledPat->size();
 | |
| 
 | |
|             int32_t  jmp1_op  = buildOp(URX_JMP, jmp2_loc+1);
 | |
|             fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
 | |
| 
 | |
|             appendOp(URX_JMP, jmp2_loc+2);
 | |
| 
 | |
|             appendOp(URX_STATE_SAVE, jmp1_loc+1);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doStar:
 | |
|         // Normal (greedy) * quantifier.
 | |
|         // Compiles to
 | |
|         //       1.   STATE_SAVE   4
 | |
|         //       2.      body of stuff being iterated over
 | |
|         //       3.   JMP_SAV      2
 | |
|         //       4.   ...
 | |
|         //
 | |
|         // Or, if the body is a simple [Set],
 | |
|         //       1.   LOOP_SR_I    set number
 | |
|         //       2.   LOOP_C       stack location
 | |
|         //       ...
 | |
|         //
 | |
|         // Or if this is a .*
 | |
|         //       1.   LOOP_DOT_I    (. matches all mode flag)
 | |
|         //       2.   LOOP_C        stack location
 | |
|         //
 | |
|         // Or, if the body can match a zero-length string, to inhibit infinite loops,
 | |
|         //       1.   STATE_SAVE   5
 | |
|         //       2.   STO_INP_LOC  data-loc
 | |
|         //       3.      body of stuff
 | |
|         //       4.   JMP_SAV_X    2
 | |
|         //       5.   ...
 | |
|         {
 | |
|             // location of item #1, the STATE_SAVE
 | |
|             int32_t   topLoc = blockTopLoc(FALSE);
 | |
|             int32_t   dataLoc = -1;
 | |
| 
 | |
|             // Check for simple *, where the construct being repeated
 | |
|             //   compiled to single opcode, and might be optimizable.
 | |
|             if (topLoc == fRXPat->fCompiledPat->size() - 1) {
 | |
|                 int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
 | |
| 
 | |
|                 if (URX_TYPE(repeatedOp) == URX_SETREF) {
 | |
|                     // Emit optimized code for a [char set]*
 | |
|                     int32_t loopOpI = buildOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
 | |
|                     fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
 | |
|                     dataLoc = allocateStackData(1);
 | |
|                     appendOp(URX_LOOP_C, dataLoc);
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 if (URX_TYPE(repeatedOp) == URX_DOTANY ||
 | |
|                     URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
 | |
|                     URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
 | |
|                     // Emit Optimized code for .* operations.
 | |
|                     int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
 | |
|                     if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
 | |
|                         // URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
 | |
|                         loopOpI |= 1;
 | |
|                     }
 | |
|                     if ((fModeFlags & UREGEX_UNIX_LINES) != 0) {
 | |
|                         loopOpI |= 2;
 | |
|                     }
 | |
|                     fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
 | |
|                     dataLoc = allocateStackData(1);
 | |
|                     appendOp(URX_LOOP_C, dataLoc);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Emit general case code for this *
 | |
|             // The optimizations did not apply.
 | |
| 
 | |
|             int32_t   saveStateLoc = blockTopLoc(TRUE);
 | |
|             int32_t   jmpOp        = buildOp(URX_JMP_SAV, saveStateLoc+1);
 | |
| 
 | |
|             // Check for minimum match length of zero, which requires
 | |
|             //    extra loop-breaking code.
 | |
|             if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) {
 | |
|                 insertOp(saveStateLoc);
 | |
|                 dataLoc = allocateStackData(1);
 | |
| 
 | |
|                 int32_t op = buildOp(URX_STO_INP_LOC, dataLoc);
 | |
|                 fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
 | |
|                 jmpOp      = buildOp(URX_JMP_SAV_X, saveStateLoc+2);
 | |
|             }
 | |
| 
 | |
|             // Locate the position in the compiled pattern where the match will continue
 | |
|             //   after completing the *.   (4 or 5 in the comment above)
 | |
|             int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
 | |
| 
 | |
|             // Put together the save state op and store it into the compiled code.
 | |
|             int32_t saveStateOp = buildOp(URX_STATE_SAVE, continueLoc);
 | |
|             fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
 | |
| 
 | |
|             // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
 | |
|             appendOp(jmpOp);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doNGStar:
 | |
|         // Non-greedy *? quantifier
 | |
|         // compiles to
 | |
|         //     1.   JMP    3
 | |
|         //     2.      body of stuff being iterated over
 | |
|         //     3.   STATE_SAVE  2
 | |
|         //     4    ...
 | |
|         {
 | |
|             int32_t     jmpLoc  = blockTopLoc(TRUE);                   // loc  1.
 | |
|             int32_t     saveLoc = fRXPat->fCompiledPat->size();        // loc  3.
 | |
|             int32_t     jmpOp   = buildOp(URX_JMP, saveLoc);
 | |
|             fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
 | |
|             appendOp(URX_STATE_SAVE, jmpLoc+1);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doIntervalInit:
 | |
|         // The '{' opening an interval quantifier was just scanned.
 | |
|         // Init the counter variables that will accumulate the values as the digits
 | |
|         //    are scanned.
 | |
|         fIntervalLow = 0;
 | |
|         fIntervalUpper = -1;
 | |
|         break;
 | |
| 
 | |
|     case doIntevalLowerDigit:
 | |
|         // Scanned a digit from the lower value of an {lower,upper} interval
 | |
|         {
 | |
|             int32_t digitValue = u_charDigitValue(fC.fChar);
 | |
|             U_ASSERT(digitValue >= 0);
 | |
|             int64_t val = (int64_t)fIntervalLow*10 + digitValue;
 | |
|             if (val > INT32_MAX) {
 | |
|                 error(U_REGEX_NUMBER_TOO_BIG);
 | |
|             } else {
 | |
|                 fIntervalLow = (int32_t)val;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doIntervalUpperDigit:
 | |
|         // Scanned a digit from the upper value of an {lower,upper} interval
 | |
|         {
 | |
|             if (fIntervalUpper < 0) {
 | |
|                 fIntervalUpper = 0;
 | |
|             }
 | |
|             int32_t digitValue = u_charDigitValue(fC.fChar);
 | |
|             U_ASSERT(digitValue >= 0);
 | |
|             int64_t val = (int64_t)fIntervalUpper*10 + digitValue;
 | |
|             if (val > INT32_MAX) {
 | |
|                 error(U_REGEX_NUMBER_TOO_BIG);
 | |
|             } else {
 | |
|                 fIntervalUpper = (int32_t)val;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doIntervalSame:
 | |
|         // Scanned a single value interval like {27}.  Upper = Lower.
 | |
|         fIntervalUpper = fIntervalLow;
 | |
|         break;
 | |
| 
 | |
|     case doInterval:
 | |
|         // Finished scanning a normal {lower,upper} interval.  Generate the code for it.
 | |
|         if (compileInlineInterval() == FALSE) {
 | |
|             compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doPossessiveInterval:
 | |
|         // Finished scanning a Possessive {lower,upper}+ interval.  Generate the code for it.
 | |
|         {
 | |
|             // Remember the loc for the top of the block being looped over.
 | |
|             //   (Can not reserve a slot in the compiled pattern at this time, because
 | |
|             //    compileInterval needs to reserve also, and blockTopLoc can only reserve
 | |
|             //    once per block.)
 | |
|             int32_t topLoc = blockTopLoc(FALSE);
 | |
| 
 | |
|             // Produce normal looping code.
 | |
|             compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
 | |
| 
 | |
|             // Surround the just-emitted normal looping code with a STO_SP ... LD_SP
 | |
|             //  just as if the loop was inclosed in atomic parentheses.
 | |
| 
 | |
|             // First the STO_SP before the start of the loop
 | |
|             insertOp(topLoc);
 | |
| 
 | |
|             int32_t  varLoc = allocateData(1);   // Reserve a data location for saving the
 | |
|             int32_t  op     = buildOp(URX_STO_SP, varLoc);
 | |
|             fRXPat->fCompiledPat->setElementAt(op, topLoc);
 | |
| 
 | |
|             int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi();
 | |
|             U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc);
 | |
|             loopOp++;     // point LoopOp after the just-inserted STO_SP
 | |
|             fRXPat->fCompiledPat->push(loopOp, *fStatus);
 | |
| 
 | |
|             // Then the LD_SP after the end of the loop
 | |
|             appendOp(URX_LD_SP, varLoc);
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|     case doNGInterval:
 | |
|         // Finished scanning a non-greedy {lower,upper}? interval.  Generate the code for it.
 | |
|         compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG);
 | |
|         break;
 | |
| 
 | |
|     case doIntervalError:
 | |
|         error(U_REGEX_BAD_INTERVAL);
 | |
|         break;
 | |
| 
 | |
|     case doLiteralChar:
 | |
|         // We've just scanned a "normal" character from the pattern,
 | |
|         literalChar(fC.fChar);
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doEscapedLiteralChar:
 | |
|         // We've just scanned an backslashed escaped character with  no
 | |
|         //   special meaning.  It represents itself.
 | |
|         if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
 | |
|             ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) ||     // in [A-Z]
 | |
|             (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) {   // in [a-z]
 | |
|                error(U_REGEX_BAD_ESCAPE_SEQUENCE);
 | |
|              }
 | |
|         literalChar(fC.fChar);
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doDotAny:
 | |
|         // scanned a ".",  match any single character.
 | |
|         {
 | |
|             fixLiterals(FALSE);
 | |
|             if (fModeFlags & UREGEX_DOTALL) {
 | |
|                 appendOp(URX_DOTANY_ALL, 0);
 | |
|             } else if (fModeFlags & UREGEX_UNIX_LINES) {
 | |
|                 appendOp(URX_DOTANY_UNIX, 0);
 | |
|             } else {
 | |
|                 appendOp(URX_DOTANY, 0);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doCaret:
 | |
|         {
 | |
|             fixLiterals(FALSE);
 | |
|             if (       (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
 | |
|                 appendOp(URX_CARET, 0);
 | |
|             } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
 | |
|                 appendOp(URX_CARET_M, 0);
 | |
|             } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
 | |
|                 appendOp(URX_CARET, 0);   // Only testing true start of input.
 | |
|             } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
 | |
|                 appendOp(URX_CARET_M_UNIX, 0);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doDollar:
 | |
|         {
 | |
|             fixLiterals(FALSE);
 | |
|             if (       (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
 | |
|                 appendOp(URX_DOLLAR, 0);
 | |
|             } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
 | |
|                 appendOp(URX_DOLLAR_M, 0);
 | |
|             } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
 | |
|                 appendOp(URX_DOLLAR_D, 0);
 | |
|             } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
 | |
|                 appendOp(URX_DOLLAR_MD, 0);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doBackslashA:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_CARET, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashB:
 | |
|         {
 | |
|             #if  UCONFIG_NO_BREAK_ITERATION==1
 | |
|             if (fModeFlags & UREGEX_UWORD) {
 | |
|                 error(U_UNSUPPORTED_ERROR);
 | |
|             }
 | |
|             #endif
 | |
|             fixLiterals(FALSE);
 | |
|             int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
 | |
|             appendOp(op, 1);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doBackslashb:
 | |
|         {
 | |
|             #if  UCONFIG_NO_BREAK_ITERATION==1
 | |
|             if (fModeFlags & UREGEX_UWORD) {
 | |
|                 error(U_UNSUPPORTED_ERROR);
 | |
|             }
 | |
|             #endif
 | |
|             fixLiterals(FALSE);
 | |
|             int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
 | |
|             appendOp(op, 0);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doBackslashD:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_D, 1);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashd:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_D, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashG:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_G, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashH:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_H, 1);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashh:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_H, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashR:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_R, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashS:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_STAT_SETREF_N, URX_ISSPACE_SET);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashs:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_STATIC_SETREF, URX_ISSPACE_SET);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashV:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_V, 1);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashv:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_V, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashW:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_STAT_SETREF_N, URX_ISWORD_SET);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashw:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_STATIC_SETREF, URX_ISWORD_SET);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashX:
 | |
|         #if  UCONFIG_NO_BREAK_ITERATION==1
 | |
|         // Grapheme Cluster Boundary requires ICU break iteration.
 | |
|         error(U_UNSUPPORTED_ERROR);
 | |
|         #endif
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_X, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashZ:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_DOLLAR, 0);
 | |
|         break;
 | |
| 
 | |
|     case doBackslashz:
 | |
|         fixLiterals(FALSE);
 | |
|         appendOp(URX_BACKSLASH_Z, 0);
 | |
|         break;
 | |
| 
 | |
|     case doEscapeError:
 | |
|         error(U_REGEX_BAD_ESCAPE_SEQUENCE);
 | |
|         break;
 | |
| 
 | |
|     case doExit:
 | |
|         fixLiterals(FALSE);
 | |
|         returnVal = FALSE;
 | |
|         break;
 | |
| 
 | |
|     case doProperty:
 | |
|         {
 | |
|             fixLiterals(FALSE);
 | |
|             UnicodeSet *theSet = scanProp();
 | |
|             compileSet(theSet);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doNamedChar:
 | |
|         {
 | |
|             UChar32 c = scanNamedChar();
 | |
|             literalChar(c);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doBackRef:
 | |
|         // BackReference.  Somewhat unusual in that the front-end can not completely parse
 | |
|         //                 the regular expression, because the number of digits to be consumed
 | |
|         //                 depends on the number of capture groups that have been defined.  So
 | |
|         //                 we have to do it here instead.
 | |
|         {
 | |
|             int32_t  numCaptureGroups = fRXPat->fGroupMap->size();
 | |
|             int32_t  groupNum = 0;
 | |
|             UChar32  c        = fC.fChar;
 | |
| 
 | |
|             for (;;) {
 | |
|                 // Loop once per digit, for max allowed number of digits in a back reference.
 | |
|                 int32_t digit = u_charDigitValue(c);
 | |
|                 groupNum = groupNum * 10 + digit;
 | |
|                 if (groupNum >= numCaptureGroups) {
 | |
|                     break;
 | |
|                 }
 | |
|                 c = peekCharLL();
 | |
|                 if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) {
 | |
|                     break;
 | |
|                 }
 | |
|                 nextCharLL();
 | |
|             }
 | |
| 
 | |
|             // Scan of the back reference in the source regexp is complete.  Now generate
 | |
|             //  the compiled code for it.
 | |
|             // Because capture groups can be forward-referenced by back-references,
 | |
|             //  we fill the operand with the capture group number.  At the end
 | |
|             //  of compilation, it will be changed to the variable's location.
 | |
|             U_ASSERT(groupNum > 0);  // Shouldn't happen.  '\0' begins an octal escape sequence,
 | |
|                                      //    and shouldn't enter this code path at all.
 | |
|             fixLiterals(FALSE);
 | |
|             if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
 | |
|                 appendOp(URX_BACKREF_I, groupNum);
 | |
|             } else {
 | |
|                 appendOp(URX_BACKREF, groupNum);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doBeginNamedBackRef:
 | |
|         U_ASSERT(fCaptureName == NULL);
 | |
|         fCaptureName = new UnicodeString;
 | |
|         if (fCaptureName == NULL) {
 | |
|             error(U_MEMORY_ALLOCATION_ERROR);
 | |
|         }
 | |
|         break;
 | |
|             
 | |
|     case doContinueNamedBackRef:
 | |
|         fCaptureName->append(fC.fChar);
 | |
|         break;
 | |
| 
 | |
|     case doCompleteNamedBackRef:
 | |
|         {
 | |
|         int32_t groupNumber =
 | |
|             fRXPat->fNamedCaptureMap ? uhash_geti(fRXPat->fNamedCaptureMap, fCaptureName) : 0;
 | |
|         if (groupNumber == 0) {
 | |
|             // Group name has not been defined.
 | |
|             //   Could be a forward reference. If we choose to support them at some
 | |
|             //   future time, extra mechanism will be required at this point.
 | |
|             error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
 | |
|         } else {
 | |
|             // Given the number, handle identically to a \n numbered back reference.
 | |
|             // See comments above, under doBackRef
 | |
|             fixLiterals(FALSE);
 | |
|             if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
 | |
|                 appendOp(URX_BACKREF_I, groupNumber);
 | |
|             } else {
 | |
|                 appendOp(URX_BACKREF, groupNumber);
 | |
|             }
 | |
|         }
 | |
|         delete fCaptureName;
 | |
|         fCaptureName = NULL;
 | |
|         break;
 | |
|         }
 | |
|        
 | |
|     case doPossessivePlus:
 | |
|         // Possessive ++ quantifier.
 | |
|         // Compiles to
 | |
|         //       1.   STO_SP
 | |
|         //       2.      body of stuff being iterated over
 | |
|         //       3.   STATE_SAVE 5
 | |
|         //       4.   JMP        2
 | |
|         //       5.   LD_SP
 | |
|         //       6.   ...
 | |
|         //
 | |
|         //  Note:  TODO:  This is pretty inefficient.  A mass of saved state is built up
 | |
|         //                then unconditionally discarded.  Perhaps introduce a new opcode.  Ticket 6056
 | |
|         //
 | |
|         {
 | |
|             // Emit the STO_SP
 | |
|             int32_t   topLoc = blockTopLoc(TRUE);
 | |
|             int32_t   stoLoc = allocateData(1);  // Reserve the data location for storing save stack ptr.
 | |
|             int32_t   op     = buildOp(URX_STO_SP, stoLoc);
 | |
|             fRXPat->fCompiledPat->setElementAt(op, topLoc);
 | |
| 
 | |
|             // Emit the STATE_SAVE
 | |
|             appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
 | |
| 
 | |
|             // Emit the JMP
 | |
|             appendOp(URX_JMP, topLoc+1);
 | |
| 
 | |
|             // Emit the LD_SP
 | |
|             appendOp(URX_LD_SP, stoLoc);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doPossessiveStar:
 | |
|         // Possessive *+ quantifier.
 | |
|         // Compiles to
 | |
|         //       1.   STO_SP       loc
 | |
|         //       2.   STATE_SAVE   5
 | |
|         //       3.      body of stuff being iterated over
 | |
|         //       4.   JMP          2
 | |
|         //       5.   LD_SP        loc
 | |
|         //       6    ...
 | |
|         // TODO:  do something to cut back the state stack each time through the loop.
 | |
|         {
 | |
|             // Reserve two slots at the top of the block.
 | |
|             int32_t   topLoc = blockTopLoc(TRUE);
 | |
|             insertOp(topLoc);
 | |
| 
 | |
|             // emit   STO_SP     loc
 | |
|             int32_t   stoLoc = allocateData(1);    // Reserve the data location for storing save stack ptr.
 | |
|             int32_t   op     = buildOp(URX_STO_SP, stoLoc);
 | |
|             fRXPat->fCompiledPat->setElementAt(op, topLoc);
 | |
| 
 | |
|             // Emit the SAVE_STATE   5
 | |
|             int32_t L7 = fRXPat->fCompiledPat->size()+1;
 | |
|             op = buildOp(URX_STATE_SAVE, L7);
 | |
|             fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
 | |
| 
 | |
|             // Append the JMP operation.
 | |
|             appendOp(URX_JMP, topLoc+1);
 | |
| 
 | |
|             // Emit the LD_SP       loc
 | |
|             appendOp(URX_LD_SP, stoLoc);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doPossessiveOpt:
 | |
|         // Possessive  ?+ quantifier.
 | |
|         //  Compiles to
 | |
|         //     1. STO_SP      loc
 | |
|         //     2. SAVE_STATE  5
 | |
|         //     3.    body of optional block
 | |
|         //     4. LD_SP       loc
 | |
|         //     5. ...
 | |
|         //
 | |
|         {
 | |
|             // Reserve two slots at the top of the block.
 | |
|             int32_t   topLoc = blockTopLoc(TRUE);
 | |
|             insertOp(topLoc);
 | |
| 
 | |
|             // Emit the STO_SP
 | |
|             int32_t   stoLoc = allocateData(1);   // Reserve the data location for storing save stack ptr.
 | |
|             int32_t   op     = buildOp(URX_STO_SP, stoLoc);
 | |
|             fRXPat->fCompiledPat->setElementAt(op, topLoc);
 | |
| 
 | |
|             // Emit the SAVE_STATE
 | |
|             int32_t   continueLoc = fRXPat->fCompiledPat->size()+1;
 | |
|             op = buildOp(URX_STATE_SAVE, continueLoc);
 | |
|             fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
 | |
| 
 | |
|             // Emit the LD_SP
 | |
|             appendOp(URX_LD_SP, stoLoc);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doBeginMatchMode:
 | |
|         fNewModeFlags = fModeFlags;
 | |
|         fSetModeFlag  = TRUE;
 | |
|         break;
 | |
| 
 | |
|     case doMatchMode:   //  (?i)    and similar
 | |
|         {
 | |
|             int32_t  bit = 0;
 | |
|             switch (fC.fChar) {
 | |
|             case 0x69: /* 'i' */   bit = UREGEX_CASE_INSENSITIVE; break;
 | |
|             case 0x64: /* 'd' */   bit = UREGEX_UNIX_LINES;       break;
 | |
|             case 0x6d: /* 'm' */   bit = UREGEX_MULTILINE;        break;
 | |
|             case 0x73: /* 's' */   bit = UREGEX_DOTALL;           break;
 | |
|             case 0x75: /* 'u' */   bit = 0; /* Unicode casing */  break;
 | |
|             case 0x77: /* 'w' */   bit = UREGEX_UWORD;            break;
 | |
|             case 0x78: /* 'x' */   bit = UREGEX_COMMENTS;         break;
 | |
|             case 0x2d: /* '-' */   fSetModeFlag = FALSE;          break;
 | |
|             default:
 | |
|                 UPRV_UNREACHABLE_EXIT;  // Should never happen.  Other chars are filtered out
 | |
|                                         // by the scanner.
 | |
|             }
 | |
|             if (fSetModeFlag) {
 | |
|                 fNewModeFlags |= bit;
 | |
|             } else {
 | |
|                 fNewModeFlags &= ~bit;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doSetMatchMode:
 | |
|         // Emit code to match any pending literals, using the not-yet changed match mode.
 | |
|         fixLiterals();
 | |
| 
 | |
|         // We've got a (?i) or similar.  The match mode is being changed, but
 | |
|         //   the change is not scoped to a parenthesized block.
 | |
|         U_ASSERT(fNewModeFlags < 0);
 | |
|         fModeFlags = fNewModeFlags;
 | |
| 
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doMatchModeParen:
 | |
|         // We've got a (?i: or similar.  Begin a parenthesized block, save old
 | |
|         //   mode flags so they can be restored at the close of the block.
 | |
|         //
 | |
|         //   Compile to a
 | |
|         //      - NOP, which later may be replaced by a save-state if the
 | |
|         //         parenthesized group gets a * quantifier, followed by
 | |
|         //      - NOP, which may later be replaced by a save-state if there
 | |
|         //             is an '|' alternation within the parens.
 | |
|         {
 | |
|             fixLiterals(FALSE);
 | |
|             appendOp(URX_NOP, 0);
 | |
|             appendOp(URX_NOP, 0);
 | |
| 
 | |
|             // On the Parentheses stack, start a new frame and add the positions
 | |
|             //   of the two NOPs (a normal non-capturing () frame, except for the
 | |
|             //   saving of the original mode flags.)
 | |
|             fParenStack.push(fModeFlags, *fStatus);
 | |
|             fParenStack.push(flags, *fStatus);                            // Frame Marker
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus);   // The first NOP
 | |
|             fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);   // The second NOP
 | |
| 
 | |
|             // Set the current mode flags to the new values.
 | |
|             U_ASSERT(fNewModeFlags < 0);
 | |
|             fModeFlags = fNewModeFlags;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doBadModeFlag:
 | |
|         error(U_REGEX_INVALID_FLAG);
 | |
|         break;
 | |
| 
 | |
|     case doSuppressComments:
 | |
|         // We have just scanned a '(?'.  We now need to prevent the character scanner from
 | |
|         // treating a '#' as a to-the-end-of-line comment.
 | |
|         //   (This Perl compatibility just gets uglier and uglier to do...)
 | |
|         fEOLComments = FALSE;
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doSetAddAmp:
 | |
|         {
 | |
|           UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|           set->add(chAmp);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doSetAddDash:
 | |
|         {
 | |
|           UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|           set->add(chDash);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|      case doSetBackslash_s:
 | |
|         {
 | |
|          UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|          set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
 | |
|          break;
 | |
|         }
 | |
| 
 | |
|      case doSetBackslash_S:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             UnicodeSet SSet;
 | |
|             SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]).complement();
 | |
|             set->addAll(SSet);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_d:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             // TODO - make a static set, ticket 6058.
 | |
|             addCategory(set, U_GC_ND_MASK, *fStatus);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_D:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             UnicodeSet digits;
 | |
|             // TODO - make a static set, ticket 6058.
 | |
|             digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
 | |
|             digits.complement();
 | |
|             set->addAll(digits);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_h:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             UnicodeSet h;
 | |
|             h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
 | |
|             h.add((UChar32)9);   // Tab
 | |
|             set->addAll(h);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_H:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             UnicodeSet h;
 | |
|             h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
 | |
|             h.add((UChar32)9);   // Tab
 | |
|             h.complement();
 | |
|             set->addAll(h);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_v:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             set->add((UChar32)0x0a, (UChar32)0x0d);  // add range
 | |
|             set->add((UChar32)0x85);
 | |
|             set->add((UChar32)0x2028, (UChar32)0x2029);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_V:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             UnicodeSet v;
 | |
|             v.add((UChar32)0x0a, (UChar32)0x0d);  // add range
 | |
|             v.add((UChar32)0x85);
 | |
|             v.add((UChar32)0x2028, (UChar32)0x2029);
 | |
|             v.complement();
 | |
|             set->addAll(v);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_w:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBackslash_W:
 | |
|         {
 | |
|             UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
 | |
|             UnicodeSet SSet;
 | |
|             SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]).complement();
 | |
|             set->addAll(SSet);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBegin:
 | |
|         {
 | |
|             fixLiterals(FALSE);
 | |
|             LocalPointer<UnicodeSet> lpSet(new UnicodeSet(), *fStatus);
 | |
|             fSetStack.push(lpSet.orphan(), *fStatus);
 | |
|             fSetOpStack.push(setStart, *fStatus);
 | |
|             if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
 | |
|                 fSetOpStack.push(setCaseClose, *fStatus);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetBeginDifference1:
 | |
|         //  We have scanned something like [[abc]-[
 | |
|         //  Set up a new UnicodeSet for the set beginning with the just-scanned '['
 | |
|         //  Push a Difference operator, which will cause the new set to be subtracted from what
 | |
|         //    went before once it is created.
 | |
|         setPushOp(setDifference1);
 | |
|         fSetOpStack.push(setStart, *fStatus);
 | |
|         if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
 | |
|             fSetOpStack.push(setCaseClose, *fStatus);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doSetBeginIntersection1:
 | |
|         //  We have scanned something like  [[abc]&[
 | |
|         //   Need both the '&' operator and the open '[' operator.
 | |
|         setPushOp(setIntersection1);
 | |
|         fSetOpStack.push(setStart, *fStatus);
 | |
|         if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
 | |
|             fSetOpStack.push(setCaseClose, *fStatus);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doSetBeginUnion:
 | |
|         //  We have scanned something like  [[abc][
 | |
|         //     Need to handle the union operation explicitly [[abc] | [
 | |
|         setPushOp(setUnion);
 | |
|         fSetOpStack.push(setStart, *fStatus);
 | |
|         if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
 | |
|             fSetOpStack.push(setCaseClose, *fStatus);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doSetDifference2:
 | |
|         // We have scanned something like [abc--
 | |
|         //   Consider this to unambiguously be a set difference operator.
 | |
|         setPushOp(setDifference2);
 | |
|         break;
 | |
| 
 | |
|     case doSetEnd:
 | |
|         // Have encountered the ']' that closes a set.
 | |
|         //    Force the evaluation of any pending operations within this set,
 | |
|         //    leave the completed set on the top of the set stack.
 | |
|         setEval(setEnd);
 | |
|         U_ASSERT(fSetOpStack.peeki()==setStart);
 | |
|         fSetOpStack.popi();
 | |
|         break;
 | |
| 
 | |
|     case doSetFinish:
 | |
|         {
 | |
|         // Finished a complete set expression, including all nested sets.
 | |
|         //   The close bracket has already triggered clearing out pending set operators,
 | |
|         //    the operator stack should be empty and the operand stack should have just
 | |
|         //    one entry, the result set.
 | |
|         U_ASSERT(fSetOpStack.empty());
 | |
|         UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop();
 | |
|         U_ASSERT(fSetStack.empty());
 | |
|         compileSet(theSet);
 | |
|         break;
 | |
|         }
 | |
| 
 | |
|     case doSetIntersection2:
 | |
|         // Have scanned something like [abc&&
 | |
|         setPushOp(setIntersection2);
 | |
|         break;
 | |
| 
 | |
|     case doSetLiteral:
 | |
|         // Union the just-scanned literal character into the set being built.
 | |
|         //    This operation is the highest precedence set operation, so we can always do
 | |
|         //    it immediately, without waiting to see what follows.  It is necessary to perform
 | |
|         //    any pending '-' or '&' operation first, because these have the same precedence
 | |
|         //    as union-ing in a literal'
 | |
|         {
 | |
|             setEval(setUnion);
 | |
|             UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
 | |
|             s->add(fC.fChar);
 | |
|             fLastSetLiteral = fC.fChar;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetLiteralEscaped:
 | |
|         // A back-slash escaped literal character was encountered.
 | |
|         // Processing is the same as with setLiteral, above, with the addition of
 | |
|         //  the optional check for errors on escaped ASCII letters.
 | |
|         {
 | |
|             if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
 | |
|                 ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) ||     // in [A-Z]
 | |
|                  (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) {   // in [a-z]
 | |
|                 error(U_REGEX_BAD_ESCAPE_SEQUENCE);
 | |
|             }
 | |
|             setEval(setUnion);
 | |
|             UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
 | |
|             s->add(fC.fChar);
 | |
|             fLastSetLiteral = fC.fChar;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         case doSetNamedChar:
 | |
|         // Scanning a \N{UNICODE CHARACTER NAME}
 | |
|         //  Aside from the source of the character, the processing is identical to doSetLiteral,
 | |
|         //    above.
 | |
|         {
 | |
|             UChar32  c = scanNamedChar();
 | |
|             setEval(setUnion);
 | |
|             UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
 | |
|             s->add(c);
 | |
|             fLastSetLiteral = c;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     case doSetNamedRange:
 | |
|         // We have scanned literal-\N{CHAR NAME}.  Add the range to the set.
 | |
|         // The left character is already in the set, and is saved in fLastSetLiteral.
 | |
|         // The right side needs to be picked up, the scan is at the 'N'.
 | |
|         // Lower Limit > Upper limit being an error matches both Java
 | |
|         //        and ICU UnicodeSet behavior.
 | |
|         {
 | |
|             UChar32  c = scanNamedChar();
 | |
|             if (U_SUCCESS(*fStatus) && (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > c)) {
 | |
|                 error(U_REGEX_INVALID_RANGE);
 | |
|             }
 | |
|             UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
 | |
|             s->add(fLastSetLiteral, c);
 | |
|             fLastSetLiteral = c;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
| 
 | |
|     case  doSetNegate:
 | |
|         // Scanned a '^' at the start of a set.
 | |
|         // Push the negation operator onto the set op stack.
 | |
|         // A twist for case-insensitive matching:
 | |
|         //   the case closure operation must happen _before_ negation.
 | |
|         //   But the case closure operation will already be on the stack if it's required.
 | |
|         //   This requires checking for case closure, and swapping the stack order
 | |
|         //    if it is present.
 | |
|         {
 | |
|             int32_t  tosOp = fSetOpStack.peeki();
 | |
|             if (tosOp == setCaseClose) {
 | |
|                 fSetOpStack.popi();
 | |
|                 fSetOpStack.push(setNegation, *fStatus);
 | |
|                 fSetOpStack.push(setCaseClose, *fStatus);
 | |
|             } else {
 | |
|                 fSetOpStack.push(setNegation, *fStatus);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doSetNoCloseError:
 | |
|         error(U_REGEX_MISSING_CLOSE_BRACKET);
 | |
|         break;
 | |
| 
 | |
|     case doSetOpError:
 | |
|         error(U_REGEX_RULE_SYNTAX);   //  -- or && at the end of a set.  Illegal.
 | |
|         break;
 | |
| 
 | |
|     case doSetPosixProp:
 | |
|         {
 | |
|             UnicodeSet *s = scanPosixProp();
 | |
|             if (s != NULL) {
 | |
|                 UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
 | |
|                 tos->addAll(*s);
 | |
|                 delete s;
 | |
|             }  // else error.  scanProp() reported the error status already.
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case doSetProp:
 | |
|         //  Scanned a \p \P within [brackets].
 | |
|         {
 | |
|             UnicodeSet *s = scanProp();
 | |
|             if (s != NULL) {
 | |
|                 UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
 | |
|                 tos->addAll(*s);
 | |
|                 delete s;
 | |
|             }  // else error.  scanProp() reported the error status already.
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|     case doSetRange:
 | |
|         // We have scanned literal-literal.  Add the range to the set.
 | |
|         // The left character is already in the set, and is saved in fLastSetLiteral.
 | |
|         // The right side is the current character.
 | |
|         // Lower Limit > Upper limit being an error matches both Java
 | |
|         //        and ICU UnicodeSet behavior.
 | |
|         {
 | |
| 
 | |
|         if (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > fC.fChar) {
 | |
|             error(U_REGEX_INVALID_RANGE);
 | |
|         }
 | |
|         UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
 | |
|         s->add(fLastSetLiteral, fC.fChar);
 | |
|         break;
 | |
|         }
 | |
| 
 | |
|     default:
 | |
|         UPRV_UNREACHABLE_EXIT;
 | |
|     }
 | |
| 
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         returnVal = FALSE;
 | |
|     }
 | |
| 
 | |
|     return returnVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   literalChar           We've encountered a literal character from the pattern,
 | |
| //                             or an escape sequence that reduces to a character.
 | |
| //                         Add it to the string containing all literal chars/strings from
 | |
| //                             the pattern.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void RegexCompile::literalChar(UChar32 c)  {
 | |
|     fLiteralChars.append(c);
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //    fixLiterals           When compiling something that can follow a literal
 | |
| //                          string in a pattern, emit the code to match the
 | |
| //                          accumulated literal string.
 | |
| //
 | |
| //                          Optionally, split the last char of the string off into
 | |
| //                          a single "ONE_CHAR" operation, so that quantifiers can
 | |
| //                          apply to that char alone.  Example:   abc*
 | |
| //                          The * must apply to the 'c' only.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void    RegexCompile::fixLiterals(UBool split) {
 | |
| 
 | |
|     // If no literal characters have been scanned but not yet had code generated
 | |
|     //   for them, nothing needs to be done.
 | |
|     if (fLiteralChars.length() == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
 | |
|     UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
 | |
| 
 | |
|     // Split:  We need to  ensure that the last item in the compiled pattern
 | |
|     //     refers only to the last literal scanned in the pattern, so that
 | |
|     //     quantifiers (*, +, etc.) affect only it, and not a longer string.
 | |
|     //     Split before case folding for case insensitive matches.
 | |
| 
 | |
|     if (split) {
 | |
|         fLiteralChars.truncate(indexOfLastCodePoint);
 | |
|         fixLiterals(FALSE);   // Recursive call, emit code to match the first part of the string.
 | |
|                               //  Note that the truncated literal string may be empty, in which case
 | |
|                               //  nothing will be emitted.
 | |
| 
 | |
|         literalChar(lastCodePoint);  // Re-add the last code point as if it were a new literal.
 | |
|         fixLiterals(FALSE);          // Second recursive call, code for the final code point.
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // If we are doing case-insensitive matching, case fold the string.  This may expand
 | |
|     //   the string, e.g. the German sharp-s turns into "ss"
 | |
|     if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
 | |
|         fLiteralChars.foldCase();
 | |
|         indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
 | |
|         lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
 | |
|     }
 | |
| 
 | |
|     if (indexOfLastCodePoint == 0) {
 | |
|         // Single character, emit a URX_ONECHAR op to match it.
 | |
|         if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
 | |
|                  u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) {
 | |
|             appendOp(URX_ONECHAR_I, lastCodePoint);
 | |
|         } else {
 | |
|             appendOp(URX_ONECHAR, lastCodePoint);
 | |
|         }
 | |
|     } else {
 | |
|         // Two or more chars, emit a URX_STRING to match them.
 | |
|         if (fLiteralChars.length() > 0x00ffffff || fRXPat->fLiteralText.length() > 0x00ffffff) {
 | |
|             error(U_REGEX_PATTERN_TOO_BIG);
 | |
|         }
 | |
|         if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
 | |
|             appendOp(URX_STRING_I, fRXPat->fLiteralText.length());
 | |
|         } else {
 | |
|             // TODO here:  add optimization to split case sensitive strings of length two
 | |
|             //             into two single char ops, for efficiency.
 | |
|             appendOp(URX_STRING, fRXPat->fLiteralText.length());
 | |
|         }
 | |
|         appendOp(URX_STRING_LEN, fLiteralChars.length());
 | |
| 
 | |
|         // Add this string into the accumulated strings of the compiled pattern.
 | |
|         fRXPat->fLiteralText.append(fLiteralChars);
 | |
|     }
 | |
| 
 | |
|     fLiteralChars.remove();
 | |
| }
 | |
| 
 | |
| 
 | |
| int32_t RegexCompile::buildOp(int32_t type, int32_t val) {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (type < 0 || type > 255) {
 | |
|         UPRV_UNREACHABLE_EXIT;
 | |
|     }
 | |
|     if (val > 0x00ffffff) {
 | |
|         UPRV_UNREACHABLE_EXIT;
 | |
|     }
 | |
|     if (val < 0) {
 | |
|         if (!(type == URX_RESERVED_OP_N || type == URX_RESERVED_OP)) {
 | |
|             UPRV_UNREACHABLE_EXIT;
 | |
|         }
 | |
|         if (URX_TYPE(val) != 0xff) {
 | |
|             UPRV_UNREACHABLE_EXIT;
 | |
|         }
 | |
|         type = URX_RESERVED_OP_N;
 | |
|     }
 | |
|     return (type << 24) | val;
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   appendOp()             Append a new instruction onto the compiled pattern
 | |
| //                          Includes error checking, limiting the size of the
 | |
| //                          pattern to lengths that can be represented in the
 | |
| //                          24 bit operand field of an instruction.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void RegexCompile::appendOp(int32_t op) {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return;
 | |
|     }
 | |
|     fRXPat->fCompiledPat->addElement(op, *fStatus);
 | |
|     if ((fRXPat->fCompiledPat->size() > 0x00fffff0) && U_SUCCESS(*fStatus)) {
 | |
|         error(U_REGEX_PATTERN_TOO_BIG);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void RegexCompile::appendOp(int32_t type, int32_t val) {
 | |
|     appendOp(buildOp(type, val));
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   insertOp()             Insert a slot for a new opcode into the already
 | |
| //                          compiled pattern code.
 | |
| //
 | |
| //                          Fill the slot with a NOP.  Our caller will replace it
 | |
| //                          with what they really wanted.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void   RegexCompile::insertOp(int32_t where) {
 | |
|     UVector64 *code = fRXPat->fCompiledPat;
 | |
|     U_ASSERT(where>0 && where < code->size());
 | |
| 
 | |
|     int32_t  nop = buildOp(URX_NOP, 0);
 | |
|     code->insertElementAt(nop, where, *fStatus);
 | |
| 
 | |
|     // Walk through the pattern, looking for any ops with targets that
 | |
|     //  were moved down by the insert.  Fix them.
 | |
|     int32_t loc;
 | |
|     for (loc=0; loc<code->size(); loc++) {
 | |
|         int32_t op = (int32_t)code->elementAti(loc);
 | |
|         int32_t opType = URX_TYPE(op);
 | |
|         int32_t opValue = URX_VAL(op);
 | |
|         if ((opType == URX_JMP         ||
 | |
|             opType == URX_JMPX         ||
 | |
|             opType == URX_STATE_SAVE   ||
 | |
|             opType == URX_CTR_LOOP     ||
 | |
|             opType == URX_CTR_LOOP_NG  ||
 | |
|             opType == URX_JMP_SAV      ||
 | |
|             opType == URX_JMP_SAV_X    ||
 | |
|             opType == URX_RELOC_OPRND)    && opValue > where) {
 | |
|             // Target location for this opcode is after the insertion point and
 | |
|             //   needs to be incremented to adjust for the insertion.
 | |
|             opValue++;
 | |
|             op = buildOp(opType, opValue);
 | |
|             code->setElementAt(op, loc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Now fix up the parentheses stack.  All positive values in it are locations in
 | |
|     //  the compiled pattern.   (Negative values are frame boundaries, and don't need fixing.)
 | |
|     for (loc=0; loc<fParenStack.size(); loc++) {
 | |
|         int32_t x = fParenStack.elementAti(loc);
 | |
|         U_ASSERT(x < code->size());
 | |
|         if (x>where) {
 | |
|             x++;
 | |
|             fParenStack.setElementAt(x, loc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (fMatchCloseParen > where) {
 | |
|         fMatchCloseParen++;
 | |
|     }
 | |
|     if (fMatchOpenParen > where) {
 | |
|         fMatchOpenParen++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   allocateData()        Allocate storage in the matcher's static data area.
 | |
| //                         Return the index for the newly allocated data.
 | |
| //                         The storage won't actually exist until we are running a match
 | |
| //                         operation, but the storage indexes are inserted into various
 | |
| //                         opcodes while compiling the pattern.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| int32_t RegexCompile::allocateData(int32_t size) {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (size <= 0 || size > 0x100 || fRXPat->fDataSize < 0) {
 | |
|         error(U_REGEX_INTERNAL_ERROR);
 | |
|         return 0;
 | |
|     }
 | |
|     int32_t dataIndex = fRXPat->fDataSize;
 | |
|     fRXPat->fDataSize += size;
 | |
|     if (fRXPat->fDataSize >= 0x00fffff0) {
 | |
|         error(U_REGEX_INTERNAL_ERROR);
 | |
|     }
 | |
|     return dataIndex;
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   allocateStackData()   Allocate space in the back-tracking stack frame.
 | |
| //                         Return the index for the newly allocated data.
 | |
| //                         The frame indexes are inserted into various
 | |
| //                         opcodes while compiling the pattern, meaning that frame
 | |
| //                         size must be restricted to the size that will fit
 | |
| //                         as an operand (24 bits).
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| int32_t RegexCompile::allocateStackData(int32_t size) {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (size <= 0 || size > 0x100 || fRXPat->fFrameSize < 0) {
 | |
|         error(U_REGEX_INTERNAL_ERROR);
 | |
|         return 0;
 | |
|     }
 | |
|     int32_t dataIndex = fRXPat->fFrameSize;
 | |
|     fRXPat->fFrameSize += size;
 | |
|     if (fRXPat->fFrameSize >= 0x00fffff0) {
 | |
|         error(U_REGEX_PATTERN_TOO_BIG);
 | |
|     }
 | |
|     return dataIndex;
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   blockTopLoc()          Find or create a location in the compiled pattern
 | |
| //                          at the start of the operation or block that has
 | |
| //                          just been compiled.  Needed when a quantifier (* or
 | |
| //                          whatever) appears, and we need to add an operation
 | |
| //                          at the start of the thing being quantified.
 | |
| //
 | |
| //                          (Parenthesized Blocks) have a slot with a NOP that
 | |
| //                          is reserved for this purpose.  .* or similar don't
 | |
| //                          and a slot needs to be added.
 | |
| //
 | |
| //       parameter reserveLoc   :  TRUE -  ensure that there is space to add an opcode
 | |
| //                                         at the returned location.
 | |
| //                                 FALSE - just return the address,
 | |
| //                                         do not reserve a location there.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| int32_t   RegexCompile::blockTopLoc(UBool reserveLoc) {
 | |
|     int32_t   theLoc;
 | |
|     fixLiterals(TRUE);  // Emit code for any pending literals.
 | |
|                         //   If last item was a string, emit separate op for the its last char.
 | |
|     if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
 | |
|     {
 | |
|         // The item just processed is a parenthesized block.
 | |
|         theLoc = fMatchOpenParen;   // A slot is already reserved for us.
 | |
|         U_ASSERT(theLoc > 0);
 | |
|         U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP);
 | |
|     }
 | |
|     else {
 | |
|         // Item just compiled is a single thing, a ".", or a single char, a string or a set reference.
 | |
|         // No slot for STATE_SAVE was pre-reserved in the compiled code.
 | |
|         // We need to make space now.
 | |
|         theLoc = fRXPat->fCompiledPat->size()-1;
 | |
|         int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc);
 | |
|         if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) {
 | |
|             // Strings take two opcode, we want the position of the first one.
 | |
|             // We can have a string at this point if a single character case-folded to two.
 | |
|             theLoc--;
 | |
|         }
 | |
|         if (reserveLoc) {
 | |
|             int32_t  nop = buildOp(URX_NOP, 0);
 | |
|             fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
 | |
|         }
 | |
|     }
 | |
|     return theLoc;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //    handleCloseParen      When compiling a close paren, we need to go back
 | |
| //                          and fix up any JMP or SAVE operations within the
 | |
| //                          parenthesized block that need to target the end
 | |
| //                          of the block.  The locations of these are kept on
 | |
| //                          the paretheses stack.
 | |
| //
 | |
| //                          This function is called both when encountering a
 | |
| //                          real ) and at the end of the pattern.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void  RegexCompile::handleCloseParen() {
 | |
|     int32_t   patIdx;
 | |
|     int32_t   patOp;
 | |
|     if (fParenStack.size() <= 0) {
 | |
|         error(U_REGEX_MISMATCHED_PAREN);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Emit code for any pending literals.
 | |
|     fixLiterals(FALSE);
 | |
| 
 | |
|     // Fixup any operations within the just-closed parenthesized group
 | |
|     //    that need to reference the end of the (block).
 | |
|     //    (The first one popped from the stack is an unused slot for
 | |
|     //     alternation (OR) state save, but applying the fixup to it does no harm.)
 | |
|     for (;;) {
 | |
|         patIdx = fParenStack.popi();
 | |
|         if (patIdx < 0) {
 | |
|             // value < 0 flags the start of the frame on the paren stack.
 | |
|             break;
 | |
|         }
 | |
|         U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
 | |
|         patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx);
 | |
|         U_ASSERT(URX_VAL(patOp) == 0);          // Branch target for JMP should not be set.
 | |
|         patOp |= fRXPat->fCompiledPat->size();  // Set it now.
 | |
|         fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
 | |
|         fMatchOpenParen     = patIdx;
 | |
|     }
 | |
| 
 | |
|     //  At the close of any parenthesized block, restore the match mode flags  to
 | |
|     //  the value they had at the open paren.  Saved value is
 | |
|     //  at the top of the paren stack.
 | |
|     fModeFlags = fParenStack.popi();
 | |
|     U_ASSERT(fModeFlags < 0);
 | |
| 
 | |
|     // DO any additional fixups, depending on the specific kind of
 | |
|     // parentesized grouping this is
 | |
| 
 | |
|     switch (patIdx) {
 | |
|     case plain:
 | |
|     case flags:
 | |
|         // No additional fixups required.
 | |
|         //   (Grouping-only parentheses)
 | |
|         break;
 | |
|     case capturing:
 | |
|         // Capturing Parentheses.
 | |
|         //   Insert a End Capture op into the pattern.
 | |
|         //   The frame offset of the variables for this cg is obtained from the
 | |
|         //       start capture op and put it into the end-capture op.
 | |
|         {
 | |
|             int32_t   captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
 | |
|             U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
 | |
| 
 | |
|             int32_t   frameVarLocation = URX_VAL(captureOp);
 | |
|             appendOp(URX_END_CAPTURE, frameVarLocation);
 | |
|         }
 | |
|         break;
 | |
|     case atomic:
 | |
|         // Atomic Parenthesis.
 | |
|         //   Insert a LD_SP operation to restore the state stack to the position
 | |
|         //   it was when the atomic parens were entered.
 | |
|         {
 | |
|             int32_t   stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
 | |
|             U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP);
 | |
|             int32_t   stoLoc = URX_VAL(stoOp);
 | |
|             appendOp(URX_LD_SP, stoLoc);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case lookAhead:
 | |
|         {
 | |
|             int32_t  startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
 | |
|             U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
 | |
|             int32_t dataLoc  = URX_VAL(startOp);
 | |
|             appendOp(URX_LA_END, dataLoc);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case negLookAhead:
 | |
|         {
 | |
|             // See comment at doOpenLookAheadNeg
 | |
|             int32_t  startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
 | |
|             U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
 | |
|             int32_t dataLoc  = URX_VAL(startOp);
 | |
|             appendOp(URX_LA_END, dataLoc);
 | |
|             appendOp(URX_BACKTRACK, 0);
 | |
|             appendOp(URX_LA_END, dataLoc);
 | |
| 
 | |
|             // Patch the URX_SAVE near the top of the block.
 | |
|             // The destination of the SAVE is the final LA_END that was just added.
 | |
|             int32_t saveOp   = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
 | |
|             U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE);
 | |
|             int32_t dest     = fRXPat->fCompiledPat->size()-1;
 | |
|             saveOp           = buildOp(URX_STATE_SAVE, dest);
 | |
|             fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case lookBehind:
 | |
|         {
 | |
|             // See comment at doOpenLookBehind.
 | |
| 
 | |
|             // Append the URX_LB_END and URX_LA_END to the compiled pattern.
 | |
|             int32_t  startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4);
 | |
|             U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
 | |
|             int32_t dataLoc  = URX_VAL(startOp);
 | |
|             appendOp(URX_LB_END, dataLoc);
 | |
|             appendOp(URX_LA_END, dataLoc);
 | |
| 
 | |
|             // Determine the min and max bounds for the length of the
 | |
|             //  string that the pattern can match.
 | |
|             //  An unbounded upper limit is an error.
 | |
|             int32_t patEnd   = fRXPat->fCompiledPat->size() - 1;
 | |
|             int32_t minML    = minMatchLength(fMatchOpenParen, patEnd);
 | |
|             int32_t maxML    = maxMatchLength(fMatchOpenParen, patEnd);
 | |
|             if (URX_TYPE(maxML) != 0) {
 | |
|                 error(U_REGEX_LOOK_BEHIND_LIMIT);
 | |
|                 break;
 | |
|             }
 | |
|             if (maxML == INT32_MAX) {
 | |
|                 error(U_REGEX_LOOK_BEHIND_LIMIT);
 | |
|                 break;
 | |
|             }
 | |
|             if (minML == INT32_MAX) {
 | |
|                 // This condition happens when no match is possible, such as with a
 | |
|                 // [set] expression containing no elements.
 | |
|                 // In principle, the generated code to evaluate the expression could be deleted,
 | |
|                 // but it's probably not worth the complication.
 | |
|                 minML = 0;
 | |
|             }
 | |
|             U_ASSERT(minML <= maxML);
 | |
| 
 | |
|             // Insert the min and max match len bounds into the URX_LB_CONT op that
 | |
|             //  appears at the top of the look-behind block, at location fMatchOpenParen+1
 | |
|             fRXPat->fCompiledPat->setElementAt(minML,  fMatchOpenParen-2);
 | |
|             fRXPat->fCompiledPat->setElementAt(maxML,  fMatchOpenParen-1);
 | |
| 
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
| 
 | |
|     case lookBehindN:
 | |
|         {
 | |
|             // See comment at doOpenLookBehindNeg.
 | |
| 
 | |
|             // Append the URX_LBN_END to the compiled pattern.
 | |
|             int32_t  startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
 | |
|             U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
 | |
|             int32_t dataLoc  = URX_VAL(startOp);
 | |
|             appendOp(URX_LBN_END, dataLoc);
 | |
| 
 | |
|             // Determine the min and max bounds for the length of the
 | |
|             //  string that the pattern can match.
 | |
|             //  An unbounded upper limit is an error.
 | |
|             int32_t patEnd   = fRXPat->fCompiledPat->size() - 1;
 | |
|             int32_t minML    = minMatchLength(fMatchOpenParen, patEnd);
 | |
|             int32_t maxML    = maxMatchLength(fMatchOpenParen, patEnd);
 | |
|             if (URX_TYPE(maxML) != 0) {
 | |
|                 error(U_REGEX_LOOK_BEHIND_LIMIT);
 | |
|                 break;
 | |
|             }
 | |
|             if (maxML == INT32_MAX) {
 | |
|                 error(U_REGEX_LOOK_BEHIND_LIMIT);
 | |
|                 break;
 | |
|             }
 | |
|             if (minML == INT32_MAX) {
 | |
|                 // This condition happens when no match is possible, such as with a
 | |
|                 // [set] expression containing no elements.
 | |
|                 // In principle, the generated code to evaluate the expression could be deleted,
 | |
|                 // but it's probably not worth the complication.
 | |
|                 minML = 0;
 | |
|             }
 | |
| 
 | |
|             U_ASSERT(minML <= maxML);
 | |
| 
 | |
|             // Insert the min and max match len bounds into the URX_LB_CONT op that
 | |
|             //  appears at the top of the look-behind block, at location fMatchOpenParen+1
 | |
|             fRXPat->fCompiledPat->setElementAt(minML,  fMatchOpenParen-3);
 | |
|             fRXPat->fCompiledPat->setElementAt(maxML,  fMatchOpenParen-2);
 | |
| 
 | |
|             // Insert the pattern location to continue at after a successful match
 | |
|             //  as the last operand of the URX_LBN_CONT
 | |
|             int32_t op = buildOp(URX_RELOC_OPRND, fRXPat->fCompiledPat->size());
 | |
|             fRXPat->fCompiledPat->setElementAt(op,  fMatchOpenParen-1);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
| 
 | |
| 
 | |
|     default:
 | |
|         UPRV_UNREACHABLE_EXIT;
 | |
|     }
 | |
| 
 | |
|     // remember the next location in the compiled pattern.
 | |
|     // The compilation of Quantifiers will look at this to see whether its looping
 | |
|     //   over a parenthesized block or a single item
 | |
|     fMatchCloseParen = fRXPat->fCompiledPat->size();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   compileSet       Compile the pattern operations for a reference to a
 | |
| //                    UnicodeSet.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void        RegexCompile::compileSet(UnicodeSet *theSet)
 | |
| {
 | |
|     if (theSet == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     //  Remove any strings from the set.
 | |
|     //  There shouldn't be any, but just in case.
 | |
|     //     (Case Closure can add them; if we had a simple case closure available that
 | |
|     //      ignored strings, that would be better.)
 | |
|     theSet->removeAllStrings();
 | |
|     int32_t  setSize = theSet->size();
 | |
| 
 | |
|     switch (setSize) {
 | |
|     case 0:
 | |
|         {
 | |
|             // Set of no elements.   Always fails to match.
 | |
|             appendOp(URX_BACKTRACK, 0);
 | |
|             delete theSet;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 1:
 | |
|         {
 | |
|             // The set contains only a single code point.  Put it into
 | |
|             //   the compiled pattern as a single char operation rather
 | |
|             //   than a set, and discard the set itself.
 | |
|             literalChar(theSet->charAt(0));
 | |
|             delete theSet;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         {
 | |
|             //  The set contains two or more chars.  (the normal case)
 | |
|             //  Put it into the compiled pattern as a set.
 | |
|             theSet->freeze();
 | |
|             int32_t setNumber = fRXPat->fSets->size();
 | |
|             fRXPat->fSets->addElement(theSet, *fStatus);
 | |
|             if (U_SUCCESS(*fStatus)) {
 | |
|                 appendOp(URX_SETREF, setNumber);
 | |
|             } else {
 | |
|                 delete theSet;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   compileInterval    Generate the code for a {min, max} style interval quantifier.
 | |
| //                      Except for the specific opcodes used, the code is the same
 | |
| //                      for all three types (greedy, non-greedy, possessive) of
 | |
| //                      intervals.  The opcodes are supplied as parameters.
 | |
| //                      (There are two sets of opcodes - greedy & possessive use the
 | |
| //                      same ones, while non-greedy has it's own.)
 | |
| //
 | |
| //                      The code for interval loops has this form:
 | |
| //                         0  CTR_INIT   counter loc (in stack frame)
 | |
| //                         1             5  patt address of CTR_LOOP at bottom of block
 | |
| //                         2             min count
 | |
| //                         3             max count   (-1 for unbounded)
 | |
| //                         4  ...        block to be iterated over
 | |
| //                         5  CTR_LOOP
 | |
| //
 | |
| //                       In
 | |
| //------------------------------------------------------------------------------
 | |
| void        RegexCompile::compileInterval(int32_t InitOp,  int32_t LoopOp)
 | |
| {
 | |
|     // The CTR_INIT op at the top of the block with the {n,m} quantifier takes
 | |
|     //   four slots in the compiled code.  Reserve them.
 | |
|     int32_t   topOfBlock = blockTopLoc(TRUE);
 | |
|     insertOp(topOfBlock);
 | |
|     insertOp(topOfBlock);
 | |
|     insertOp(topOfBlock);
 | |
| 
 | |
|     // The operands for the CTR_INIT opcode include the index in the matcher data
 | |
|     //   of the counter.  Allocate it now. There are two data items
 | |
|     //        counterLoc   -->  Loop counter
 | |
|     //               +1    -->  Input index (for breaking non-progressing loops)
 | |
|     //                          (Only present if unbounded upper limit on loop)
 | |
|     int32_t   dataSize = fIntervalUpper < 0 ? 2 : 1;
 | |
|     int32_t   counterLoc = allocateStackData(dataSize);
 | |
| 
 | |
|     int32_t   op = buildOp(InitOp, counterLoc);
 | |
|     fRXPat->fCompiledPat->setElementAt(op, topOfBlock);
 | |
| 
 | |
|     // The second operand of CTR_INIT is the location following the end of the loop.
 | |
|     //   Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the
 | |
|     //   compilation of something later on causes the code to grow and the target
 | |
|     //   position to move.
 | |
|     int32_t loopEnd = fRXPat->fCompiledPat->size();
 | |
|     op = buildOp(URX_RELOC_OPRND, loopEnd);
 | |
|     fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1);
 | |
| 
 | |
|     // Followed by the min and max counts.
 | |
|     fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2);
 | |
|     fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3);
 | |
| 
 | |
|     // Append the CTR_LOOP op.  The operand is the location of the CTR_INIT op.
 | |
|     //   Goes at end of the block being looped over, so just append to the code so far.
 | |
|     appendOp(LoopOp, topOfBlock);
 | |
| 
 | |
|     if ((fIntervalLow & 0xff000000) != 0 ||
 | |
|         (fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) {
 | |
|             error(U_REGEX_NUMBER_TOO_BIG);
 | |
|         }
 | |
| 
 | |
|     if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) {
 | |
|         error(U_REGEX_MAX_LT_MIN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| UBool RegexCompile::compileInlineInterval() {
 | |
|     if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) {
 | |
|         // Too big to inline.  Fail, which will cause looping code to be generated.
 | |
|         //   (Upper < Lower picks up unbounded upper and errors, both.)
 | |
|         return FALSE;
 | |
|     }
 | |
| 
 | |
|     int32_t   topOfBlock = blockTopLoc(FALSE);
 | |
|     if (fIntervalUpper == 0) {
 | |
|         // Pathological case.  Attempt no matches, as if the block doesn't exist.
 | |
|         // Discard the generated code for the block.
 | |
|         // If the block included parens, discard the info pertaining to them as well.
 | |
|         fRXPat->fCompiledPat->setSize(topOfBlock);
 | |
|         if (fMatchOpenParen >= topOfBlock) {
 | |
|             fMatchOpenParen = -1;
 | |
|         }
 | |
|         if (fMatchCloseParen >= topOfBlock) {
 | |
|             fMatchCloseParen = -1;
 | |
|         }
 | |
|         return TRUE;
 | |
|     }
 | |
| 
 | |
|     if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) {
 | |
|         // The thing being repeated is not a single op, but some
 | |
|         //   more complex block.  Do it as a loop, not inlines.
 | |
|         //   Note that things "repeated" a max of once are handled as inline, because
 | |
|         //     the one copy of the code already generated is just fine.
 | |
|         return FALSE;
 | |
|     }
 | |
| 
 | |
|     // Pick up the opcode that is to be repeated
 | |
|     //
 | |
|     int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock);
 | |
| 
 | |
|     // Compute the pattern location where the inline sequence
 | |
|     //   will end, and set up the state save op that will be needed.
 | |
|     //
 | |
|     int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1
 | |
|                                 + fIntervalUpper + (fIntervalUpper-fIntervalLow);
 | |
|     int32_t saveOp = buildOp(URX_STATE_SAVE, endOfSequenceLoc);
 | |
|     if (fIntervalLow == 0) {
 | |
|         insertOp(topOfBlock);
 | |
|         fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock);
 | |
|     }
 | |
| 
 | |
| 
 | |
| 
 | |
|     //  Loop, emitting the op for the thing being repeated each time.
 | |
|     //    Loop starts at 1 because one instance of the op already exists in the pattern,
 | |
|     //    it was put there when it was originally encountered.
 | |
|     int32_t i;
 | |
|     for (i=1; i<fIntervalUpper; i++ ) {
 | |
|         if (i >= fIntervalLow) {
 | |
|             appendOp(saveOp);
 | |
|         }
 | |
|         appendOp(op);
 | |
|     }
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   caseInsensitiveStart  given a single code point from a pattern string, determine the 
 | |
| //                         set of characters that could potentially begin a case-insensitive 
 | |
| //                         match of a string beginning with that character, using full Unicode
 | |
| //                         case insensitive matching.
 | |
| //
 | |
| //          This is used in optimizing find().
 | |
| //
 | |
| //          closeOver(USET_CASE_INSENSITIVE) does most of what is needed, but
 | |
| //          misses cases like this:
 | |
| //             A string from the pattern begins with 'ss' (although all we know
 | |
| //                 in this context is that it begins with 's')
 | |
| //             The pattern could match a string beginning with a German sharp-s
 | |
| //
 | |
| //           To the ordinary case closure for a character c, we add all other
 | |
| //           characters cx where the case closure of cx includes a string form that begins
 | |
| //           with the original character c.
 | |
| //
 | |
| //           This function could be made smarter. The full pattern string is available
 | |
| //           and it would be possible to verify that the extra characters being added
 | |
| //           to the starting set fully match, rather than having just a first-char of the
 | |
| //           folded form match.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void  RegexCompile::findCaseInsensitiveStarters(UChar32 c, UnicodeSet *starterChars) {
 | |
| 
 | |
| // Machine Generated below.
 | |
| // It may need updating with new versions of Unicode.
 | |
| // Intltest test RegexTest::TestCaseInsensitiveStarters will fail if an update is needed.
 | |
| // The update tool is here:
 | |
| // https://github.com/unicode-org/icu/tree/main/tools/unicode/c/genregexcasing
 | |
| 
 | |
| // Machine Generated Data. Do not hand edit.
 | |
|     static const UChar32 RECaseFixCodePoints[] = {
 | |
|         0x61, 0x66, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x77, 0x79, 0x2bc, 
 | |
|         0x3ac, 0x3ae, 0x3b1, 0x3b7, 0x3b9, 0x3c1, 0x3c5, 0x3c9, 0x3ce, 0x565, 
 | |
|         0x574, 0x57e, 0x1f00, 0x1f01, 0x1f02, 0x1f03, 0x1f04, 0x1f05, 0x1f06, 0x1f07, 
 | |
|         0x1f20, 0x1f21, 0x1f22, 0x1f23, 0x1f24, 0x1f25, 0x1f26, 0x1f27, 0x1f60, 0x1f61, 
 | |
|         0x1f62, 0x1f63, 0x1f64, 0x1f65, 0x1f66, 0x1f67, 0x1f70, 0x1f74, 0x1f7c, 0x110000};
 | |
| 
 | |
|     static const int16_t RECaseFixStringOffsets[] = {
 | |
|         0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xd, 0xe, 0xf, 0x10, 
 | |
|         0x11, 0x12, 0x13, 0x17, 0x1b, 0x20, 0x21, 0x2a, 0x2e, 0x2f, 
 | |
|         0x30, 0x34, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43, 
 | |
|         0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 
 | |
|         0x59, 0x5b, 0x5d, 0x5f, 0x61, 0x63, 0x65, 0x66, 0x67, 0};
 | |
| 
 | |
|     static const int16_t RECaseFixCounts[] = {
 | |
|         0x1, 0x5, 0x1, 0x1, 0x1, 0x4, 0x1, 0x1, 0x1, 0x1, 
 | |
|         0x1, 0x1, 0x4, 0x4, 0x5, 0x1, 0x9, 0x4, 0x1, 0x1, 
 | |
|         0x4, 0x1, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 
 | |
|         0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 
 | |
|         0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x1, 0x1, 0x1, 0};
 | |
| 
 | |
|     static const UChar RECaseFixData[] = {
 | |
|         0x1e9a, 0xfb00, 0xfb01, 0xfb02, 0xfb03, 0xfb04, 0x1e96, 0x130, 0x1f0, 0xdf, 
 | |
|         0x1e9e, 0xfb05, 0xfb06, 0x1e97, 0x1e98, 0x1e99, 0x149, 0x1fb4, 0x1fc4, 0x1fb3, 
 | |
|         0x1fb6, 0x1fb7, 0x1fbc, 0x1fc3, 0x1fc6, 0x1fc7, 0x1fcc, 0x390, 0x1fd2, 0x1fd3, 
 | |
|         0x1fd6, 0x1fd7, 0x1fe4, 0x3b0, 0x1f50, 0x1f52, 0x1f54, 0x1f56, 0x1fe2, 0x1fe3, 
 | |
|         0x1fe6, 0x1fe7, 0x1ff3, 0x1ff6, 0x1ff7, 0x1ffc, 0x1ff4, 0x587, 0xfb13, 0xfb14, 
 | |
|         0xfb15, 0xfb17, 0xfb16, 0x1f80, 0x1f88, 0x1f81, 0x1f89, 0x1f82, 0x1f8a, 0x1f83, 
 | |
|         0x1f8b, 0x1f84, 0x1f8c, 0x1f85, 0x1f8d, 0x1f86, 0x1f8e, 0x1f87, 0x1f8f, 0x1f90, 
 | |
|         0x1f98, 0x1f91, 0x1f99, 0x1f92, 0x1f9a, 0x1f93, 0x1f9b, 0x1f94, 0x1f9c, 0x1f95, 
 | |
|         0x1f9d, 0x1f96, 0x1f9e, 0x1f97, 0x1f9f, 0x1fa0, 0x1fa8, 0x1fa1, 0x1fa9, 0x1fa2, 
 | |
|         0x1faa, 0x1fa3, 0x1fab, 0x1fa4, 0x1fac, 0x1fa5, 0x1fad, 0x1fa6, 0x1fae, 0x1fa7, 
 | |
|         0x1faf, 0x1fb2, 0x1fc2, 0x1ff2, 0};
 | |
| 
 | |
| // End of machine generated data.
 | |
| 
 | |
|     if (c < UCHAR_MIN_VALUE || c > UCHAR_MAX_VALUE) {
 | |
|         // This function should never be called with an invalid input character.
 | |
|         UPRV_UNREACHABLE_EXIT;
 | |
|     } else if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
 | |
|         UChar32 caseFoldedC  = u_foldCase(c, U_FOLD_CASE_DEFAULT);
 | |
|         starterChars->set(caseFoldedC, caseFoldedC);
 | |
| 
 | |
|         int32_t i;
 | |
|         for (i=0; RECaseFixCodePoints[i]<c ; i++) {
 | |
|             // Simple linear search through the sorted list of interesting code points.
 | |
|         }
 | |
| 
 | |
|         if (RECaseFixCodePoints[i] == c) {
 | |
|             int32_t dataIndex = RECaseFixStringOffsets[i];
 | |
|             int32_t numCharsToAdd = RECaseFixCounts[i];
 | |
|             UChar32 cpToAdd = 0;
 | |
|             for (int32_t j=0; j<numCharsToAdd; j++) {
 | |
|                 U16_NEXT_UNSAFE(RECaseFixData, dataIndex, cpToAdd);
 | |
|                 starterChars->add(cpToAdd);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         starterChars->closeOver(USET_CASE_INSENSITIVE);
 | |
|         starterChars->removeAllStrings();
 | |
|     } else {
 | |
|         // Not a cased character. Just return it alone.
 | |
|         starterChars->set(c, c);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Increment with overflow check.
 | |
| // val and delta will both be positive.
 | |
| 
 | |
| static int32_t safeIncrement(int32_t val, int32_t delta) {
 | |
|     if (INT32_MAX - val > delta) {
 | |
|         return val + delta;
 | |
|     } else {
 | |
|         return INT32_MAX;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   matchStartType    Determine how a match can start.
 | |
| //                     Used to optimize find() operations.
 | |
| //
 | |
| //                     Operation is very similar to minMatchLength().  Walk the compiled
 | |
| //                     pattern, keeping an on-going minimum-match-length.  For any
 | |
| //                     op where the min match coming in is zero, add that ops possible
 | |
| //                     starting matches to the possible starts for the overall pattern.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void   RegexCompile::matchStartType() {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     int32_t    loc;                    // Location in the pattern of the current op being processed.
 | |
|     int32_t    op;                     // The op being processed
 | |
|     int32_t    opType;                 // The opcode type of the op
 | |
|     int32_t    currentLen = 0;         // Minimum length of a match to this point (loc) in the pattern
 | |
|     int32_t    numInitialStrings = 0;  // Number of strings encountered that could match at start.
 | |
| 
 | |
|     UBool      atStart = TRUE;         // True if no part of the pattern yet encountered
 | |
|                                        //   could have advanced the position in a match.
 | |
|                                        //   (Maximum match length so far == 0)
 | |
| 
 | |
|     // forwardedLength is a vector holding minimum-match-length values that
 | |
|     //   are propagated forward in the pattern by JMP or STATE_SAVE operations.
 | |
|     //   It must be one longer than the pattern being checked because some  ops
 | |
|     //   will jmp to a end-of-block+1 location from within a block, and we must
 | |
|     //   count those when checking the block.
 | |
|     int32_t end = fRXPat->fCompiledPat->size();
 | |
|     UVector32  forwardedLength(end+1, *fStatus);
 | |
|     forwardedLength.setSize(end+1);
 | |
|     for (loc=3; loc<end; loc++) {
 | |
|         forwardedLength.setElementAt(INT32_MAX, loc);
 | |
|     }
 | |
| 
 | |
|     for (loc = 3; loc<end; loc++) {
 | |
|         op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|         opType = URX_TYPE(op);
 | |
| 
 | |
|         // The loop is advancing linearly through the pattern.
 | |
|         // If the op we are now at was the destination of a branch in the pattern,
 | |
|         // and that path has a shorter minimum length than the current accumulated value,
 | |
|         // replace the current accumulated value.
 | |
|         if (forwardedLength.elementAti(loc) < currentLen) {
 | |
|             currentLen = forwardedLength.elementAti(loc);
 | |
|             U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
 | |
|         }
 | |
| 
 | |
|         switch (opType) {
 | |
|             // Ops that don't change the total length matched
 | |
|         case URX_RESERVED_OP:
 | |
|         case URX_END:
 | |
|         case URX_FAIL:
 | |
|         case URX_STRING_LEN:
 | |
|         case URX_NOP:
 | |
|         case URX_START_CAPTURE:
 | |
|         case URX_END_CAPTURE:
 | |
|         case URX_BACKSLASH_B:
 | |
|         case URX_BACKSLASH_BU:
 | |
|         case URX_BACKSLASH_G:
 | |
|         case URX_BACKSLASH_Z:
 | |
|         case URX_DOLLAR:
 | |
|         case URX_DOLLAR_M:
 | |
|         case URX_DOLLAR_D:
 | |
|         case URX_DOLLAR_MD:
 | |
|         case URX_RELOC_OPRND:
 | |
|         case URX_STO_INP_LOC:
 | |
|         case URX_BACKREF:         // BackRef.  Must assume that it might be a zero length match
 | |
|         case URX_BACKREF_I:
 | |
| 
 | |
|         case URX_STO_SP:          // Setup for atomic or possessive blocks.  Doesn't change what can match.
 | |
|         case URX_LD_SP:
 | |
|             break;
 | |
| 
 | |
|         case URX_CARET:
 | |
|             if (atStart) {
 | |
|                 fRXPat->fStartType = START_START;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_CARET_M:
 | |
|         case URX_CARET_M_UNIX:
 | |
|             if (atStart) {
 | |
|                 fRXPat->fStartType = START_LINE;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_ONECHAR:
 | |
|             if (currentLen == 0) {
 | |
|                 // This character could appear at the start of a match.
 | |
|                 //   Add it to the set of possible starting characters.
 | |
|                 fRXPat->fInitialChars->add(URX_VAL(op));
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_SETREF:
 | |
|             if (currentLen == 0) {
 | |
|                 int32_t  sn = URX_VAL(op);
 | |
|                 U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
 | |
|                 const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
 | |
|                 fRXPat->fInitialChars->addAll(*s);
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
|         case URX_LOOP_SR_I:
 | |
|             // [Set]*, like a SETREF, above, in what it can match,
 | |
|             //  but may not match at all, so currentLen is not incremented.
 | |
|             if (currentLen == 0) {
 | |
|                 int32_t  sn = URX_VAL(op);
 | |
|                 U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
 | |
|                 const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
 | |
|                 fRXPat->fInitialChars->addAll(*s);
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
|         case URX_LOOP_DOT_I:
 | |
|             if (currentLen == 0) {
 | |
|                 // .* at the start of a pattern.
 | |
|                 //    Any character can begin the match.
 | |
|                 fRXPat->fInitialChars->clear();
 | |
|                 fRXPat->fInitialChars->complement();
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_STATIC_SETREF:
 | |
|             if (currentLen == 0) {
 | |
|                 int32_t  sn = URX_VAL(op);
 | |
|                 U_ASSERT(sn>0 && sn<URX_LAST_SET);
 | |
|                 const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[sn];
 | |
|                 fRXPat->fInitialChars->addAll(s);
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
| 
 | |
|         case URX_STAT_SETREF_N:
 | |
|             if (currentLen == 0) {
 | |
|                 int32_t  sn = URX_VAL(op);
 | |
|                 UnicodeSet sc;
 | |
|                 sc.addAll(RegexStaticSets::gStaticSets->fPropSets[sn]).complement();
 | |
|                 fRXPat->fInitialChars->addAll(sc);
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
| 
 | |
|         case URX_BACKSLASH_D:
 | |
|             // Digit Char
 | |
|              if (currentLen == 0) {
 | |
|                  UnicodeSet s;
 | |
|                  s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
 | |
|                  if (URX_VAL(op) != 0) {
 | |
|                      s.complement();
 | |
|                  }
 | |
|                  fRXPat->fInitialChars->addAll(s);
 | |
|                  numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_BACKSLASH_H:
 | |
|             // Horiz white space
 | |
|             if (currentLen == 0) {
 | |
|                 UnicodeSet s;
 | |
|                 s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
 | |
|                 s.add((UChar32)9);   // Tab
 | |
|                 if (URX_VAL(op) != 0) {
 | |
|                     s.complement();
 | |
|                 }
 | |
|                 fRXPat->fInitialChars->addAll(s);
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_BACKSLASH_R:       // Any line ending sequence
 | |
|         case URX_BACKSLASH_V:       // Any line ending code point, with optional negation
 | |
|             if (currentLen == 0) {
 | |
|                 UnicodeSet s;
 | |
|                 s.add((UChar32)0x0a, (UChar32)0x0d);  // add range
 | |
|                 s.add((UChar32)0x85);
 | |
|                 s.add((UChar32)0x2028, (UChar32)0x2029);
 | |
|                 if (URX_VAL(op) != 0) {
 | |
|                      // Complement option applies to URX_BACKSLASH_V only.
 | |
|                      s.complement();
 | |
|                 }
 | |
|                 fRXPat->fInitialChars->addAll(s);
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
| 
 | |
|         case URX_ONECHAR_I:
 | |
|             // Case Insensitive Single Character.
 | |
|             if (currentLen == 0) {
 | |
|                 UChar32  c = URX_VAL(op);
 | |
|                 if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
 | |
|                     UnicodeSet starters(c, c);
 | |
|                     starters.closeOver(USET_CASE_INSENSITIVE);
 | |
|                     // findCaseInsensitiveStarters(c, &starters);
 | |
|                     //   For ONECHAR_I, no need to worry about text chars that expand on folding into strings.
 | |
|                     //   The expanded folding can't match the pattern.
 | |
|                     fRXPat->fInitialChars->addAll(starters);
 | |
|                 } else {
 | |
|                     // Char has no case variants.  Just add it as-is to the
 | |
|                     //   set of possible starting chars.
 | |
|                     fRXPat->fInitialChars->add(c);
 | |
|                 }
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_BACKSLASH_X:   // Grapheme Cluster.  Minimum is 1, max unbounded.
 | |
|         case URX_DOTANY_ALL:    // . matches one or two.
 | |
|         case URX_DOTANY:
 | |
|         case URX_DOTANY_UNIX:
 | |
|             if (currentLen == 0) {
 | |
|                 // These constructs are all bad news when they appear at the start
 | |
|                 //   of a match.  Any character can begin the match.
 | |
|                 fRXPat->fInitialChars->clear();
 | |
|                 fRXPat->fInitialChars->complement();
 | |
|                 numInitialStrings += 2;
 | |
|             }
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_JMPX:
 | |
|             loc++;             // Except for extra operand on URX_JMPX, same as URX_JMP.
 | |
|             U_FALLTHROUGH;
 | |
|         case URX_JMP:
 | |
|             {
 | |
|                 int32_t  jmpDest = URX_VAL(op);
 | |
|                 if (jmpDest < loc) {
 | |
|                     // Loop of some kind.  Can safely ignore, the worst that will happen
 | |
|                     //  is that we understate the true minimum length
 | |
|                     currentLen = forwardedLength.elementAti(loc+1);
 | |
| 
 | |
|                 } else {
 | |
|                     // Forward jump.  Propagate the current min length to the target loc of the jump.
 | |
|                     U_ASSERT(jmpDest <= end+1);
 | |
|                     if (forwardedLength.elementAti(jmpDest) > currentLen) {
 | |
|                         forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
|         case URX_JMP_SAV:
 | |
|         case URX_JMP_SAV_X:
 | |
|             // Combo of state save to the next loc, + jmp backwards.
 | |
|             //   Net effect on min. length computation is nothing.
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
|         case URX_BACKTRACK:
 | |
|             // Fails are kind of like a branch, except that the min length was
 | |
|             //   propagated already, by the state save.
 | |
|             currentLen = forwardedLength.elementAti(loc+1);
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_STATE_SAVE:
 | |
|             {
 | |
|                 // State Save, for forward jumps, propagate the current minimum.
 | |
|                 //             of the state save.
 | |
|                 int32_t  jmpDest = URX_VAL(op);
 | |
|                 if (jmpDest > loc) {
 | |
|                     if (currentLen < forwardedLength.elementAti(jmpDest)) {
 | |
|                         forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|         case URX_STRING:
 | |
|             {
 | |
|                 loc++;
 | |
|                 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                 int32_t stringLen   = URX_VAL(stringLenOp);
 | |
|                 U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
 | |
|                 U_ASSERT(stringLenOp >= 2);
 | |
|                 if (currentLen == 0) {
 | |
|                     // Add the starting character of this string to the set of possible starting
 | |
|                     //   characters for this pattern.
 | |
|                     int32_t stringStartIdx = URX_VAL(op);
 | |
|                     UChar32  c = fRXPat->fLiteralText.char32At(stringStartIdx);
 | |
|                     fRXPat->fInitialChars->add(c);
 | |
| 
 | |
|                     // Remember this string.  After the entire pattern has been checked,
 | |
|                     //  if nothing else is identified that can start a match, we'll use it.
 | |
|                     numInitialStrings++;
 | |
|                     fRXPat->fInitialStringIdx = stringStartIdx;
 | |
|                     fRXPat->fInitialStringLen = stringLen;
 | |
|                 }
 | |
| 
 | |
|                 currentLen = safeIncrement(currentLen, stringLen);
 | |
|                 atStart = FALSE;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_STRING_I:
 | |
|             {
 | |
|                 // Case-insensitive string.  Unlike exact-match strings, we won't
 | |
|                 //   attempt a string search for possible match positions.  But we
 | |
|                 //   do update the set of possible starting characters.
 | |
|                 loc++;
 | |
|                 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                 int32_t stringLen   = URX_VAL(stringLenOp);
 | |
|                 U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
 | |
|                 U_ASSERT(stringLenOp >= 2);
 | |
|                 if (currentLen == 0) {
 | |
|                     // Add the starting character of this string to the set of possible starting
 | |
|                     //   characters for this pattern.
 | |
|                     int32_t stringStartIdx = URX_VAL(op);
 | |
|                     UChar32  c = fRXPat->fLiteralText.char32At(stringStartIdx);
 | |
|                     UnicodeSet s;
 | |
|                     findCaseInsensitiveStarters(c, &s);
 | |
|                     fRXPat->fInitialChars->addAll(s);
 | |
|                     numInitialStrings += 2;  // Matching on an initial string not possible.
 | |
|                 }
 | |
|                 currentLen = safeIncrement(currentLen, stringLen);
 | |
|                 atStart = FALSE;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_CTR_INIT:
 | |
|         case URX_CTR_INIT_NG:
 | |
|             {
 | |
|                 // Loop Init Ops.  These don't change the min length, but they are 4 word ops
 | |
|                 //   so location must be updated accordingly.
 | |
|                 // Loop Init Ops.
 | |
|                 //   If the min loop count == 0
 | |
|                 //      move loc forwards to the end of the loop, skipping over the body.
 | |
|                 //   If the min count is > 0,
 | |
|                 //      continue normal processing of the body of the loop.
 | |
|                 int32_t loopEndLoc   = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
 | |
|                         loopEndLoc   = URX_VAL(loopEndLoc);
 | |
|                 int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
 | |
|                 if (minLoopCount == 0) {
 | |
|                     // Min Loop Count of 0, treat like a forward branch and
 | |
|                     //   move the current minimum length up to the target
 | |
|                     //   (end of loop) location.
 | |
|                     U_ASSERT(loopEndLoc <= end+1);
 | |
|                     if (forwardedLength.elementAti(loopEndLoc) > currentLen) {
 | |
|                         forwardedLength.setElementAt(currentLen, loopEndLoc);
 | |
|                     }
 | |
|                 }
 | |
|                 loc+=3;  // Skips over operands of CTR_INIT
 | |
|             }
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_CTR_LOOP:
 | |
|         case URX_CTR_LOOP_NG:
 | |
|             // Loop ops.
 | |
|             //  The jump is conditional, backwards only.
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
|         case URX_LOOP_C:
 | |
|             // More loop ops.  These state-save to themselves.
 | |
|             //   don't change the minimum match
 | |
|             atStart = FALSE;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_LA_START:
 | |
|         case URX_LB_START:
 | |
|             {
 | |
|                 // Look-around.  Scan forward until the matching look-ahead end,
 | |
|                 //   without processing the look-around block.  This is overly pessimistic.
 | |
| 
 | |
|                 // Keep track of the nesting depth of look-around blocks.  Boilerplate code for
 | |
|                 //   lookahead contains two LA_END instructions, so count goes up by two
 | |
|                 //   for each LA_START.
 | |
|                 int32_t  depth = (opType == URX_LA_START? 2: 1);
 | |
|                 for (;;) {
 | |
|                     loc++;
 | |
|                     op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                     if (URX_TYPE(op) == URX_LA_START) {
 | |
|                         depth+=2;
 | |
|                     }
 | |
|                     if (URX_TYPE(op) == URX_LB_START) {
 | |
|                         depth++;
 | |
|                     }
 | |
|                     if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
 | |
|                         depth--;
 | |
|                         if (depth == 0) {
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (URX_TYPE(op) == URX_STATE_SAVE) {
 | |
|                         // Need this because neg lookahead blocks will FAIL to outside
 | |
|                         //   of the block.
 | |
|                         int32_t  jmpDest = URX_VAL(op);
 | |
|                         if (jmpDest > loc) {
 | |
|                             if (currentLen < forwardedLength.elementAti(jmpDest)) {
 | |
|                                 forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     U_ASSERT(loc <= end);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_LA_END:
 | |
|         case URX_LB_CONT:
 | |
|         case URX_LB_END:
 | |
|         case URX_LBN_CONT:
 | |
|         case URX_LBN_END:
 | |
|             UPRV_UNREACHABLE_EXIT;  // Shouldn't get here.  These ops should be
 | |
|                                     //  consumed by the scan in URX_LA_START and LB_START
 | |
|         default:
 | |
|             UPRV_UNREACHABLE_EXIT;
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
| 
 | |
|     // We have finished walking through the ops.  Check whether some forward jump
 | |
|     //   propagated a shorter length to location end+1.
 | |
|     if (forwardedLength.elementAti(end+1) < currentLen) {
 | |
|         currentLen = forwardedLength.elementAti(end+1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     fRXPat->fInitialChars8->init(fRXPat->fInitialChars);
 | |
| 
 | |
| 
 | |
|     // Sort out what we should check for when looking for candidate match start positions.
 | |
|     // In order of preference,
 | |
|     //     1.   Start of input text buffer.
 | |
|     //     2.   A literal string.
 | |
|     //     3.   Start of line in multi-line mode.
 | |
|     //     4.   A single literal character.
 | |
|     //     5.   A character from a set of characters.
 | |
|     //
 | |
|     if (fRXPat->fStartType == START_START) {
 | |
|         // Match only at the start of an input text string.
 | |
|         //    start type is already set.  We're done.
 | |
|     } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) {
 | |
|         // Match beginning only with a literal string.
 | |
|         UChar32  c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx);
 | |
|         U_ASSERT(fRXPat->fInitialChars->contains(c));
 | |
|         fRXPat->fStartType   = START_STRING;
 | |
|         fRXPat->fInitialChar = c;
 | |
|     } else if (fRXPat->fStartType == START_LINE) {
 | |
|         // Match at start of line in Multi-Line mode.
 | |
|         // Nothing to do here; everything is already set.
 | |
|     } else if (fRXPat->fMinMatchLen == 0) {
 | |
|         // Zero length match possible.  We could start anywhere.
 | |
|         fRXPat->fStartType = START_NO_INFO;
 | |
|     } else if (fRXPat->fInitialChars->size() == 1) {
 | |
|         // All matches begin with the same char.
 | |
|         fRXPat->fStartType   = START_CHAR;
 | |
|         fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0);
 | |
|         U_ASSERT(fRXPat->fInitialChar != (UChar32)-1);
 | |
|     } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE &&
 | |
|         fRXPat->fMinMatchLen > 0) {
 | |
|         // Matches start with a set of character smaller than the set of all chars.
 | |
|         fRXPat->fStartType = START_SET;
 | |
|     } else {
 | |
|         // Matches can start with anything
 | |
|         fRXPat->fStartType = START_NO_INFO;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   minMatchLength    Calculate the length of the shortest string that could
 | |
| //                     match the specified pattern.
 | |
| //                     Length is in 16 bit code units, not code points.
 | |
| //
 | |
| //                     The calculated length may not be exact.  The returned
 | |
| //                     value may be shorter than the actual minimum; it must
 | |
| //                     never be longer.
 | |
| //
 | |
| //                     start and end are the range of p-code operations to be
 | |
| //                     examined.  The endpoints are included in the range.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| int32_t   RegexCompile::minMatchLength(int32_t start, int32_t end) {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     U_ASSERT(start <= end);
 | |
|     U_ASSERT(end < fRXPat->fCompiledPat->size());
 | |
| 
 | |
| 
 | |
|     int32_t    loc;
 | |
|     int32_t    op;
 | |
|     int32_t    opType;
 | |
|     int32_t    currentLen = 0;
 | |
| 
 | |
| 
 | |
|     // forwardedLength is a vector holding minimum-match-length values that
 | |
|     //   are propagated forward in the pattern by JMP or STATE_SAVE operations.
 | |
|     //   It must be one longer than the pattern being checked because some  ops
 | |
|     //   will jmp to a end-of-block+1 location from within a block, and we must
 | |
|     //   count those when checking the block.
 | |
|     UVector32  forwardedLength(end+2, *fStatus);
 | |
|     forwardedLength.setSize(end+2);
 | |
|     for (loc=start; loc<=end+1; loc++) {
 | |
|         forwardedLength.setElementAt(INT32_MAX, loc);
 | |
|     }
 | |
| 
 | |
|     for (loc = start; loc<=end; loc++) {
 | |
|         op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|         opType = URX_TYPE(op);
 | |
| 
 | |
|         // The loop is advancing linearly through the pattern.
 | |
|         // If the op we are now at was the destination of a branch in the pattern,
 | |
|         // and that path has a shorter minimum length than the current accumulated value,
 | |
|         // replace the current accumulated value.
 | |
|         // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);  // MinLength == INT32_MAX for some
 | |
|                                                                //   no-match-possible cases.
 | |
|         if (forwardedLength.elementAti(loc) < currentLen) {
 | |
|             currentLen = forwardedLength.elementAti(loc);
 | |
|             U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
 | |
|         }
 | |
| 
 | |
|         switch (opType) {
 | |
|             // Ops that don't change the total length matched
 | |
|         case URX_RESERVED_OP:
 | |
|         case URX_END:
 | |
|         case URX_STRING_LEN:
 | |
|         case URX_NOP:
 | |
|         case URX_START_CAPTURE:
 | |
|         case URX_END_CAPTURE:
 | |
|         case URX_BACKSLASH_B:
 | |
|         case URX_BACKSLASH_BU:
 | |
|         case URX_BACKSLASH_G:
 | |
|         case URX_BACKSLASH_Z:
 | |
|         case URX_CARET:
 | |
|         case URX_DOLLAR:
 | |
|         case URX_DOLLAR_M:
 | |
|         case URX_DOLLAR_D:
 | |
|         case URX_DOLLAR_MD:
 | |
|         case URX_RELOC_OPRND:
 | |
|         case URX_STO_INP_LOC:
 | |
|         case URX_CARET_M:
 | |
|         case URX_CARET_M_UNIX:
 | |
|         case URX_BACKREF:         // BackRef.  Must assume that it might be a zero length match
 | |
|         case URX_BACKREF_I:
 | |
| 
 | |
|         case URX_STO_SP:          // Setup for atomic or possessive blocks.  Doesn't change what can match.
 | |
|         case URX_LD_SP:
 | |
| 
 | |
|         case URX_JMP_SAV:
 | |
|         case URX_JMP_SAV_X:
 | |
|             break;
 | |
| 
 | |
| 
 | |
|             // Ops that match a minimum of one character (one or two 16 bit code units.)
 | |
|             //
 | |
|         case URX_ONECHAR:
 | |
|         case URX_STATIC_SETREF:
 | |
|         case URX_STAT_SETREF_N:
 | |
|         case URX_SETREF:
 | |
|         case URX_BACKSLASH_D:
 | |
|         case URX_BACKSLASH_H:
 | |
|         case URX_BACKSLASH_R:
 | |
|         case URX_BACKSLASH_V:
 | |
|         case URX_ONECHAR_I:
 | |
|         case URX_BACKSLASH_X:   // Grapheme Cluster.  Minimum is 1, max unbounded.
 | |
|         case URX_DOTANY_ALL:    // . matches one or two.
 | |
|         case URX_DOTANY:
 | |
|         case URX_DOTANY_UNIX:
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_JMPX:
 | |
|             loc++;              // URX_JMPX has an extra operand, ignored here,
 | |
|                                 //   otherwise processed identically to URX_JMP.
 | |
|             U_FALLTHROUGH;
 | |
|         case URX_JMP:
 | |
|             {
 | |
|                 int32_t  jmpDest = URX_VAL(op);
 | |
|                 if (jmpDest < loc) {
 | |
|                     // Loop of some kind.  Can safely ignore, the worst that will happen
 | |
|                     //  is that we understate the true minimum length
 | |
|                     currentLen = forwardedLength.elementAti(loc+1);
 | |
|                 } else {
 | |
|                     // Forward jump.  Propagate the current min length to the target loc of the jump.
 | |
|                     U_ASSERT(jmpDest <= end+1);
 | |
|                     if (forwardedLength.elementAti(jmpDest) > currentLen) {
 | |
|                         forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_BACKTRACK:
 | |
|             {
 | |
|                 // Back-tracks are kind of like a branch, except that the min length was
 | |
|                 //   propagated already, by the state save.
 | |
|                 currentLen = forwardedLength.elementAti(loc+1);
 | |
|             }
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_STATE_SAVE:
 | |
|             {
 | |
|                 // State Save, for forward jumps, propagate the current minimum.
 | |
|                 //             of the state save.
 | |
|                 int32_t  jmpDest = URX_VAL(op);
 | |
|                 if (jmpDest > loc) {
 | |
|                     if (currentLen < forwardedLength.elementAti(jmpDest)) {
 | |
|                         forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_STRING:
 | |
|             {
 | |
|                 loc++;
 | |
|                 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
 | |
|             }
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_STRING_I:
 | |
|             {
 | |
|                 loc++;
 | |
|                 // TODO: with full case folding, matching input text may be shorter than
 | |
|                 //       the string we have here.  More smarts could put some bounds on it.
 | |
|                 //       Assume a min length of one for now.  A min length of zero causes
 | |
|                 //        optimization failures for a pattern like "string"+
 | |
|                 // currentLen += URX_VAL(stringLenOp);
 | |
|                 currentLen = safeIncrement(currentLen, 1);
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_CTR_INIT:
 | |
|         case URX_CTR_INIT_NG:
 | |
|             {
 | |
|                 // Loop Init Ops.
 | |
|                 //   If the min loop count == 0
 | |
|                 //      move loc forwards to the end of the loop, skipping over the body.
 | |
|                 //   If the min count is > 0,
 | |
|                 //      continue normal processing of the body of the loop.
 | |
|                 int32_t loopEndLoc   = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
 | |
|                         loopEndLoc   = URX_VAL(loopEndLoc);
 | |
|                 int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
 | |
|                 if (minLoopCount == 0) {
 | |
|                     loc = loopEndLoc;
 | |
|                 } else {
 | |
|                     loc+=3;  // Skips over operands of CTR_INIT
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_CTR_LOOP:
 | |
|         case URX_CTR_LOOP_NG:
 | |
|             // Loop ops.
 | |
|             //  The jump is conditional, backwards only.
 | |
|             break;
 | |
| 
 | |
|         case URX_LOOP_SR_I:
 | |
|         case URX_LOOP_DOT_I:
 | |
|         case URX_LOOP_C:
 | |
|             // More loop ops.  These state-save to themselves.
 | |
|             //   don't change the minimum match - could match nothing at all.
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_LA_START:
 | |
|         case URX_LB_START:
 | |
|             {
 | |
|                 // Look-around.  Scan forward until the matching look-ahead end,
 | |
|                 //   without processing the look-around block.  This is overly pessimistic for look-ahead,
 | |
|                 //   it assumes that the look-ahead match might be zero-length.
 | |
|                 //   TODO:  Positive lookahead could recursively do the block, then continue
 | |
|                 //          with the longer of the block or the value coming in.  Ticket 6060
 | |
|                 int32_t  depth = (opType == URX_LA_START? 2: 1);
 | |
|                 for (;;) {
 | |
|                     loc++;
 | |
|                     op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                     if (URX_TYPE(op) == URX_LA_START) {
 | |
|                         // The boilerplate for look-ahead includes two LA_END instructions,
 | |
|                         //    Depth will be decremented by each one when it is seen.
 | |
|                         depth += 2;
 | |
|                     }
 | |
|                     if (URX_TYPE(op) == URX_LB_START) {
 | |
|                         depth++;
 | |
|                     }
 | |
|                     if (URX_TYPE(op) == URX_LA_END) {
 | |
|                         depth--;
 | |
|                         if (depth == 0) {
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (URX_TYPE(op)==URX_LBN_END) {
 | |
|                         depth--;
 | |
|                         if (depth == 0) {
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (URX_TYPE(op) == URX_STATE_SAVE) {
 | |
|                         // Need this because neg lookahead blocks will FAIL to outside
 | |
|                         //   of the block.
 | |
|                         int32_t  jmpDest = URX_VAL(op);
 | |
|                         if (jmpDest > loc) {
 | |
|                             if (currentLen < forwardedLength.elementAti(jmpDest)) {
 | |
|                                 forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     U_ASSERT(loc <= end);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_LA_END:
 | |
|         case URX_LB_CONT:
 | |
|         case URX_LB_END:
 | |
|         case URX_LBN_CONT:
 | |
|         case URX_LBN_END:
 | |
|             // Only come here if the matching URX_LA_START or URX_LB_START was not in the
 | |
|             //   range being sized, which happens when measuring size of look-behind blocks.
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             UPRV_UNREACHABLE_EXIT;
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
|     // We have finished walking through the ops.  Check whether some forward jump
 | |
|     //   propagated a shorter length to location end+1.
 | |
|     if (forwardedLength.elementAti(end+1) < currentLen) {
 | |
|         currentLen = forwardedLength.elementAti(end+1);
 | |
|         U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
 | |
|     }
 | |
| 
 | |
|     return currentLen;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   maxMatchLength    Calculate the length of the longest string that could
 | |
| //                     match the specified pattern.
 | |
| //                     Length is in 16 bit code units, not code points.
 | |
| //
 | |
| //                     The calculated length may not be exact.  The returned
 | |
| //                     value may be longer than the actual maximum; it must
 | |
| //                     never be shorter.
 | |
| //
 | |
| //                     start, end: the range of the pattern to check.
 | |
| //                     end is inclusive.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| int32_t   RegexCompile::maxMatchLength(int32_t start, int32_t end) {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return 0;
 | |
|     }
 | |
|     U_ASSERT(start <= end);
 | |
|     U_ASSERT(end < fRXPat->fCompiledPat->size());
 | |
| 
 | |
|     int32_t    loc;
 | |
|     int32_t    op;
 | |
|     int32_t    opType;
 | |
|     int32_t    currentLen = 0;
 | |
|     UVector32  forwardedLength(end+1, *fStatus);
 | |
|     forwardedLength.setSize(end+1);
 | |
| 
 | |
|     for (loc=start; loc<=end; loc++) {
 | |
|         forwardedLength.setElementAt(0, loc);
 | |
|     }
 | |
| 
 | |
|     for (loc = start; loc<=end; loc++) {
 | |
|         op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|         opType = URX_TYPE(op);
 | |
| 
 | |
|         // The loop is advancing linearly through the pattern.
 | |
|         // If the op we are now at was the destination of a branch in the pattern,
 | |
|         // and that path has a longer maximum length than the current accumulated value,
 | |
|         // replace the current accumulated value.
 | |
|         if (forwardedLength.elementAti(loc) > currentLen) {
 | |
|             currentLen = forwardedLength.elementAti(loc);
 | |
|         }
 | |
| 
 | |
|         switch (opType) {
 | |
|             // Ops that don't change the total length matched
 | |
|         case URX_RESERVED_OP:
 | |
|         case URX_END:
 | |
|         case URX_STRING_LEN:
 | |
|         case URX_NOP:
 | |
|         case URX_START_CAPTURE:
 | |
|         case URX_END_CAPTURE:
 | |
|         case URX_BACKSLASH_B:
 | |
|         case URX_BACKSLASH_BU:
 | |
|         case URX_BACKSLASH_G:
 | |
|         case URX_BACKSLASH_Z:
 | |
|         case URX_CARET:
 | |
|         case URX_DOLLAR:
 | |
|         case URX_DOLLAR_M:
 | |
|         case URX_DOLLAR_D:
 | |
|         case URX_DOLLAR_MD:
 | |
|         case URX_RELOC_OPRND:
 | |
|         case URX_STO_INP_LOC:
 | |
|         case URX_CARET_M:
 | |
|         case URX_CARET_M_UNIX:
 | |
| 
 | |
|         case URX_STO_SP:          // Setup for atomic or possessive blocks.  Doesn't change what can match.
 | |
|         case URX_LD_SP:
 | |
| 
 | |
|         case URX_LB_END:
 | |
|         case URX_LB_CONT:
 | |
|         case URX_LBN_CONT:
 | |
|         case URX_LBN_END:
 | |
|             break;
 | |
| 
 | |
| 
 | |
|             // Ops that increase that cause an unbounded increase in the length
 | |
|             //   of a matched string, or that increase it a hard to characterize way.
 | |
|             //   Call the max length unbounded, and stop further checking.
 | |
|         case URX_BACKREF:         // BackRef.  Must assume that it might be a zero length match
 | |
|         case URX_BACKREF_I:
 | |
|         case URX_BACKSLASH_X:   // Grapheme Cluster.  Minimum is 1, max unbounded.
 | |
|             currentLen = INT32_MAX;
 | |
|             break;
 | |
| 
 | |
| 
 | |
|             // Ops that match a max of one character (possibly two 16 bit code units.)
 | |
|             //
 | |
|         case URX_STATIC_SETREF:
 | |
|         case URX_STAT_SETREF_N:
 | |
|         case URX_SETREF:
 | |
|         case URX_BACKSLASH_D:
 | |
|         case URX_BACKSLASH_H:
 | |
|         case URX_BACKSLASH_R:
 | |
|         case URX_BACKSLASH_V:
 | |
|         case URX_ONECHAR_I:
 | |
|         case URX_DOTANY_ALL:
 | |
|         case URX_DOTANY:
 | |
|         case URX_DOTANY_UNIX:
 | |
|             currentLen = safeIncrement(currentLen, 2);
 | |
|             break;
 | |
| 
 | |
|             // Single literal character.  Increase current max length by one or two,
 | |
|             //       depending on whether the char is in the supplementary range.
 | |
|         case URX_ONECHAR:
 | |
|             currentLen = safeIncrement(currentLen, 1);
 | |
|             if (URX_VAL(op) > 0x10000) {
 | |
|                 currentLen = safeIncrement(currentLen, 1);
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|             // Jumps.
 | |
|             //
 | |
|         case URX_JMP:
 | |
|         case URX_JMPX:
 | |
|         case URX_JMP_SAV:
 | |
|         case URX_JMP_SAV_X:
 | |
|             {
 | |
|                 int32_t  jmpDest = URX_VAL(op);
 | |
|                 if (jmpDest < loc) {
 | |
|                     // Loop of some kind.  Max match length is unbounded.
 | |
|                     currentLen = INT32_MAX;
 | |
|                 } else {
 | |
|                     // Forward jump.  Propagate the current min length to the target loc of the jump.
 | |
|                     if (forwardedLength.elementAti(jmpDest) < currentLen) {
 | |
|                         forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                     }
 | |
|                     currentLen = 0;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_BACKTRACK:
 | |
|             // back-tracks are kind of like a branch, except that the max length was
 | |
|             //   propagated already, by the state save.
 | |
|             currentLen = forwardedLength.elementAti(loc+1);
 | |
|             break;
 | |
| 
 | |
| 
 | |
|         case URX_STATE_SAVE:
 | |
|             {
 | |
|                 // State Save, for forward jumps, propagate the current minimum.
 | |
|                 //               of the state save.
 | |
|                 //             For backwards jumps, they create a loop, maximum
 | |
|                 //               match length is unbounded.
 | |
|                 int32_t  jmpDest = URX_VAL(op);
 | |
|                 if (jmpDest > loc) {
 | |
|                     if (currentLen > forwardedLength.elementAti(jmpDest)) {
 | |
|                         forwardedLength.setElementAt(currentLen, jmpDest);
 | |
|                     }
 | |
|                 } else {
 | |
|                     currentLen = INT32_MAX;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|         case URX_STRING:
 | |
|             {
 | |
|                 loc++;
 | |
|                 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|         case URX_STRING_I:
 | |
|             // TODO:  This code assumes that any user string that matches will be no longer
 | |
|             //        than our compiled string, with case insensitive matching.
 | |
|             //        Our compiled string has been case-folded already.
 | |
|             //
 | |
|             //        Any matching user string will have no more code points than our
 | |
|             //        compiled (folded) string.  Folding may add code points, but
 | |
|             //        not remove them.
 | |
|             //
 | |
|             //        There is a potential problem if a supplemental code point
 | |
|             //        case-folds to a BMP code point.  In this case our compiled string
 | |
|             //        could be shorter (in code units) than a matching user string.
 | |
|             //
 | |
|             //        At this time (Unicode 6.1) there are no such characters, and this case
 | |
|             //        is not being handled.  A test, intltest regex/Bug9283, will fail if
 | |
|             //        any problematic characters are added to Unicode.
 | |
|             //
 | |
|             //        If this happens, we can make a set of the BMP chars that the
 | |
|             //        troublesome supplementals fold to, scan our string, and bump the
 | |
|             //        currentLen one extra for each that is found.
 | |
|             //
 | |
|             {
 | |
|                 loc++;
 | |
|                 int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                 currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case URX_CTR_INIT:
 | |
|         case URX_CTR_INIT_NG:
 | |
|             // For Loops, recursively call this function on the pattern for the loop body,
 | |
|             //   then multiply the result by the maximum loop count.
 | |
|             {
 | |
|                 int32_t  loopEndLoc = URX_VAL(fRXPat->fCompiledPat->elementAti(loc+1));
 | |
|                 if (loopEndLoc == loc+4) {
 | |
|                     // Loop has an empty body. No affect on max match length.
 | |
|                     // Continue processing with code after the loop end.
 | |
|                     loc = loopEndLoc;
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 int32_t maxLoopCount = static_cast<int32_t>(fRXPat->fCompiledPat->elementAti(loc+3));
 | |
|                 if (maxLoopCount == -1) {
 | |
|                     // Unbounded Loop. No upper bound on match length.
 | |
|                     currentLen = INT32_MAX;
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 U_ASSERT(loopEndLoc >= loc+4);
 | |
|                 int64_t blockLen = maxMatchLength(loc+4, loopEndLoc-1);  // Recursive call.
 | |
|                 int64_t updatedLen = (int64_t)currentLen + blockLen * maxLoopCount; 
 | |
|                 if (updatedLen >= INT32_MAX) {
 | |
|                     currentLen = INT32_MAX;
 | |
|                     break;
 | |
|                 }
 | |
|                 currentLen = (int32_t)updatedLen;
 | |
|                 loc = loopEndLoc;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|         case URX_CTR_LOOP:
 | |
|         case URX_CTR_LOOP_NG:
 | |
|             // These opcodes will be skipped over by code for URX_CTR_INIT.
 | |
|             // We shouldn't encounter them here.
 | |
|             UPRV_UNREACHABLE_EXIT;
 | |
| 
 | |
|         case URX_LOOP_SR_I:
 | |
|         case URX_LOOP_DOT_I:
 | |
|         case URX_LOOP_C:
 | |
|             // For anything to do with loops, make the match length unbounded.
 | |
|             currentLen = INT32_MAX;
 | |
|             break;
 | |
| 
 | |
| 
 | |
| 
 | |
|         case URX_LA_START:
 | |
|         case URX_LA_END:
 | |
|             // Look-ahead.  Just ignore, treat the look-ahead block as if
 | |
|             // it were normal pattern.  Gives a too-long match length,
 | |
|             //  but good enough for now.
 | |
|             break;
 | |
| 
 | |
|             // End of look-ahead ops should always be consumed by the processing at
 | |
|             //  the URX_LA_START op.
 | |
|             // UPRV_UNREACHABLE_EXIT;
 | |
| 
 | |
|         case URX_LB_START:
 | |
|             {
 | |
|                 // Look-behind.  Scan forward until the matching look-around end,
 | |
|                 //   without processing the look-behind block.
 | |
|                 int32_t dataLoc = URX_VAL(op);
 | |
|                 for (loc = loc + 1; loc <= end; ++loc) {
 | |
|                     op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|                     int32_t opType = URX_TYPE(op);
 | |
|                     if ((opType == URX_LA_END || opType == URX_LBN_END) && (URX_VAL(op) == dataLoc)) {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 U_ASSERT(loc <= end);
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             UPRV_UNREACHABLE_EXIT;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         if (currentLen == INT32_MAX) {
 | |
|             //  The maximum length is unbounded.
 | |
|             //  Stop further processing of the pattern.
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     return currentLen;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   stripNOPs    Remove any NOP operations from the compiled pattern code.
 | |
| //                Extra NOPs are inserted for some constructs during the initial
 | |
| //                code generation to provide locations that may be patched later.
 | |
| //                Many end up unneeded, and are removed by this function.
 | |
| //
 | |
| //                In order to minimize the number of passes through the pattern,
 | |
| //                back-reference fixup is also performed here (adjusting
 | |
| //                back-reference operands to point to the correct frame offsets).
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void RegexCompile::stripNOPs() {
 | |
| 
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int32_t    end = fRXPat->fCompiledPat->size();
 | |
|     UVector32  deltas(end, *fStatus);
 | |
| 
 | |
|     // Make a first pass over the code, computing the amount that things
 | |
|     //   will be offset at each location in the original code.
 | |
|     int32_t   loc;
 | |
|     int32_t   d = 0;
 | |
|     for (loc=0; loc<end; loc++) {
 | |
|         deltas.addElement(d, *fStatus);
 | |
|         int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
 | |
|         if (URX_TYPE(op) == URX_NOP) {
 | |
|             d++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     UnicodeString caseStringBuffer;
 | |
| 
 | |
|     // Make a second pass over the code, removing the NOPs by moving following
 | |
|     //  code up, and patching operands that refer to code locations that
 | |
|     //  are being moved.  The array of offsets from the first step is used
 | |
|     //  to compute the new operand values.
 | |
|     int32_t src;
 | |
|     int32_t dst = 0;
 | |
|     for (src=0; src<end; src++) {
 | |
|         int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src);
 | |
|         int32_t opType = URX_TYPE(op);
 | |
|         switch (opType) {
 | |
|         case URX_NOP:
 | |
|             break;
 | |
| 
 | |
|         case URX_STATE_SAVE:
 | |
|         case URX_JMP:
 | |
|         case URX_CTR_LOOP:
 | |
|         case URX_CTR_LOOP_NG:
 | |
|         case URX_RELOC_OPRND:
 | |
|         case URX_JMPX:
 | |
|         case URX_JMP_SAV:
 | |
|         case URX_JMP_SAV_X:
 | |
|             // These are instructions with operands that refer to code locations.
 | |
|             {
 | |
|                 int32_t  operandAddress = URX_VAL(op);
 | |
|                 U_ASSERT(operandAddress>=0 && operandAddress<deltas.size());
 | |
|                 int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress);
 | |
|                 op = buildOp(opType, fixedOperandAddress);
 | |
|                 fRXPat->fCompiledPat->setElementAt(op, dst);
 | |
|                 dst++;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|         case URX_BACKREF:
 | |
|         case URX_BACKREF_I:
 | |
|             {
 | |
|                 int32_t where = URX_VAL(op);
 | |
|                 if (where > fRXPat->fGroupMap->size()) {
 | |
|                     error(U_REGEX_INVALID_BACK_REF);
 | |
|                     break;
 | |
|                 }
 | |
|                 where = fRXPat->fGroupMap->elementAti(where-1);
 | |
|                 op    = buildOp(opType, where);
 | |
|                 fRXPat->fCompiledPat->setElementAt(op, dst);
 | |
|                 dst++;
 | |
| 
 | |
|                 fRXPat->fNeedsAltInput = TRUE;
 | |
|                 break;
 | |
|             }
 | |
|         case URX_RESERVED_OP:
 | |
|         case URX_RESERVED_OP_N:
 | |
|         case URX_BACKTRACK:
 | |
|         case URX_END:
 | |
|         case URX_ONECHAR:
 | |
|         case URX_STRING:
 | |
|         case URX_STRING_LEN:
 | |
|         case URX_START_CAPTURE:
 | |
|         case URX_END_CAPTURE:
 | |
|         case URX_STATIC_SETREF:
 | |
|         case URX_STAT_SETREF_N:
 | |
|         case URX_SETREF:
 | |
|         case URX_DOTANY:
 | |
|         case URX_FAIL:
 | |
|         case URX_BACKSLASH_B:
 | |
|         case URX_BACKSLASH_BU:
 | |
|         case URX_BACKSLASH_G:
 | |
|         case URX_BACKSLASH_X:
 | |
|         case URX_BACKSLASH_Z:
 | |
|         case URX_DOTANY_ALL:
 | |
|         case URX_BACKSLASH_D:
 | |
|         case URX_CARET:
 | |
|         case URX_DOLLAR:
 | |
|         case URX_CTR_INIT:
 | |
|         case URX_CTR_INIT_NG:
 | |
|         case URX_DOTANY_UNIX:
 | |
|         case URX_STO_SP:
 | |
|         case URX_LD_SP:
 | |
|         case URX_STO_INP_LOC:
 | |
|         case URX_LA_START:
 | |
|         case URX_LA_END:
 | |
|         case URX_ONECHAR_I:
 | |
|         case URX_STRING_I:
 | |
|         case URX_DOLLAR_M:
 | |
|         case URX_CARET_M:
 | |
|         case URX_CARET_M_UNIX:
 | |
|         case URX_LB_START:
 | |
|         case URX_LB_CONT:
 | |
|         case URX_LB_END:
 | |
|         case URX_LBN_CONT:
 | |
|         case URX_LBN_END:
 | |
|         case URX_LOOP_SR_I:
 | |
|         case URX_LOOP_DOT_I:
 | |
|         case URX_LOOP_C:
 | |
|         case URX_DOLLAR_D:
 | |
|         case URX_DOLLAR_MD:
 | |
|         case URX_BACKSLASH_H:
 | |
|         case URX_BACKSLASH_R:
 | |
|         case URX_BACKSLASH_V:
 | |
|             // These instructions are unaltered by the relocation.
 | |
|             fRXPat->fCompiledPat->setElementAt(op, dst);
 | |
|             dst++;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             // Some op is unaccounted for.
 | |
|             UPRV_UNREACHABLE_EXIT;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fRXPat->fCompiledPat->setSize(dst);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  Error         Report a rule parse error.
 | |
| //                Only report it if no previous error has been recorded.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void RegexCompile::error(UErrorCode e) {
 | |
|     if (U_SUCCESS(*fStatus) || e == U_MEMORY_ALLOCATION_ERROR) {
 | |
|         *fStatus = e;
 | |
|         // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public
 | |
|         // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are
 | |
|         // int64_t. If the values of the latter are out of range for the former,
 | |
|         // set them to the appropriate "field not supported" values.
 | |
|         if (fLineNum > 0x7FFFFFFF) {
 | |
|             fParseErr->line   = 0;
 | |
|             fParseErr->offset = -1;
 | |
|         } else if (fCharNum > 0x7FFFFFFF) {
 | |
|             fParseErr->line   = (int32_t)fLineNum;
 | |
|             fParseErr->offset = -1;
 | |
|         } else {
 | |
|             fParseErr->line   = (int32_t)fLineNum;
 | |
|             fParseErr->offset = (int32_t)fCharNum;
 | |
|         }
 | |
| 
 | |
|         UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context
 | |
| 
 | |
|         // Fill in the context.
 | |
|         //   Note: extractBetween() pins supplied indices to the string bounds.
 | |
|         uprv_memset(fParseErr->preContext,  0, sizeof(fParseErr->preContext));
 | |
|         uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext));
 | |
|         utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status);
 | |
|         utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| //  Assorted Unicode character constants.
 | |
| //     Numeric because there is no portable way to enter them as literals.
 | |
| //     (Think EBCDIC).
 | |
| //
 | |
| static const UChar      chCR        = 0x0d;      // New lines, for terminating comments.
 | |
| static const UChar      chLF        = 0x0a;      // Line Feed
 | |
| static const UChar      chPound     = 0x23;      // '#', introduces a comment.
 | |
| static const UChar      chDigit0    = 0x30;      // '0'
 | |
| static const UChar      chDigit7    = 0x37;      // '9'
 | |
| static const UChar      chColon     = 0x3A;      // ':'
 | |
| static const UChar      chE         = 0x45;      // 'E'
 | |
| static const UChar      chQ         = 0x51;      // 'Q'
 | |
| //static const UChar      chN         = 0x4E;      // 'N'
 | |
| static const UChar      chP         = 0x50;      // 'P'
 | |
| static const UChar      chBackSlash = 0x5c;      // '\'  introduces a char escape
 | |
| //static const UChar      chLBracket  = 0x5b;      // '['
 | |
| static const UChar      chRBracket  = 0x5d;      // ']'
 | |
| static const UChar      chUp        = 0x5e;      // '^'
 | |
| static const UChar      chLowerP    = 0x70;
 | |
| static const UChar      chLBrace    = 0x7b;      // '{'
 | |
| static const UChar      chRBrace    = 0x7d;      // '}'
 | |
| static const UChar      chNEL       = 0x85;      //    NEL newline variant
 | |
| static const UChar      chLS        = 0x2028;    //    Unicode Line Separator
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  nextCharLL    Low Level Next Char from the regex pattern.
 | |
| //                Get a char from the string, keep track of input position
 | |
| //                     for error reporting.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| UChar32  RegexCompile::nextCharLL() {
 | |
|     UChar32       ch;
 | |
| 
 | |
|     if (fPeekChar != -1) {
 | |
|         ch = fPeekChar;
 | |
|         fPeekChar = -1;
 | |
|         return ch;
 | |
|     }
 | |
| 
 | |
|     // assume we're already in the right place
 | |
|     ch = UTEXT_NEXT32(fRXPat->fPattern);
 | |
|     if (ch == U_SENTINEL) {
 | |
|         return ch;
 | |
|     }
 | |
| 
 | |
|     if (ch == chCR ||
 | |
|         ch == chNEL ||
 | |
|         ch == chLS   ||
 | |
|         (ch == chLF && fLastChar != chCR)) {
 | |
|         // Character is starting a new line.  Bump up the line number, and
 | |
|         //  reset the column to 0.
 | |
|         fLineNum++;
 | |
|         fCharNum=0;
 | |
|     }
 | |
|     else {
 | |
|         // Character is not starting a new line.  Except in the case of a
 | |
|         //   LF following a CR, increment the column position.
 | |
|         if (ch != chLF) {
 | |
|             fCharNum++;
 | |
|         }
 | |
|     }
 | |
|     fLastChar = ch;
 | |
|     return ch;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   peekCharLL    Low Level Character Scanning, sneak a peek at the next
 | |
| //                 character without actually getting it.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| UChar32  RegexCompile::peekCharLL() {
 | |
|     if (fPeekChar == -1) {
 | |
|         fPeekChar = nextCharLL();
 | |
|     }
 | |
|     return fPeekChar;
 | |
| }
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //   nextChar     for pattern scanning.  At this level, we handle stripping
 | |
| //                out comments and processing some backslash character escapes.
 | |
| //                The rest of the pattern grammar is handled at the next level up.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| void RegexCompile::nextChar(RegexPatternChar &c) {
 | |
|   tailRecursion:
 | |
|     fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
 | |
|     c.fChar    = nextCharLL();
 | |
|     c.fQuoted  = FALSE;
 | |
| 
 | |
|     if (fQuoteMode) {
 | |
|         c.fQuoted = TRUE;
 | |
|         if ((c.fChar==chBackSlash && peekCharLL()==chE && ((fModeFlags & UREGEX_LITERAL) == 0)) ||
 | |
|             c.fChar == (UChar32)-1) {
 | |
|             fQuoteMode = FALSE;  //  Exit quote mode,
 | |
|             nextCharLL();        // discard the E
 | |
|             // nextChar(c);      // recurse to get the real next char
 | |
|             goto tailRecursion;  // Note: fuzz testing produced testcases that
 | |
|                                  //       resulted in stack overflow here.
 | |
|         }
 | |
|     }
 | |
|     else if (fInBackslashQuote) {
 | |
|         // The current character immediately follows a '\'
 | |
|         // Don't check for any further escapes, just return it as-is.
 | |
|         // Don't set c.fQuoted, because that would prevent the state machine from
 | |
|         //    dispatching on the character.
 | |
|         fInBackslashQuote = FALSE;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // We are not in a \Q quoted region \E of the source.
 | |
|         //
 | |
|         if (fModeFlags & UREGEX_COMMENTS) {
 | |
|             //
 | |
|             // We are in free-spacing and comments mode.
 | |
|             //  Scan through any white space and comments, until we
 | |
|             //  reach a significant character or the end of input.
 | |
|             for (;;) {
 | |
|                 if (c.fChar == (UChar32)-1) {
 | |
|                     break;     // End of Input
 | |
|                 }
 | |
|                 if  (c.fChar == chPound && fEOLComments == TRUE) {
 | |
|                     // Start of a comment.  Consume the rest of it, until EOF or a new line
 | |
|                     for (;;) {
 | |
|                         c.fChar = nextCharLL();
 | |
|                         if (c.fChar == (UChar32)-1 ||  // EOF
 | |
|                             c.fChar == chCR        ||
 | |
|                             c.fChar == chLF        ||
 | |
|                             c.fChar == chNEL       ||
 | |
|                             c.fChar == chLS)       {
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 // TODO:  check what Java & Perl do with non-ASCII white spaces.  Ticket 6061.
 | |
|                 if (PatternProps::isWhiteSpace(c.fChar) == FALSE) {
 | |
|                     break;
 | |
|                 }
 | |
|                 c.fChar = nextCharLL();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //
 | |
|         //  check for backslash escaped characters.
 | |
|         //
 | |
|         if (c.fChar == chBackSlash) {
 | |
|             int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
 | |
|             if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) {
 | |
|                 //
 | |
|                 // A '\' sequence that is handled by ICU's standard unescapeAt function.
 | |
|                 //   Includes \uxxxx, \n, \r, many others.
 | |
|                 //   Return the single equivalent character.
 | |
|                 //
 | |
|                 nextCharLL();                 // get & discard the peeked char.
 | |
|                 c.fQuoted = TRUE;
 | |
| 
 | |
|                 if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) {
 | |
|                     int32_t endIndex = (int32_t)pos;
 | |
|                     c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents);
 | |
| 
 | |
|                     if (endIndex == pos) {
 | |
|                         error(U_REGEX_BAD_ESCAPE_SEQUENCE);
 | |
|                     }
 | |
|                     fCharNum += endIndex - pos;
 | |
|                     UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex);
 | |
|                 } else {
 | |
|                     int32_t offset = 0;
 | |
|                     struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern);
 | |
| 
 | |
|                     UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos);
 | |
|                     c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
 | |
| 
 | |
|                     if (offset == 0) {
 | |
|                         error(U_REGEX_BAD_ESCAPE_SEQUENCE);
 | |
|                     } else if (context.lastOffset == offset) {
 | |
|                         UTEXT_PREVIOUS32(fRXPat->fPattern);
 | |
|                     } else if (context.lastOffset != offset-1) {
 | |
|                         utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1);
 | |
|                     }
 | |
|                     fCharNum += offset;
 | |
|                 }
 | |
|             }
 | |
|             else if (peekCharLL() == chDigit0) {
 | |
|                 //  Octal Escape, using Java Regexp Conventions
 | |
|                 //    which are \0 followed by 1-3 octal digits.
 | |
|                 //    Different from ICU Unescape handling of Octal, which does not
 | |
|                 //    require the leading 0.
 | |
|                 //  Java also has the convention of only consuming 2 octal digits if
 | |
|                 //    the three digit number would be > 0xff
 | |
|                 //
 | |
|                 c.fChar = 0;
 | |
|                 nextCharLL();    // Consume the initial 0.
 | |
|                 int index;
 | |
|                 for (index=0; index<3; index++) {
 | |
|                     int32_t ch = peekCharLL();
 | |
|                     if (ch<chDigit0 || ch>chDigit7) {
 | |
|                         if (index==0) {
 | |
|                            // \0 is not followed by any octal digits.
 | |
|                            error(U_REGEX_BAD_ESCAPE_SEQUENCE);
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                     c.fChar <<= 3;
 | |
|                     c.fChar += ch&7;
 | |
|                     if (c.fChar <= 255) {
 | |
|                         nextCharLL();
 | |
|                     } else {
 | |
|                         // The last digit made the number too big.  Forget we saw it.
 | |
|                         c.fChar >>= 3;
 | |
|                     }
 | |
|                 }
 | |
|                 c.fQuoted = TRUE;
 | |
|             }
 | |
|             else if (peekCharLL() == chQ) {
 | |
|                 //  "\Q"  enter quote mode, which will continue until "\E"
 | |
|                 fQuoteMode = TRUE;
 | |
|                 nextCharLL();        // discard the 'Q'.
 | |
|                 // nextChar(c);      // recurse to get the real next char.
 | |
|                 goto tailRecursion;  // Note: fuzz testing produced test cases that
 | |
|                 //                            resulted in stack overflow here.
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // We are in a '\' escape that will be handled by the state table scanner.
 | |
|                 // Just return the backslash, but remember that the following char is to
 | |
|                 //  be taken literally.
 | |
|                 fInBackslashQuote = TRUE;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // re-enable # to end-of-line comments, in case they were disabled.
 | |
|     // They are disabled by the parser upon seeing '(?', but this lasts for
 | |
|     //  the fetching of the next character only.
 | |
|     fEOLComments = TRUE;
 | |
| 
 | |
|     // putc(c.fChar, stdout);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  scanNamedChar
 | |
| //            Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern.
 | |
| //
 | |
| //             The scan position will be at the 'N'.  On return
 | |
| //             the scan position should be just after the '}'
 | |
| //
 | |
| //             Return the UChar32
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| UChar32  RegexCompile::scanNamedChar() {
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     nextChar(fC);
 | |
|     if (fC.fChar != chLBrace) {
 | |
|         error(U_REGEX_PROPERTY_SYNTAX);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     UnicodeString  charName;
 | |
|     for (;;) {
 | |
|         nextChar(fC);
 | |
|         if (fC.fChar == chRBrace) {
 | |
|             break;
 | |
|         }
 | |
|         if (fC.fChar == -1) {
 | |
|             error(U_REGEX_PROPERTY_SYNTAX);
 | |
|             return 0;
 | |
|         }
 | |
|         charName.append(fC.fChar);
 | |
|     }
 | |
| 
 | |
|     char name[100];
 | |
|     if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) ||
 | |
|          (uint32_t)charName.length()>=sizeof(name)) {
 | |
|         // All Unicode character names have only invariant characters.
 | |
|         // The API to get a character, given a name, accepts only char *, forcing us to convert,
 | |
|         //   which requires this error check
 | |
|         error(U_REGEX_PROPERTY_SYNTAX);
 | |
|         return 0;
 | |
|     }
 | |
|     charName.extract(0, charName.length(), name, sizeof(name), US_INV);
 | |
| 
 | |
|     UChar32  theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus);
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         error(U_REGEX_PROPERTY_SYNTAX);
 | |
|     }
 | |
| 
 | |
|     nextChar(fC);      // Continue overall regex pattern processing with char after the '}'
 | |
|     return theChar;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  scanProp   Construct a UnicodeSet from the text at the current scan
 | |
| //             position, which will be of the form \p{whaterver}
 | |
| //
 | |
| //             The scan position will be at the 'p' or 'P'.  On return
 | |
| //             the scan position should be just after the '}'
 | |
| //
 | |
| //             Return a UnicodeSet, constructed from the \P pattern,
 | |
| //             or NULL if the pattern is invalid.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| UnicodeSet *RegexCompile::scanProp() {
 | |
|     UnicodeSet    *uset = NULL;
 | |
| 
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return NULL;
 | |
|     }
 | |
|     (void)chLowerP;   // Suppress compiler unused variable warning.
 | |
|     U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP);
 | |
|     UBool negated = (fC.fChar == chP);
 | |
| 
 | |
|     UnicodeString propertyName;
 | |
|     nextChar(fC);
 | |
|     if (fC.fChar != chLBrace) {
 | |
|         error(U_REGEX_PROPERTY_SYNTAX);
 | |
|         return NULL;
 | |
|     }
 | |
|     for (;;) {
 | |
|         nextChar(fC);
 | |
|         if (fC.fChar == chRBrace) {
 | |
|             break;
 | |
|         }
 | |
|         if (fC.fChar == -1) {
 | |
|             // Hit the end of the input string without finding the closing '}'
 | |
|             error(U_REGEX_PROPERTY_SYNTAX);
 | |
|             return NULL;
 | |
|         }
 | |
|         propertyName.append(fC.fChar);
 | |
|     }
 | |
|     uset = createSetForProperty(propertyName, negated);
 | |
|     nextChar(fC);    // Move input scan to position following the closing '}'
 | |
|     return uset;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //
 | |
| //  scanPosixProp   Construct a UnicodeSet from the text at the current scan
 | |
| //             position, which is expected be of the form [:property expression:]
 | |
| //
 | |
| //             The scan position will be at the opening ':'.  On return
 | |
| //             the scan position must be on the closing ']'
 | |
| //
 | |
| //             Return a UnicodeSet constructed from the pattern,
 | |
| //             or NULL if this is not a valid POSIX-style set expression.
 | |
| //             If not a property expression, restore the initial scan position
 | |
| //                (to the opening ':')
 | |
| //
 | |
| //               Note:  the opening '[:' is not sufficient to guarantee that
 | |
| //                      this is a [:property:] expression.
 | |
| //                      [:'+=,] is a perfectly good ordinary set expression that
 | |
| //                              happens to include ':' as one of its characters.
 | |
| //
 | |
| //------------------------------------------------------------------------------
 | |
| UnicodeSet *RegexCompile::scanPosixProp() {
 | |
|     UnicodeSet    *uset = NULL;
 | |
| 
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     U_ASSERT(fC.fChar == chColon);
 | |
| 
 | |
|     // Save the scanner state.
 | |
|     // TODO:  move this into the scanner, with the state encapsulated in some way.  Ticket 6062
 | |
|     int64_t     savedScanIndex        = fScanIndex;
 | |
|     int64_t     savedNextIndex        = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
 | |
|     UBool       savedQuoteMode        = fQuoteMode;
 | |
|     UBool       savedInBackslashQuote = fInBackslashQuote;
 | |
|     UBool       savedEOLComments      = fEOLComments;
 | |
|     int64_t     savedLineNum          = fLineNum;
 | |
|     int64_t     savedCharNum          = fCharNum;
 | |
|     UChar32     savedLastChar         = fLastChar;
 | |
|     UChar32     savedPeekChar         = fPeekChar;
 | |
|     RegexPatternChar savedfC          = fC;
 | |
| 
 | |
|     // Scan for a closing ].   A little tricky because there are some perverse
 | |
|     //   edge cases possible.  "[:abc\Qdef:] \E]"  is a valid non-property expression,
 | |
|     //   ending on the second closing ].
 | |
| 
 | |
|     UnicodeString propName;
 | |
|     UBool         negated  = FALSE;
 | |
| 
 | |
|     // Check for and consume the '^' in a negated POSIX property, e.g.  [:^Letter:]
 | |
|     nextChar(fC);
 | |
|     if (fC.fChar == chUp) {
 | |
|        negated = TRUE;
 | |
|        nextChar(fC);
 | |
|     }
 | |
| 
 | |
|     // Scan for the closing ":]", collecting the property name along the way.
 | |
|     UBool  sawPropSetTerminator = FALSE;
 | |
|     for (;;) {
 | |
|         propName.append(fC.fChar);
 | |
|         nextChar(fC);
 | |
|         if (fC.fQuoted || fC.fChar == -1) {
 | |
|             // Escaped characters or end of input - either says this isn't a [:Property:]
 | |
|             break;
 | |
|         }
 | |
|         if (fC.fChar == chColon) {
 | |
|             nextChar(fC);
 | |
|             if (fC.fChar == chRBracket) {
 | |
|                 sawPropSetTerminator = TRUE;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (sawPropSetTerminator) {
 | |
|         uset = createSetForProperty(propName, negated);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // No closing ":]".
 | |
|         //  Restore the original scan position.
 | |
|         //  The main scanner will retry the input as a normal set expression,
 | |
|         //    not a [:Property:] expression.
 | |
|         fScanIndex        = savedScanIndex;
 | |
|         fQuoteMode        = savedQuoteMode;
 | |
|         fInBackslashQuote = savedInBackslashQuote;
 | |
|         fEOLComments      = savedEOLComments;
 | |
|         fLineNum          = savedLineNum;
 | |
|         fCharNum          = savedCharNum;
 | |
|         fLastChar         = savedLastChar;
 | |
|         fPeekChar         = savedPeekChar;
 | |
|         fC                = savedfC;
 | |
|         UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex);
 | |
|     }
 | |
|     return uset;
 | |
| }
 | |
| 
 | |
| static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) {
 | |
|     set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f);
 | |
|     addCategory(set, U_GC_CF_MASK, ec);
 | |
| }
 | |
| 
 | |
| //
 | |
| //  Create a Unicode Set from a Unicode Property expression.
 | |
| //     This is common code underlying both \p{...} and [:...:] expressions.
 | |
| //     Includes trying the Java "properties" that aren't supported as
 | |
| //     normal ICU UnicodeSet properties
 | |
| //
 | |
| UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) {
 | |
| 
 | |
|     if (U_FAILURE(*fStatus)) {
 | |
|         return nullptr;
 | |
|     }
 | |
|     LocalPointer<UnicodeSet> set;
 | |
|     UErrorCode status = U_ZERO_ERROR;
 | |
| 
 | |
|     do {      // non-loop, exists to allow breaks from the block.
 | |
|         //
 | |
|         //  First try the property as we received it
 | |
|         //
 | |
|         UnicodeString   setExpr;
 | |
|         uint32_t        usetFlags = 0;
 | |
|         setExpr.append(u"[\\p{", -1);
 | |
|         setExpr.append(propName);
 | |
|         setExpr.append(u"}]", -1);
 | |
|         if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
 | |
|             usetFlags |= USET_CASE_INSENSITIVE;
 | |
|         }
 | |
|         set.adoptInsteadAndCheckErrorCode(new UnicodeSet(setExpr, usetFlags, NULL, status), status);
 | |
|         if (U_SUCCESS(status) || status == U_MEMORY_ALLOCATION_ERROR) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         //
 | |
|         //  The incoming property wasn't directly recognized by ICU.
 | |
| 
 | |
|         //  Check [:word:] and [:all:]. These are not recognized as a properties by ICU UnicodeSet.
 | |
|         //     Java accepts 'word' with mixed case.
 | |
|         //     Java accepts 'all' only in all lower case.
 | |
| 
 | |
|         status = U_ZERO_ERROR;
 | |
|         if (propName.caseCompare(u"word", -1, 0) == 0) {
 | |
|             set.adoptInsteadAndCheckErrorCode(
 | |
|                 RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].cloneAsThawed(), status);
 | |
|             break;
 | |
|         }
 | |
|         if (propName.compare(u"all", -1) == 0) {
 | |
|             set.adoptInsteadAndCheckErrorCode(new UnicodeSet(0, 0x10ffff), status);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         //    Do Java InBlock expressions
 | |
|         //
 | |
|         UnicodeString mPropName = propName;
 | |
|         if (mPropName.startsWith(u"In", 2) && mPropName.length() >= 3) {
 | |
|             status = U_ZERO_ERROR;
 | |
|             set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
 | |
|             if (U_FAILURE(status)) {
 | |
|                 break;
 | |
|             }
 | |
|             UnicodeString blockName(mPropName, 2);  // Property with the leading "In" removed.
 | |
|             set->applyPropertyAlias(UnicodeString(u"Block"), blockName, status);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         //  Check for the Java form "IsBooleanPropertyValue", which we will recast
 | |
|         //  as "BooleanPropertyValue". The property value can be either a
 | |
|         //  a General Category or a Script Name.
 | |
| 
 | |
|         if (propName.startsWith(u"Is", 2) && propName.length()>=3) {
 | |
|             mPropName.remove(0, 2);      // Strip the "Is"
 | |
|             if (mPropName.indexOf(u'=') >= 0) {
 | |
|                 // Reject any "Is..." property expression containing an '=', that is,
 | |
|                 // any non-binary property expression.
 | |
|                 status = U_REGEX_PROPERTY_SYNTAX;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (mPropName.caseCompare(u"assigned", -1, 0) == 0) {
 | |
|                 mPropName.setTo(u"unassigned", -1);
 | |
|                 negated = !negated;
 | |
|             } else if (mPropName.caseCompare(u"TitleCase", -1, 0) == 0) {
 | |
|                 mPropName.setTo(u"Titlecase_Letter", -1);
 | |
|             }
 | |
| 
 | |
|             mPropName.insert(0, u"[\\p{", -1);
 | |
|             mPropName.append(u"}]", -1);
 | |
|             set.adoptInsteadAndCheckErrorCode(new UnicodeSet(mPropName, *fStatus), status);
 | |
| 
 | |
|             if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
 | |
|                 set->closeOver(USET_CASE_INSENSITIVE);
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         if (propName.startsWith(u"java", -1)) {
 | |
|             status = U_ZERO_ERROR;
 | |
|             set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
 | |
|             if (U_FAILURE(status)) {
 | |
|                 break;
 | |
|             }
 | |
|             //
 | |
|             //  Try the various Java specific properties.
 | |
|             //   These all begin with "java"
 | |
|             //
 | |
|             if (propName.compare(u"javaDefined", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_CN_MASK, status);
 | |
|                 set->complement();
 | |
|             }
 | |
|             else if (propName.compare(u"javaDigit", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_ND_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaIdentifierIgnorable", -1) == 0) {
 | |
|                 addIdentifierIgnorable(set.getAlias(), status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaISOControl", -1) == 0) {
 | |
|                 set->add(0, 0x1F).add(0x7F, 0x9F);
 | |
|             }
 | |
|             else if (propName.compare(u"javaJavaIdentifierPart", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_L_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_SC_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_PC_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_ND_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_NL_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_MC_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_MN_MASK, status);
 | |
|                 addIdentifierIgnorable(set.getAlias(), status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaJavaIdentifierStart", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_L_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_NL_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_SC_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_PC_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaLetter", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_L_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaLetterOrDigit", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_L_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_ND_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaLowerCase", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_LL_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaMirrored", -1) == 0) {
 | |
|                 set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaSpaceChar", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_Z_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaSupplementaryCodePoint", -1) == 0) {
 | |
|                 set->add(0x10000, UnicodeSet::MAX_VALUE);
 | |
|             }
 | |
|             else if (propName.compare(u"javaTitleCase", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_LT_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaUnicodeIdentifierStart", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_L_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_NL_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaUnicodeIdentifierPart", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_L_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_PC_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_ND_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_NL_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_MC_MASK, status);
 | |
|                 addCategory(set.getAlias(), U_GC_MN_MASK, status);
 | |
|                 addIdentifierIgnorable(set.getAlias(), status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaUpperCase", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_LU_MASK, status);
 | |
|             }
 | |
|             else if (propName.compare(u"javaValidCodePoint", -1) == 0) {
 | |
|                 set->add(0, UnicodeSet::MAX_VALUE);
 | |
|             }
 | |
|             else if (propName.compare(u"javaWhitespace", -1) == 0) {
 | |
|                 addCategory(set.getAlias(), U_GC_Z_MASK, status);
 | |
|                 set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f));
 | |
|                 set->add(9, 0x0d).add(0x1c, 0x1f);
 | |
|             } else {
 | |
|                 status = U_REGEX_PROPERTY_SYNTAX;
 | |
|             }
 | |
| 
 | |
|             if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
 | |
|                 set->closeOver(USET_CASE_INSENSITIVE);
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // Unrecognized property. ICU didn't like it as it was, and none of the Java compatibility
 | |
|         // extensions matched it.
 | |
|         status = U_REGEX_PROPERTY_SYNTAX;
 | |
|     } while (false);   // End of do loop block. Code above breaks out of the block on success or hard failure.
 | |
| 
 | |
|     if (U_SUCCESS(status)) {
 | |
|         // ICU 70 adds emoji properties of strings, but as long as Java does not say how to
 | |
|         // deal with properties of strings and character classes with strings, we ignore them.
 | |
|         // Just in case something downstream might stumble over the strings,
 | |
|         // we remove them from the set.
 | |
|         // Note that when we support strings, the complement of a property (as with \P)
 | |
|         // should be implemented as .complement().removeAllStrings() (code point complement).
 | |
|         set->removeAllStrings();
 | |
|         U_ASSERT(set.isValid());
 | |
|         if (negated) {
 | |
|             set->complement();
 | |
|         }
 | |
|         return set.orphan();
 | |
|     } else {
 | |
|         if (status == U_ILLEGAL_ARGUMENT_ERROR) {
 | |
|             status = U_REGEX_PROPERTY_SYNTAX;
 | |
|         }
 | |
|         error(status);
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| //  SetEval   Part of the evaluation of [set expressions].
 | |
| //            Perform any pending (stacked) operations with precedence
 | |
| //            equal or greater to that of the next operator encountered
 | |
| //            in the expression.
 | |
| //
 | |
| void RegexCompile::setEval(int32_t nextOp) {
 | |
|     UnicodeSet *rightOperand = NULL;
 | |
|     UnicodeSet *leftOperand  = NULL;
 | |
|     for (;;) {
 | |
|         U_ASSERT(fSetOpStack.empty()==FALSE);
 | |
|         int32_t pendingSetOperation = fSetOpStack.peeki();
 | |
|         if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) {
 | |
|             break;
 | |
|         }
 | |
|         fSetOpStack.popi();
 | |
|         U_ASSERT(fSetStack.empty() == FALSE);
 | |
|         rightOperand = (UnicodeSet *)fSetStack.peek();
 | |
|         // ICU 70 adds emoji properties of strings, but createSetForProperty() removes all strings
 | |
|         // (see comments there).
 | |
|         // We also do not yet support string literals in character classes,
 | |
|         // so there should not be any strings.
 | |
|         // Note that when we support strings, the complement of a set (as with ^ or \P)
 | |
|         // should be implemented as .complement().removeAllStrings() (code point complement).
 | |
|         U_ASSERT(!rightOperand->hasStrings());
 | |
|         switch (pendingSetOperation) {
 | |
|             case setNegation:
 | |
|                 rightOperand->complement();
 | |
|                 break;
 | |
|             case setCaseClose:
 | |
|                 // TODO: need a simple close function.  Ticket 6065
 | |
|                 rightOperand->closeOver(USET_CASE_INSENSITIVE);
 | |
|                 rightOperand->removeAllStrings();
 | |
|                 break;
 | |
|             case setDifference1:
 | |
|             case setDifference2:
 | |
|                 fSetStack.pop();
 | |
|                 leftOperand = (UnicodeSet *)fSetStack.peek();
 | |
|                 leftOperand->removeAll(*rightOperand);
 | |
|                 delete rightOperand;
 | |
|                 break;
 | |
|             case setIntersection1:
 | |
|             case setIntersection2:
 | |
|                 fSetStack.pop();
 | |
|                 leftOperand = (UnicodeSet *)fSetStack.peek();
 | |
|                 leftOperand->retainAll(*rightOperand);
 | |
|                 delete rightOperand;
 | |
|                 break;
 | |
|             case setUnion:
 | |
|                 fSetStack.pop();
 | |
|                 leftOperand = (UnicodeSet *)fSetStack.peek();
 | |
|                 leftOperand->addAll(*rightOperand);
 | |
|                 delete rightOperand;
 | |
|                 break;
 | |
|             default:
 | |
|                 UPRV_UNREACHABLE_EXIT;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| void RegexCompile::setPushOp(int32_t op) {
 | |
|     setEval(op);
 | |
|     fSetOpStack.push(op, *fStatus);
 | |
|     LocalPointer<UnicodeSet> lpSet(new UnicodeSet(), *fStatus);
 | |
|     fSetStack.push(lpSet.orphan(), *fStatus);
 | |
| }
 | |
| 
 | |
| U_NAMESPACE_END
 | |
| #endif  // !UCONFIG_NO_REGULAR_EXPRESSIONS
 | |
| 
 |