982 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			982 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
| /******************************************************************************
 | |
|  *                                                                            *
 | |
|  * Copyright (C) 2018 The Android Open Source Project
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at:
 | |
|  *
 | |
|  * http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  *
 | |
|  *****************************************************************************
 | |
|  * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
 | |
| */
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "ixheaacd_type_def.h"
 | |
| #include "ixheaacd_error_standards.h"
 | |
| #include "ixheaacd_sbr_const.h"
 | |
| #include "ixheaacd_sbrdecsettings.h"
 | |
| #include "ixheaacd_bitbuffer.h"
 | |
| #include "ixheaacd_sbr_common.h"
 | |
| #include "ixheaacd_drc_data_struct.h"
 | |
| #include "ixheaacd_drc_dec.h"
 | |
| #include "ixheaacd_sbrdecoder.h"
 | |
| #include "ixheaacd_bitbuffer.h"
 | |
| #include "ixheaacd_env_extr_part.h"
 | |
| #include "ixheaacd_sbr_rom.h"
 | |
| #include "ixheaacd_common_rom.h"
 | |
| #include "ixheaacd_hybrid.h"
 | |
| #include "ixheaacd_sbr_scale.h"
 | |
| #include "ixheaacd_ps_dec.h"
 | |
| #include "ixheaacd_freq_sca.h"
 | |
| #include "ixheaacd_lpp_tran.h"
 | |
| #include "ixheaacd_env_extr.h"
 | |
| 
 | |
| #include "ixheaacd_esbr_rom.h"
 | |
| 
 | |
| #define ABS(A) fabs(A)
 | |
| 
 | |
| VOID ixheaacd_shellsort(WORD32 *in, WORD32 n) {
 | |
|   WORD32 i, j, v;
 | |
|   WORD32 inc = 1;
 | |
| 
 | |
|   do
 | |
|     inc = 3 * inc + 1;
 | |
|   while (inc <= n);
 | |
| 
 | |
|   do {
 | |
|     inc = inc / 3;
 | |
|     for (i = inc + 1; i <= n; i++) {
 | |
|       v = in[i - 1];
 | |
|       j = i;
 | |
|       while (in[j - inc - 1] > v) {
 | |
|         in[j - 1] = in[j - inc - 1];
 | |
|         j -= inc;
 | |
|         if (j <= inc) break;
 | |
|       }
 | |
|       in[j - 1] = v;
 | |
|     }
 | |
|   } while (inc > 1);
 | |
| }
 | |
| 
 | |
| WORD32 ixheaacd_sbr_env_calc(ia_sbr_frame_info_data_struct *frame_data,
 | |
|                              FLOAT32 input_real[][64], FLOAT32 input_imag[][64],
 | |
|                              FLOAT32 input_real1[][64],
 | |
|                              FLOAT32 input_imag1[][64],
 | |
|                              WORD32 x_over_qmf[MAX_NUM_PATCHES],
 | |
|                              FLOAT32 *scratch_buff, FLOAT32 *env_out) {
 | |
|   WORD8 harmonics[64];
 | |
|   FLOAT32(*env_tmp)[48];
 | |
|   FLOAT32(*noise_level_pvc)[48];
 | |
|   FLOAT32(*nrg_est_pvc)[48];
 | |
|   FLOAT32(*nrg_ref_pvc)[48];
 | |
|   FLOAT32(*nrg_gain_pvc)[48];
 | |
|   FLOAT32(*nrg_tone_pvc)[48];
 | |
| 
 | |
|   WORD32 n, c, li, ui, i, j, k = 0, l, m = 0, kk = 0, o, next = -1, ui2, flag,
 | |
|                              tmp, noise_absc_flag, smooth_length;
 | |
|   WORD32 upsamp_4_flag = frame_data->pstr_sbr_header->is_usf_4;
 | |
| 
 | |
|   FLOAT32 *ptr_real_buf, *ptr_imag_buf, nrg = 0, p_ref, p_est, avg_gain, g_max,
 | |
|                                         p_adj, boost_gain, sb_gain, sb_noise,
 | |
|                                         temp[64];
 | |
| 
 | |
|   WORD32 t;
 | |
|   WORD32 start_pos = 0;
 | |
|   WORD32 end_pos = 0;
 | |
| 
 | |
|   WORD32 slot_idx;
 | |
| 
 | |
|   FLOAT32 *prev_env_noise_level = frame_data->prev_noise_level;
 | |
|   FLOAT32 *nrg_tone = scratch_buff;
 | |
|   FLOAT32 *noise_level = scratch_buff + 64;
 | |
|   FLOAT32 *nrg_est = scratch_buff + 128;
 | |
|   FLOAT32 *nrg_ref = scratch_buff + 192;
 | |
|   FLOAT32 *nrg_gain = scratch_buff + 256;
 | |
| 
 | |
|   const FLOAT32 *smooth_filt;
 | |
| 
 | |
|   FLOAT32 *sfb_nrg = frame_data->flt_env_sf_arr;
 | |
|   FLOAT32 *noise_floor = frame_data->flt_noise_floor;
 | |
|   ia_frame_info_struct *p_frame_info = &frame_data->str_frame_info_details;
 | |
| 
 | |
|   ia_frame_info_struct *pvc_frame_info = &frame_data->str_pvc_frame_info;
 | |
|   WORD32 smoothing_length = frame_data->pstr_sbr_header->smoothing_mode ? 0 : 4;
 | |
|   WORD32 int_mode = frame_data->pstr_sbr_header->interpol_freq;
 | |
|   WORD32 limiter_band = frame_data->pstr_sbr_header->limiter_bands;
 | |
|   WORD32 limiter_gains = frame_data->pstr_sbr_header->limiter_gains;
 | |
|   WORD32 *add_harmonics = frame_data->add_harmonics;
 | |
|   WORD32 sub_band_start =
 | |
|       frame_data->pstr_sbr_header->pstr_freq_band_data->sub_band_start;
 | |
|   WORD32 sub_band_end =
 | |
|       frame_data->pstr_sbr_header->pstr_freq_band_data->sub_band_end;
 | |
|   WORD32 reset = frame_data->reset_flag;
 | |
|   WORD32 num_subbands = sub_band_end - sub_band_start;
 | |
|   WORD32 bs_num_env = p_frame_info->num_env;
 | |
|   WORD32 trans_env = p_frame_info->transient_env;
 | |
|   WORD32 sbr_mode = frame_data->sbr_mode;
 | |
|   WORD32 prev_sbr_mode = frame_data->prev_sbr_mode;
 | |
| 
 | |
|   WORD16 *freq_band_table[2];
 | |
|   const WORD16 *num_sf_bands =
 | |
|       frame_data->pstr_sbr_header->pstr_freq_band_data->num_sf_bands;
 | |
|   WORD16 *freq_band_table_noise =
 | |
|       frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_noise;
 | |
|   WORD32 num_nf_bands =
 | |
|       frame_data->pstr_sbr_header->pstr_freq_band_data->num_nf_bands;
 | |
| 
 | |
|   WORD32 harm_index = frame_data->harm_index;
 | |
|   WORD32 phase_index = frame_data->phase_index;
 | |
|   WORD32 esbr_start_up = frame_data->pstr_sbr_header->esbr_start_up;
 | |
|   WORD32 esbr_start_up_pvc = frame_data->pstr_sbr_header->esbr_start_up_pvc;
 | |
|   WORD8(*harm_flag_prev)[64] = &frame_data->harm_flag_prev;
 | |
|   FLOAT32(*e_gain)[5][64] = &frame_data->e_gain;
 | |
|   FLOAT32(*noise_buf)[5][64] = &frame_data->noise_buf;
 | |
|   WORD32(*lim_table)[4][12 + 1] = &frame_data->lim_table;
 | |
|   WORD32(*gate_mode)[4] = &frame_data->gate_mode;
 | |
|   WORD32 freq_inv = 1;
 | |
| 
 | |
|   WORD8(*harm_flag_varlen_prev)[64] = &frame_data->harm_flag_varlen_prev;
 | |
|   WORD8(*harm_flag_varlen)[64] = &frame_data->harm_flag_varlen;
 | |
|   WORD32 band_loop_end;
 | |
| 
 | |
|   WORD32 rate = upsamp_4_flag ? 4 : 2;
 | |
| 
 | |
|   env_tmp = frame_data->env_tmp;
 | |
|   noise_level_pvc = frame_data->noise_level_pvc;
 | |
|   nrg_est_pvc = frame_data->nrg_est_pvc;
 | |
|   nrg_ref_pvc = frame_data->nrg_ref_pvc;
 | |
|   nrg_gain_pvc = frame_data->nrg_gain_pvc;
 | |
|   nrg_tone_pvc = frame_data->nrg_tone_pvc;
 | |
| 
 | |
|   freq_band_table[0] =
 | |
|       frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_table[0];
 | |
|   freq_band_table[1] =
 | |
|       frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_table[1];
 | |
| 
 | |
|   if (reset) {
 | |
|     esbr_start_up = 1;
 | |
|     esbr_start_up_pvc = 1;
 | |
|     phase_index = 0;
 | |
|     if (ixheaacd_createlimiterbands(
 | |
|             (*lim_table), (*gate_mode),
 | |
|             frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_lo,
 | |
|             num_sf_bands[LOW], x_over_qmf, frame_data->sbr_patching_mode,
 | |
|             upsamp_4_flag, &frame_data->patch_param))
 | |
|       return IA_FATAL_ERROR;
 | |
|   }
 | |
| 
 | |
|   if (frame_data->sbr_patching_mode != frame_data->prev_sbr_patching_mode) {
 | |
|     if (ixheaacd_createlimiterbands(
 | |
|             (*lim_table), (*gate_mode),
 | |
|             frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_lo,
 | |
|             num_sf_bands[LOW], x_over_qmf, frame_data->sbr_patching_mode,
 | |
|             upsamp_4_flag, &frame_data->patch_param))
 | |
|       return IA_FATAL_ERROR;
 | |
| 
 | |
|     frame_data->prev_sbr_patching_mode = frame_data->sbr_patching_mode;
 | |
|   }
 | |
| 
 | |
|   memset(harmonics, 0, 64 * sizeof(WORD8));
 | |
| 
 | |
|   if (sbr_mode == PVC_SBR) {
 | |
|     for (i = 0; i < num_sf_bands[HIGH]; i++) {
 | |
|       li =
 | |
|           frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_hi[i];
 | |
|       ui = frame_data->pstr_sbr_header->pstr_freq_band_data
 | |
|                ->freq_band_tbl_hi[i + 1];
 | |
|       tmp = ((ui + li) - (sub_band_start << 1)) >> 1;
 | |
|       if ((tmp >= 64) || (tmp < 0)) return -1;
 | |
| 
 | |
|       harmonics[tmp] = add_harmonics[i];
 | |
|     }
 | |
| 
 | |
|     for (t = 0; t < p_frame_info->border_vec[0]; t++) {
 | |
|       for (c = 0; c < 64; c++) {
 | |
|         frame_data->qmapped_pvc[c][t] = frame_data->qmapped_pvc[c][t + 16];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < bs_num_env; i++) {
 | |
|       if (kk > MAX_NOISE_ENVELOPES) return IA_FATAL_ERROR;
 | |
|       if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk])
 | |
|         kk++, next++;
 | |
| 
 | |
|       start_pos = p_frame_info->border_vec[i];
 | |
|       end_pos = p_frame_info->border_vec[i + 1];
 | |
|       if ((start_pos < 0) || (end_pos > MAX_FREQ_COEFFS_SBR))
 | |
|         return IA_FATAL_ERROR;
 | |
|       for (t = start_pos; t < end_pos; t++) {
 | |
|         band_loop_end = num_sf_bands[p_frame_info->freq_res[i]];
 | |
| 
 | |
|         for (c = 0, o = 0, j = 0; j < band_loop_end; j++) {
 | |
|           li = freq_band_table[p_frame_info->freq_res[i]][j];
 | |
|           ui = freq_band_table[p_frame_info->freq_res[i]][j + 1];
 | |
|           ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
 | |
|                     ->freq_band_tbl_noise[o + 1];
 | |
| 
 | |
|           for (k = 0; k < ui - li; k++) {
 | |
|             o = (k + li >= ui2) ? o + 1 : o;
 | |
|             if (o >= MAX_NOISE_COEFFS) return IA_FATAL_ERROR;
 | |
|             ui2 = freq_band_table_noise[o + 1];
 | |
| 
 | |
|             frame_data->qmapped_pvc[c][t] =
 | |
|                 noise_floor[next * num_nf_bands + o];
 | |
|             c++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     kk = 0;
 | |
|     next = -1;
 | |
| 
 | |
|     for (i = 0; i < bs_num_env; i++) {
 | |
|       if (kk > MAX_NOISE_ENVELOPES) return IA_FATAL_ERROR;
 | |
|       if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk])
 | |
|         kk++, next++;
 | |
| 
 | |
|       start_pos = pvc_frame_info->border_vec[i];
 | |
|       end_pos = pvc_frame_info->border_vec[i + 1];
 | |
|       if ((start_pos < 0) || (end_pos > MAX_FREQ_COEFFS_SBR))
 | |
|         return IA_FATAL_ERROR;
 | |
|       for (t = start_pos; t < end_pos; t++) {
 | |
|         for (c = 0; c < 64; c++) {
 | |
|           env_tmp[c][t] = env_out[64 * t + c];
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       noise_absc_flag =
 | |
|           (i == trans_env || i == frame_data->env_short_flag_prev) ? 1 : 0;
 | |
| 
 | |
|       if (prev_sbr_mode == ORIG_SBR) noise_absc_flag = 0;
 | |
| 
 | |
|       smooth_length = (noise_absc_flag ? 0 : smoothing_length);
 | |
|       smooth_filt = *ixheaacd_fir_table[smooth_length];
 | |
| 
 | |
|       for (t = start_pos; t < frame_data->sin_len_for_cur_top; t++) {
 | |
|         band_loop_end =
 | |
|             num_sf_bands[frame_data->str_frame_info_prev
 | |
|                              .freq_res[frame_data->var_len_id_prev]];
 | |
| 
 | |
|         for (c = 0, o = 0, j = 0; j < band_loop_end; j++) {
 | |
|           double tmp;
 | |
| 
 | |
|           li = freq_band_table[frame_data->str_frame_info_prev
 | |
|                                    .freq_res[frame_data->var_len_id_prev]][j];
 | |
|           ui = freq_band_table[frame_data->str_frame_info_prev
 | |
|                                    .freq_res[frame_data->var_len_id_prev]]
 | |
|                               [j + 1];
 | |
|           ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
 | |
|                     ->freq_band_tbl_noise[o + 1];
 | |
| 
 | |
|           for (flag = 0, k = li; k < ui; k++) {
 | |
|             flag = ((*harm_flag_varlen)[c] &&
 | |
|                     (t >= frame_data->sin_start_for_cur_top ||
 | |
|                      (*harm_flag_varlen_prev)[c + sub_band_start]))
 | |
|                        ? 1
 | |
|                        : flag;
 | |
| 
 | |
|             nrg_ref_pvc[c][t] = env_tmp[k][t];
 | |
|             for (nrg = 0, l = 0; l < rate; l++) {
 | |
|               nrg +=
 | |
|                   (input_real[rate * t + l][k] * input_real[rate * t + l][k]) +
 | |
|                   (input_imag[rate * t + l][k] * input_imag[rate * t + l][k]);
 | |
|             }
 | |
|             nrg_est_pvc[c][t] = nrg / rate;
 | |
|             c++;
 | |
|           }
 | |
| 
 | |
|           if (!int_mode) {
 | |
|             for (nrg = 0, k = c - (ui - li); k < c; k++) {
 | |
|               nrg += nrg_est_pvc[k][t];
 | |
|             }
 | |
|             nrg /= (ui - li);
 | |
|           }
 | |
|           c -= (ui - li);
 | |
| 
 | |
|           for (k = 0; k < ui - li; k++) {
 | |
|             o = (k + li >= ui2) ? o + 1 : o;
 | |
|             if (o >= MAX_NOISE_COEFFS) return IA_FATAL_ERROR;
 | |
|             ui2 = freq_band_table_noise[o + 1];
 | |
|             nrg_est_pvc[c][t] = (!int_mode) ? nrg : nrg_est_pvc[c][t];
 | |
|             nrg_tone_pvc[c][t] = 0.0f;
 | |
| 
 | |
|             tmp = frame_data->qmapped_pvc[c][t] /
 | |
|                   (1 + frame_data->qmapped_pvc[c][t]);
 | |
| 
 | |
|             if (flag) {
 | |
|               nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp /
 | |
|                                                  (nrg_est_pvc[c][t] + 1));
 | |
| 
 | |
|               nrg_tone_pvc[c][t] = (FLOAT32)(
 | |
|                   (harmonics[c] && (t >= frame_data->sine_position ||
 | |
|                                     (*harm_flag_prev)[c + sub_band_start]))
 | |
|                       ? sqrt(nrg_ref_pvc[c][t] * tmp /
 | |
|                              frame_data->qmapped_pvc[c][t])
 | |
|                       : nrg_tone_pvc[c][t]);
 | |
| 
 | |
|               nrg_tone_pvc[c][t] = (FLOAT32)(
 | |
|                   ((*harm_flag_varlen)[c] &&
 | |
|                    (t >= frame_data->sin_start_for_cur_top ||
 | |
|                     (*harm_flag_varlen_prev)[c + sub_band_start]))
 | |
|                       ? sqrt(nrg_ref_pvc[c][t] * tmp / prev_env_noise_level[o])
 | |
|                       : nrg_tone_pvc[c][t]);
 | |
| 
 | |
|             } else {
 | |
|               if (noise_absc_flag) {
 | |
|                 nrg_gain_pvc[c][t] =
 | |
|                     (FLOAT32)sqrt(nrg_ref_pvc[c][t] / (nrg_est_pvc[c][t] + 1));
 | |
|               } else {
 | |
|                 nrg_gain_pvc[c][t] = (FLOAT32)sqrt(
 | |
|                     nrg_ref_pvc[c][t] * tmp /
 | |
|                     ((nrg_est_pvc[c][t] + 1) * frame_data->qmapped_pvc[c][t]));
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             noise_level_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp);
 | |
|             c++;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         for (c = 0; c < (*gate_mode)[limiter_band]; c++) {
 | |
|           p_ref = p_est = 0.0f;
 | |
|           p_adj = 0;
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             p_ref += nrg_ref_pvc[k][t];
 | |
|             p_est += nrg_est_pvc[k][t];
 | |
|           }
 | |
|           avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS));
 | |
|           g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains];
 | |
|           g_max > 1.0e5f ? g_max = 1.0e5f : 0;
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             if (g_max <= nrg_gain_pvc[k][t]) {
 | |
|               noise_level_pvc[k][t] =
 | |
|                   noise_level_pvc[k][t] * (g_max / nrg_gain_pvc[k][t]);
 | |
|               nrg_gain_pvc[k][t] = g_max;
 | |
|             }
 | |
| 
 | |
|             p_adj +=
 | |
|                 nrg_gain_pvc[k][t] * nrg_gain_pvc[k][t] * nrg_est_pvc[k][t];
 | |
| 
 | |
|             if (nrg_tone_pvc[k][t]) {
 | |
|               p_adj += nrg_tone_pvc[k][t] * nrg_tone_pvc[k][t];
 | |
|             } else if (!noise_absc_flag) {
 | |
|               p_adj += noise_level_pvc[k][t] * noise_level_pvc[k][t];
 | |
|             }
 | |
|           }
 | |
|           boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS));
 | |
|           boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain;
 | |
| 
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             nrg_gain_pvc[k][t] *= boost_gain;
 | |
|             noise_level_pvc[k][t] *= boost_gain;
 | |
|             nrg_tone_pvc[k][t] *= boost_gain;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for (; t < end_pos; t++) {
 | |
|         band_loop_end = num_sf_bands[pvc_frame_info->freq_res[i]];
 | |
| 
 | |
|         for (c = 0, o = 0, j = 0; j < band_loop_end; j++) {
 | |
|           double tmp;
 | |
| 
 | |
|           li = freq_band_table[pvc_frame_info->freq_res[i]][j];
 | |
|           ui = freq_band_table[pvc_frame_info->freq_res[i]][j + 1];
 | |
|           ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
 | |
|                     ->freq_band_tbl_noise[o + 1];
 | |
| 
 | |
|           for (flag = 0, k = li; k < ui; k++) {
 | |
|             flag = (harmonics[c] && (t >= frame_data->sine_position ||
 | |
|                                      (*harm_flag_prev)[c + sub_band_start]))
 | |
|                        ? 1
 | |
|                        : flag;
 | |
| 
 | |
|             nrg_ref_pvc[c][t] = env_tmp[k][t];
 | |
|             for (nrg = 0, l = 0; l < rate; l++) {
 | |
|               nrg +=
 | |
|                   (input_real[rate * t + l][k] * input_real[rate * t + l][k]) +
 | |
|                   (input_imag[rate * t + l][k] * input_imag[rate * t + l][k]);
 | |
|             }
 | |
|             nrg_est_pvc[c][t] = nrg / rate;
 | |
|             c++;
 | |
|           }
 | |
| 
 | |
|           if (!int_mode) {
 | |
|             for (nrg = 0, k = c - (ui - li); k < c; k++) {
 | |
|               nrg += nrg_est_pvc[k][t];
 | |
|             }
 | |
|             nrg /= (ui - li);
 | |
|           }
 | |
|           c -= (ui - li);
 | |
| 
 | |
|           for (k = 0; k < ui - li; k++) {
 | |
|             o = (k + li >= ui2) ? o + 1 : o;
 | |
|             if (o >= MAX_NOISE_COEFFS) return IA_FATAL_ERROR;
 | |
|             ui2 = freq_band_table_noise[o + 1];
 | |
|             nrg_est_pvc[c][t] = (!int_mode) ? nrg : nrg_est_pvc[c][t];
 | |
|             nrg_tone_pvc[c][t] = 0.0f;
 | |
| 
 | |
|             tmp = frame_data->qmapped_pvc[c][t] /
 | |
|                   (1 + frame_data->qmapped_pvc[c][t]);
 | |
| 
 | |
|             if (flag) {
 | |
|               nrg_gain_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp /
 | |
|                                                  (nrg_est_pvc[c][t] + 1));
 | |
| 
 | |
|               nrg_tone_pvc[c][t] = (FLOAT32)(
 | |
|                   (harmonics[c] && (t >= frame_data->sine_position ||
 | |
|                                     (*harm_flag_prev)[c + sub_band_start]))
 | |
|                       ? sqrt(nrg_ref_pvc[c][t] * tmp /
 | |
|                              frame_data->qmapped_pvc[c][t])
 | |
|                       : nrg_tone_pvc[c][t]);
 | |
|             } else {
 | |
|               if (noise_absc_flag) {
 | |
|                 nrg_gain_pvc[c][t] =
 | |
|                     (FLOAT32)sqrt(nrg_ref_pvc[c][t] / (nrg_est_pvc[c][t] + 1));
 | |
|               } else {
 | |
|                 nrg_gain_pvc[c][t] = (FLOAT32)sqrt(
 | |
|                     nrg_ref_pvc[c][t] * tmp /
 | |
|                     ((nrg_est_pvc[c][t] + 1) * frame_data->qmapped_pvc[c][t]));
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             noise_level_pvc[c][t] = (FLOAT32)sqrt(nrg_ref_pvc[c][t] * tmp);
 | |
|             c++;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         for (c = 0; c < (*gate_mode)[limiter_band]; c++) {
 | |
|           p_ref = p_est = 0.0f;
 | |
|           p_adj = 0;
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             p_ref += nrg_ref_pvc[k][t];
 | |
|             p_est += nrg_est_pvc[k][t];
 | |
|           }
 | |
|           avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS));
 | |
|           g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains];
 | |
|           g_max > 1.0e5f ? g_max = 1.0e5f : 0;
 | |
| 
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             if (g_max <= nrg_gain_pvc[k][t]) {
 | |
|               noise_level_pvc[k][t] =
 | |
|                   noise_level_pvc[k][t] * (g_max / nrg_gain_pvc[k][t]);
 | |
|               nrg_gain_pvc[k][t] = g_max;
 | |
|             }
 | |
| 
 | |
|             p_adj +=
 | |
|                 nrg_gain_pvc[k][t] * nrg_gain_pvc[k][t] * nrg_est_pvc[k][t];
 | |
| 
 | |
|             if (nrg_tone_pvc[k][t]) {
 | |
|               p_adj += nrg_tone_pvc[k][t] * nrg_tone_pvc[k][t];
 | |
|             } else if (!noise_absc_flag) {
 | |
|               p_adj += noise_level_pvc[k][t] * noise_level_pvc[k][t];
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS));
 | |
|           boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain;
 | |
| 
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             nrg_gain_pvc[k][t] *= boost_gain;
 | |
|             noise_level_pvc[k][t] *= boost_gain;
 | |
|             nrg_tone_pvc[k][t] *= boost_gain;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (esbr_start_up_pvc) {
 | |
|         for (n = 0; n < 4; n++) {
 | |
|           for (c = 0; c < num_subbands; c++) {
 | |
|             (*e_gain)[n][c] = nrg_gain_pvc[c][start_pos];
 | |
|             (*noise_buf)[n][c] = noise_level_pvc[c][start_pos];
 | |
|           }
 | |
|         }
 | |
|         esbr_start_up_pvc = 0;
 | |
|         esbr_start_up = 0;
 | |
|       }
 | |
|       for (l = rate * pvc_frame_info->border_vec[i];
 | |
|            l < rate * pvc_frame_info->border_vec[1 + i]; l++) {
 | |
|         ptr_real_buf = *(input_real + l) + sub_band_start;
 | |
|         ptr_imag_buf = *(input_imag + l) + sub_band_start;
 | |
| 
 | |
|         slot_idx = (WORD32)l / rate;
 | |
|         if (sub_band_start & 1) {
 | |
|           freq_inv = -1;
 | |
|         }
 | |
| 
 | |
|         for (k = 0; k < num_subbands; k++) {
 | |
|           (*e_gain)[4][k] = nrg_gain_pvc[k][slot_idx];
 | |
|           (*noise_buf)[4][k] = noise_level_pvc[k][slot_idx];
 | |
|           c = 0, sb_gain = 0, sb_noise = 0;
 | |
|           for (n = 4 - smooth_length; n <= 4; n++) {
 | |
|             sb_gain += (*e_gain)[n][k] * smooth_filt[c];
 | |
|             sb_noise += (*noise_buf)[n][k] * smooth_filt[c++];
 | |
|           }
 | |
|           phase_index = (phase_index + 1) & 511;
 | |
|           sb_noise = (nrg_tone_pvc[k][slot_idx] != 0 || noise_absc_flag)
 | |
|                          ? 0
 | |
|                          : sb_noise;
 | |
| 
 | |
|           *ptr_real_buf =
 | |
|               *ptr_real_buf * sb_gain +
 | |
|               sb_noise * ixheaacd_random_phase[phase_index][0] +
 | |
|               nrg_tone_pvc[k][slot_idx] * ixheaacd_hphase_tbl[0][harm_index];
 | |
|           *ptr_imag_buf = *ptr_imag_buf * sb_gain +
 | |
|                           sb_noise * ixheaacd_random_phase[phase_index][1] +
 | |
|                           nrg_tone_pvc[k][slot_idx] * freq_inv *
 | |
|                               ixheaacd_hphase_tbl[1][harm_index];
 | |
| 
 | |
|           ptr_real_buf++;
 | |
|           ptr_imag_buf++;
 | |
|           freq_inv = -freq_inv;
 | |
|         }
 | |
| 
 | |
|         harm_index = (harm_index + 1) & 3;
 | |
| 
 | |
|         memcpy(temp, (*e_gain)[0], 64 * sizeof(FLOAT32));
 | |
|         for (n = 0; n < 4; n++) {
 | |
|           memcpy((*e_gain)[n], (*e_gain)[n + 1], 64 * sizeof(FLOAT32));
 | |
|         }
 | |
|         memcpy((*e_gain)[4], temp, 64 * sizeof(FLOAT32));
 | |
| 
 | |
|         memcpy(temp, (*noise_buf)[0], 64 * sizeof(FLOAT32));
 | |
|         for (n = 0; n < 4; n++) {
 | |
|           memcpy((*noise_buf)[n], (*noise_buf)[n + 1], 64 * sizeof(FLOAT32));
 | |
|         }
 | |
|         memcpy((*noise_buf)[4], temp, 64 * sizeof(FLOAT32));
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     for (i = 0; i < num_sf_bands[HIGH]; i++) {
 | |
|       li =
 | |
|           frame_data->pstr_sbr_header->pstr_freq_band_data->freq_band_tbl_hi[i];
 | |
|       ui = frame_data->pstr_sbr_header->pstr_freq_band_data
 | |
|                ->freq_band_tbl_hi[i + 1];
 | |
|       tmp = ((ui + li) - (sub_band_start << 1)) >> 1;
 | |
|       if ((tmp >= 64) || (tmp < 0)) return -1;
 | |
| 
 | |
|       harmonics[tmp] = add_harmonics[i];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < bs_num_env; i++) {
 | |
|       if (kk > MAX_NOISE_ENVELOPES) return IA_FATAL_ERROR;
 | |
| 
 | |
|       if (p_frame_info->border_vec[i] == p_frame_info->noise_border_vec[kk])
 | |
|         kk++, next++;
 | |
| 
 | |
|       noise_absc_flag =
 | |
|           (i == trans_env || i == frame_data->env_short_flag_prev) ? 1 : 0;
 | |
| 
 | |
|       smooth_length = (noise_absc_flag ? 0 : smoothing_length);
 | |
|       smooth_filt = *ixheaacd_fir_table[smooth_length];
 | |
| 
 | |
|       if (sbr_mode == ORIG_SBR) {
 | |
|         for (c = 0, o = 0, j = 0; j < num_sf_bands[p_frame_info->freq_res[i]];
 | |
|              j++) {
 | |
|           double tmp;
 | |
|           li = freq_band_table[p_frame_info->freq_res[i]][j];
 | |
|           ui = freq_band_table[p_frame_info->freq_res[i]][j + 1];
 | |
|           ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
 | |
|                     ->freq_band_tbl_noise[o + 1];
 | |
|           for (flag = 0, k = li; k < ui; k++) {
 | |
|             for (nrg = 0, l = rate * p_frame_info->border_vec[i];
 | |
|                  l < rate * p_frame_info->border_vec[i + 1]; l++) {
 | |
|               nrg += (input_real[l][k] * input_real[l][k]) +
 | |
|                      (input_imag[l][k] * input_imag[l][k]);
 | |
|             }
 | |
|             flag = (harmonics[c] &&
 | |
|                     (i >= trans_env || (*harm_flag_prev)[c + sub_band_start]))
 | |
|                        ? 1
 | |
|                        : flag;
 | |
|             nrg_est[c++] = nrg / (rate * p_frame_info->border_vec[i + 1] -
 | |
|                                   rate * p_frame_info->border_vec[i]);
 | |
|           }
 | |
|           if (!int_mode) {
 | |
|             for (nrg = 0, k = c - (ui - li); k < c; k++) {
 | |
|               nrg += nrg_est[k];
 | |
|             }
 | |
|             nrg /= (ui - li);
 | |
|           }
 | |
|           c -= (ui - li);
 | |
| 
 | |
|           for (k = 0; k < ui - li; k++) {
 | |
|             FLOAT64 guard = 1e-17;
 | |
|             o = (k + li >= ui2) ? o + 1 : o;
 | |
|             if (o >= MAX_NOISE_COEFFS) return IA_FATAL_ERROR;
 | |
|             ui2 = frame_data->pstr_sbr_header->pstr_freq_band_data
 | |
|                       ->freq_band_tbl_noise[o + 1];
 | |
|             nrg_ref[c] = sfb_nrg[m];
 | |
|             nrg_est[c] = (!int_mode) ? nrg : nrg_est[c];
 | |
|             nrg_tone[c] = 0;
 | |
|             tmp = noise_floor[next * num_nf_bands + o] /
 | |
|                   (1 + noise_floor[next * num_nf_bands + o]);
 | |
|             if (flag) {
 | |
|               nrg_gain[c] = (FLOAT32)sqrt(nrg_ref[c] * tmp / (nrg_est[c] + 1));
 | |
|               nrg_tone[c] = (FLOAT32)(
 | |
|                   (harmonics[c] &&
 | |
|                    (i >= trans_env || (*harm_flag_prev)[c + sub_band_start]))
 | |
|                       ? sqrt(nrg_ref[c] * tmp /
 | |
|                              ABS(noise_floor[next * num_nf_bands + o] + guard))
 | |
|                       : nrg_tone[c]);
 | |
|             } else {
 | |
|               if (noise_absc_flag)
 | |
|                 nrg_gain[c] = (FLOAT32)sqrt(nrg_ref[c] / (nrg_est[c] + 1));
 | |
|               else
 | |
|                 nrg_gain[c] = (FLOAT32)sqrt(
 | |
|                     nrg_ref[c] * tmp /
 | |
|                     ((nrg_est[c] + 1) *
 | |
|                      ABS(noise_floor[next * num_nf_bands + o] + guard)));
 | |
|             }
 | |
|             noise_level[c] = (FLOAT32)sqrt(nrg_ref[c] * tmp);
 | |
|             c++;
 | |
|           }
 | |
|           m++;
 | |
|         }
 | |
| 
 | |
|         for (c = 0; c < (*gate_mode)[limiter_band]; c++) {
 | |
|           p_ref = p_est = 0;
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             p_ref += nrg_ref[k];
 | |
|             p_est += nrg_est[k];
 | |
|           }
 | |
|           avg_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_est + EPS));
 | |
|           g_max = avg_gain * ixheaacd_g_lim_gains[limiter_gains];
 | |
|           g_max > 1.0e5f ? g_max = 1.0e5f : 0;
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             if (g_max <= nrg_gain[k]) {
 | |
|               noise_level[k] = noise_level[k] * (g_max / nrg_gain[k]);
 | |
|               nrg_gain[k] = g_max;
 | |
|             }
 | |
|           }
 | |
|           p_adj = 0;
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             p_adj += nrg_gain[k] * nrg_gain[k] * nrg_est[k];
 | |
|             if (nrg_tone[k])
 | |
|               p_adj += nrg_tone[k] * nrg_tone[k];
 | |
|             else if (!noise_absc_flag)
 | |
|               p_adj += noise_level[k] * noise_level[k];
 | |
|           }
 | |
|           boost_gain = (FLOAT32)sqrt((p_ref + EPS) / (p_adj + EPS));
 | |
|           boost_gain = boost_gain > 1.584893192f ? 1.584893192f : boost_gain;
 | |
|           for (k = (*lim_table)[limiter_band][c];
 | |
|                k < (*lim_table)[limiter_band][c + 1]; k++) {
 | |
|             nrg_gain[k] *= boost_gain;
 | |
|             noise_level[k] *= boost_gain;
 | |
|             nrg_tone[k] *= boost_gain;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (esbr_start_up) {
 | |
|           for (n = 0; n < 4; n++) {
 | |
|             memcpy((*e_gain)[n], nrg_gain, num_subbands * sizeof(FLOAT32));
 | |
|             memcpy((*noise_buf)[n], noise_level,
 | |
|                    num_subbands * sizeof(FLOAT32));
 | |
|           }
 | |
|           esbr_start_up = 0;
 | |
|           esbr_start_up_pvc = 0;
 | |
|         }
 | |
| 
 | |
|         for (l = rate * p_frame_info->border_vec[i];
 | |
|              l < rate * p_frame_info->border_vec[i + 1]; l++) {
 | |
|           ptr_real_buf = *(input_real + l) + sub_band_start;
 | |
|           ptr_imag_buf = *(input_imag + l) + sub_band_start;
 | |
| 
 | |
|           for (k = 0; k < num_subbands; k++) {
 | |
|             (*e_gain)[4][k] = nrg_gain[k];
 | |
|             (*noise_buf)[4][k] = noise_level[k];
 | |
|             c = 0, sb_gain = 0, sb_noise = 0;
 | |
|             for (n = 4 - smooth_length; n <= 4; n++) {
 | |
|               sb_gain += (*e_gain)[n][k] * smooth_filt[c];
 | |
|               sb_noise += (*noise_buf)[n][k] * smooth_filt[c++];
 | |
|             }
 | |
| 
 | |
|             phase_index = (phase_index + 1) & 511;
 | |
|             sb_noise = (nrg_tone[k] != 0 || noise_absc_flag) ? 0 : sb_noise;
 | |
| 
 | |
|             *ptr_real_buf = *ptr_real_buf * sb_gain +
 | |
|                             sb_noise * ixheaacd_random_phase[phase_index][0];
 | |
|             *ptr_imag_buf = *ptr_imag_buf * sb_gain +
 | |
|                             sb_noise * ixheaacd_random_phase[phase_index][1];
 | |
| 
 | |
|             ptr_real_buf++;
 | |
|             ptr_imag_buf++;
 | |
|           }
 | |
| 
 | |
|           memcpy(temp, (*e_gain)[0], 64 * sizeof(FLOAT32));
 | |
|           for (n = 0; n < 4; n++)
 | |
|             memcpy((*e_gain)[n], (*e_gain)[n + 1], 64 * sizeof(FLOAT32));
 | |
|           memcpy((*e_gain)[4], temp, 64 * sizeof(FLOAT32));
 | |
|           memcpy(temp, (*noise_buf)[0], 64 * sizeof(FLOAT32));
 | |
|           for (n = 0; n < 4; n++)
 | |
|             memcpy((*noise_buf)[n], (*noise_buf)[n + 1], 64 * sizeof(FLOAT32));
 | |
|           memcpy((*noise_buf)[4], temp, 64 * sizeof(FLOAT32));
 | |
|         }
 | |
| 
 | |
|         ixheaacd_apply_inter_tes(
 | |
|             *(input_real1 + rate * p_frame_info->border_vec[i]),
 | |
|             *(input_imag1 + rate * p_frame_info->border_vec[i]),
 | |
|             *(input_real + rate * p_frame_info->border_vec[i]),
 | |
|             *(input_imag + rate * p_frame_info->border_vec[i]),
 | |
|             rate * p_frame_info->border_vec[i + 1] -
 | |
|                 rate * p_frame_info->border_vec[i],
 | |
|             sub_band_start, num_subbands, frame_data->inter_temp_shape_mode[i]);
 | |
| 
 | |
|         for (l = rate * p_frame_info->border_vec[i];
 | |
|              l < rate * p_frame_info->border_vec[i + 1]; l++) {
 | |
|           ptr_real_buf = *(input_real + l) + sub_band_start;
 | |
|           ptr_imag_buf = *(input_imag + l) + sub_band_start;
 | |
|           if (sub_band_start & 1) {
 | |
|             freq_inv = -1;
 | |
|           }
 | |
|           for (k = 0; k < num_subbands; k++) {
 | |
|             *ptr_real_buf += nrg_tone[k] * ixheaacd_hphase_tbl[0][harm_index];
 | |
|             *ptr_imag_buf +=
 | |
|                 nrg_tone[k] * freq_inv * ixheaacd_hphase_tbl[1][harm_index];
 | |
| 
 | |
|             ptr_real_buf++;
 | |
|             ptr_imag_buf++;
 | |
|             freq_inv = -freq_inv;
 | |
|           }
 | |
|           harm_index = (harm_index + 1) & 3;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < 64; i++) {
 | |
|     (*harm_flag_varlen_prev)[i] = (*harm_flag_prev)[i];
 | |
|     (*harm_flag_varlen)[i] = harmonics[i];
 | |
|   }
 | |
| 
 | |
|   memcpy(&((*harm_flag_prev)[0]) + sub_band_start, harmonics,
 | |
|          (64 - sub_band_start) * sizeof(WORD8));
 | |
| 
 | |
|   if (trans_env == bs_num_env) {
 | |
|     frame_data->env_short_flag_prev = 0;
 | |
|   } else {
 | |
|     frame_data->env_short_flag_prev = -1;
 | |
|   }
 | |
| 
 | |
|   memcpy((VOID *)&frame_data->str_frame_info_prev,
 | |
|          (VOID *)&frame_data->str_frame_info_details,
 | |
|          sizeof(ia_frame_info_struct));
 | |
| 
 | |
|   if (frame_data->str_frame_info_details.num_env == 1) {
 | |
|     frame_data->var_len_id_prev = 0;
 | |
|   } else if (frame_data->str_frame_info_details.num_env == 2) {
 | |
|     frame_data->var_len_id_prev = 1;
 | |
|   }
 | |
| 
 | |
|   if ((frame_data->str_frame_info_details.num_noise_env < 1) ||
 | |
|       (frame_data->str_frame_info_details.num_noise_env > 2))
 | |
|     return IA_FATAL_ERROR;
 | |
| 
 | |
|   for (i = 0; i < num_nf_bands; i++) {
 | |
|     prev_env_noise_level[i] =
 | |
|         frame_data->flt_noise_floor
 | |
|             [(frame_data->str_frame_info_details.num_noise_env - 1) *
 | |
|                  num_nf_bands +
 | |
|              i];
 | |
|   }
 | |
| 
 | |
|   frame_data->harm_index = harm_index;
 | |
|   frame_data->phase_index = phase_index;
 | |
|   frame_data->pstr_sbr_header->esbr_start_up = esbr_start_up;
 | |
|   frame_data->pstr_sbr_header->esbr_start_up_pvc = esbr_start_up_pvc;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| IA_ERRORCODE ixheaacd_createlimiterbands(
 | |
|     WORD32 lim_table[4][12 + 1], WORD32 gate_mode[4], WORD16 *freq_band_tbl,
 | |
|     WORD32 ixheaacd_num_bands, WORD32 x_over_qmf[MAX_NUM_PATCHES],
 | |
|     WORD32 b_patching_mode, WORD32 upsamp_4_flag,
 | |
|     struct ixheaacd_lpp_trans_patch *patch_param) {
 | |
|   WORD32 i, j, k, is_patch_border[2];
 | |
|   WORD32 patch_borders[MAX_NUM_PATCHES + 1];
 | |
|   WORD32 temp_limiter_band_calc[32 + MAX_NUM_PATCHES + 1];
 | |
| 
 | |
|   double num_octave;
 | |
|   WORD32 num_patches;
 | |
| 
 | |
|   WORD32 sub_band_start = freq_band_tbl[0];
 | |
|   WORD32 sub_band_end = freq_band_tbl[ixheaacd_num_bands];
 | |
| 
 | |
|   const double log2 = log(2.0);
 | |
|   const double limbnd_per_oct[4] = {0, 1.2, 2.0, 3.0};
 | |
| 
 | |
|   if (!b_patching_mode && (x_over_qmf != NULL)) {
 | |
|     num_patches = 0;
 | |
|     if (upsamp_4_flag) {
 | |
|       for (i = 1; i < MAX_NUM_PATCHES; i++)
 | |
|         if (x_over_qmf[i] != 0) num_patches++;
 | |
|     } else {
 | |
|       for (i = 1; i < 4; i++)
 | |
|         if (x_over_qmf[i] != 0) num_patches++;
 | |
|     }
 | |
|     for (i = 0; i < num_patches; i++) {
 | |
|       patch_borders[i] = x_over_qmf[i] - sub_band_start;
 | |
|     }
 | |
|   } else {
 | |
|     num_patches = patch_param->num_patches;
 | |
|     for (i = 0; i < num_patches; i++) {
 | |
|       patch_borders[i] = patch_param->start_subband[i] - sub_band_start;
 | |
|     }
 | |
|   }
 | |
|   patch_borders[i] = sub_band_end - sub_band_start;
 | |
| 
 | |
|   lim_table[0][0] = freq_band_tbl[0] - sub_band_start;
 | |
|   lim_table[0][1] = freq_band_tbl[ixheaacd_num_bands] - sub_band_start;
 | |
|   gate_mode[0] = 1;
 | |
| 
 | |
|   for (i = 1; i < 4; i++) {
 | |
|     for (k = 0; k <= ixheaacd_num_bands; k++) {
 | |
|       temp_limiter_band_calc[k] = freq_band_tbl[k] - sub_band_start;
 | |
|     }
 | |
| 
 | |
|     for (k = 1; k < num_patches; k++) {
 | |
|       temp_limiter_band_calc[ixheaacd_num_bands + k] = patch_borders[k];
 | |
|     }
 | |
| 
 | |
|     gate_mode[i] = ixheaacd_num_bands + num_patches - 1;
 | |
|     ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
 | |
| 
 | |
|     for (j = 1; j <= gate_mode[i]; j++) {
 | |
|       num_octave = log((double)(temp_limiter_band_calc[j] + sub_band_start) /
 | |
|                        (temp_limiter_band_calc[j - 1] + sub_band_start)) /
 | |
|                    log2;
 | |
| 
 | |
|       if (num_octave * limbnd_per_oct[i] < 0.49) {
 | |
|         if (temp_limiter_band_calc[j] == temp_limiter_band_calc[j - 1]) {
 | |
|           temp_limiter_band_calc[j] = sub_band_end;
 | |
|           ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
 | |
|           gate_mode[i]--;
 | |
|           j--;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         is_patch_border[0] = is_patch_border[1] = 0;
 | |
| 
 | |
|         for (k = 0; k <= num_patches; k++) {
 | |
|           if (temp_limiter_band_calc[j - 1] == patch_borders[k]) {
 | |
|             is_patch_border[0] = 1;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         for (k = 0; k <= num_patches; k++) {
 | |
|           if (temp_limiter_band_calc[j] == patch_borders[k]) {
 | |
|             is_patch_border[1] = 1;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!is_patch_border[1]) {
 | |
|           temp_limiter_band_calc[j] = sub_band_end;
 | |
|           ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
 | |
|           gate_mode[i]--;
 | |
|           j--;
 | |
|         } else if (!is_patch_border[0]) {
 | |
|           temp_limiter_band_calc[j - 1] = sub_band_end;
 | |
|           ixheaacd_shellsort(temp_limiter_band_calc, gate_mode[i] + 1);
 | |
|           gate_mode[i]--;
 | |
|           j--;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (gate_mode[i] > 12) return IA_FATAL_ERROR;
 | |
|     for (k = 0; k <= gate_mode[i]; k++) {
 | |
|       lim_table[i][k] = temp_limiter_band_calc[k];
 | |
|     }
 | |
|   }
 | |
|   return IA_NO_ERROR;
 | |
| }
 | |
| 
 | |
| VOID ixheaacd_apply_inter_tes(FLOAT32 *qmf_real1, FLOAT32 *qmf_imag1,
 | |
|                               FLOAT32 *qmf_real, FLOAT32 *qmf_imag,
 | |
|                               WORD32 num_sample, WORD32 sub_band_start,
 | |
|                               WORD32 num_subband, WORD32 gamma_idx) {
 | |
|   WORD32 sub_band_end = sub_band_start + num_subband;
 | |
|   FLOAT32 subsample_power_high[TIMESLOT_BUFFER_SIZE],
 | |
|       subsample_power_low[TIMESLOT_BUFFER_SIZE];
 | |
|   FLOAT32 total_power_high = 0.0f;
 | |
|   FLOAT32 total_power_low = 0.0f, total_power_high_after = 1.0e-6f;
 | |
|   FLOAT32 gain[TIMESLOT_BUFFER_SIZE];
 | |
|   FLOAT32 gain_adj, gain_adj_2;
 | |
|   FLOAT32 gamma = ixheaacd_q_gamma_table[gamma_idx];
 | |
|   WORD32 i, j;
 | |
| 
 | |
|   if (gamma > 0) {
 | |
|     for (i = 0; i < num_sample; i++) {
 | |
|       memcpy(&qmf_real[64 * i], &qmf_real1[64 * i],
 | |
|              sub_band_start * sizeof(FLOAT32));
 | |
|       memcpy(&qmf_imag[64 * i], &qmf_imag1[64 * i],
 | |
|              sub_band_start * sizeof(FLOAT32));
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < num_sample; i++) {
 | |
|       subsample_power_low[i] = 0.0f;
 | |
|       for (j = 0; j < sub_band_start; j++) {
 | |
|         subsample_power_low[i] += qmf_real[64 * i + j] * qmf_real[64 * i + j];
 | |
|         subsample_power_low[i] += qmf_imag[64 * i + j] * qmf_imag[64 * i + j];
 | |
|       }
 | |
|       subsample_power_high[i] = 0.0f;
 | |
|       for (j = sub_band_start; j < sub_band_end; j++) {
 | |
|         subsample_power_high[i] += qmf_real[64 * i + j] * qmf_real[64 * i + j];
 | |
|         subsample_power_high[i] += qmf_imag[64 * i + j] * qmf_imag[64 * i + j];
 | |
|       }
 | |
|       total_power_low += subsample_power_low[i];
 | |
|       total_power_high += subsample_power_high[i];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < num_sample; i++) {
 | |
|       gain[i] = (FLOAT32)(sqrt(subsample_power_low[i] * num_sample /
 | |
|                                (total_power_low + 1.0e-6f)));
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < num_sample; i++) {
 | |
|       gain[i] = (FLOAT32)(1.0f + gamma * (gain[i] - 1.0f));
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < num_sample; i++) {
 | |
|       if (gain[i] < 0.2f) {
 | |
|         gain[i] = 0.2f;
 | |
|       }
 | |
| 
 | |
|       subsample_power_high[i] *= gain[i] * gain[i];
 | |
|       total_power_high_after += subsample_power_high[i];
 | |
|     }
 | |
| 
 | |
|     gain_adj_2 = total_power_high / total_power_high_after;
 | |
|     gain_adj = (FLOAT32)(sqrt(gain_adj_2));
 | |
| 
 | |
|     for (i = 0; i < num_sample; i++) {
 | |
|       gain[i] *= gain_adj;
 | |
| 
 | |
|       for (j = sub_band_start; j < sub_band_end; j++) {
 | |
|         qmf_real[64 * i + j] *= gain[i];
 | |
|         qmf_imag[64 * i + j] *= gain[i];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 |