196 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 | |
|  *
 | |
|  *  Use of this source code is governed by a BSD-style license
 | |
|  *  that can be found in the LICENSE file in the root of the source
 | |
|  *  tree. An additional intellectual property rights grant can be found
 | |
|  *  in the file PATENTS.  All contributing project authors may
 | |
|  *  be found in the AUTHORS file in the root of the source tree.
 | |
|  */
 | |
| 
 | |
| #include "rtc_base/numerics/running_statistics.h"
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include "absl/algorithm/container.h"
 | |
| #include "test/gtest.h"
 | |
| 
 | |
| // Tests were copied from samples_stats_counter_unittest.cc.
 | |
| 
 | |
| namespace webrtc {
 | |
| namespace {
 | |
| 
 | |
| RunningStatistics<double> CreateStatsFilledWithIntsFrom1ToN(int n) {
 | |
|   std::vector<double> data;
 | |
|   for (int i = 1; i <= n; i++) {
 | |
|     data.push_back(i);
 | |
|   }
 | |
|   absl::c_shuffle(data, std::mt19937(std::random_device()()));
 | |
| 
 | |
|   RunningStatistics<double> stats;
 | |
|   for (double v : data) {
 | |
|     stats.AddSample(v);
 | |
|   }
 | |
|   return stats;
 | |
| }
 | |
| 
 | |
| // Add n samples drawn from uniform distribution in [a;b].
 | |
| RunningStatistics<double> CreateStatsFromUniformDistribution(int n,
 | |
|                                                              double a,
 | |
|                                                              double b) {
 | |
|   std::mt19937 gen{std::random_device()()};
 | |
|   std::uniform_real_distribution<> dis(a, b);
 | |
| 
 | |
|   RunningStatistics<double> stats;
 | |
|   for (int i = 1; i <= n; i++) {
 | |
|     stats.AddSample(dis(gen));
 | |
|   }
 | |
|   return stats;
 | |
| }
 | |
| 
 | |
| class RunningStatisticsTest : public ::testing::TestWithParam<int> {};
 | |
| 
 | |
| constexpr int SIZE_FOR_MERGE = 5;
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| TEST(RunningStatistics, FullSimpleTest) {
 | |
|   auto stats = CreateStatsFilledWithIntsFrom1ToN(100);
 | |
| 
 | |
|   EXPECT_DOUBLE_EQ(*stats.GetMin(), 1.0);
 | |
|   EXPECT_DOUBLE_EQ(*stats.GetMax(), 100.0);
 | |
|   // EXPECT_DOUBLE_EQ is too strict (max 4 ULP) for this one.
 | |
|   ASSERT_NEAR(*stats.GetMean(), 50.5, 1e-10);
 | |
| }
 | |
| 
 | |
| TEST(RunningStatistics, VarianceAndDeviation) {
 | |
|   RunningStatistics<int> stats;
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(-1);
 | |
|   stats.AddSample(5);
 | |
| 
 | |
|   EXPECT_DOUBLE_EQ(*stats.GetMean(), 2.0);
 | |
|   EXPECT_DOUBLE_EQ(*stats.GetVariance(), 4.5);
 | |
|   EXPECT_DOUBLE_EQ(*stats.GetStandardDeviation(), sqrt(4.5));
 | |
| }
 | |
| 
 | |
| TEST(RunningStatistics, RemoveSample) {
 | |
|   // We check that adding then removing sample is no-op,
 | |
|   // or so (due to loss of precision).
 | |
|   RunningStatistics<int> stats;
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(-1);
 | |
|   stats.AddSample(5);
 | |
| 
 | |
|   constexpr int iterations = 1e5;
 | |
|   for (int i = 0; i < iterations; ++i) {
 | |
|     stats.AddSample(i);
 | |
|     stats.RemoveSample(i);
 | |
| 
 | |
|     EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-8);
 | |
|     EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3);
 | |
|     EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(RunningStatistics, RemoveSamplesSequence) {
 | |
|   // We check that adding then removing a sequence of samples is no-op,
 | |
|   // or so (due to loss of precision).
 | |
|   RunningStatistics<int> stats;
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(-1);
 | |
|   stats.AddSample(5);
 | |
| 
 | |
|   constexpr int iterations = 1e4;
 | |
|   for (int i = 0; i < iterations; ++i) {
 | |
|     stats.AddSample(i);
 | |
|   }
 | |
|   for (int i = 0; i < iterations; ++i) {
 | |
|     stats.RemoveSample(i);
 | |
|   }
 | |
| 
 | |
|   EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-7);
 | |
|   EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3);
 | |
|   EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4);
 | |
| }
 | |
| 
 | |
| TEST(RunningStatistics, VarianceFromUniformDistribution) {
 | |
|   // Check variance converge to 1/12 for [0;1) uniform distribution.
 | |
|   // Acts as a sanity check for NumericStabilityForVariance test.
 | |
|   auto stats = CreateStatsFromUniformDistribution(1e6, 0, 1);
 | |
| 
 | |
|   EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3);
 | |
| }
 | |
| 
 | |
| TEST(RunningStatistics, NumericStabilityForVariance) {
 | |
|   // Same test as VarianceFromUniformDistribution,
 | |
|   // except the range is shifted to [1e9;1e9+1).
 | |
|   // Variance should also converge to 1/12.
 | |
|   // NB: Although we lose precision for the samples themselves, the fractional
 | |
|   //     part still enjoys 22 bits of mantissa and errors should even out,
 | |
|   //     so that couldn't explain a mismatch.
 | |
|   auto stats = CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1);
 | |
| 
 | |
|   EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3);
 | |
| }
 | |
| 
 | |
| TEST(RunningStatistics, MinRemainsUnchangedAfterRemove) {
 | |
|   // We don't want to recompute min (that's RollingAccumulator's role),
 | |
|   // check we get the overall min.
 | |
|   RunningStatistics<int> stats;
 | |
|   stats.AddSample(1);
 | |
|   stats.AddSample(2);
 | |
|   stats.RemoveSample(1);
 | |
|   EXPECT_EQ(stats.GetMin(), 1);
 | |
| }
 | |
| 
 | |
| TEST(RunningStatistics, MaxRemainsUnchangedAfterRemove) {
 | |
|   // We don't want to recompute max (that's RollingAccumulator's role),
 | |
|   // check we get the overall max.
 | |
|   RunningStatistics<int> stats;
 | |
|   stats.AddSample(1);
 | |
|   stats.AddSample(2);
 | |
|   stats.RemoveSample(2);
 | |
|   EXPECT_EQ(stats.GetMax(), 2);
 | |
| }
 | |
| 
 | |
| TEST_P(RunningStatisticsTest, MergeStatistics) {
 | |
|   int data[SIZE_FOR_MERGE] = {2, 2, -1, 5, 10};
 | |
|   // Split the data in different partitions.
 | |
|   // We have 6 distinct tests:
 | |
|   //   * Empty merged with full sequence.
 | |
|   //   * 1 sample merged with 4 last.
 | |
|   //   * 2 samples merged with 3 last.
 | |
|   //   [...]
 | |
|   //   * Full merged with empty sequence.
 | |
|   // All must lead to the same result.
 | |
|   // I miss QuickCheck so much.
 | |
|   RunningStatistics<int> stats0, stats1;
 | |
|   for (int i = 0; i < GetParam(); ++i) {
 | |
|     stats0.AddSample(data[i]);
 | |
|   }
 | |
|   for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) {
 | |
|     stats1.AddSample(data[i]);
 | |
|   }
 | |
|   stats0.MergeStatistics(stats1);
 | |
| 
 | |
|   EXPECT_EQ(stats0.Size(), SIZE_FOR_MERGE);
 | |
|   EXPECT_DOUBLE_EQ(*stats0.GetMin(), -1);
 | |
|   EXPECT_DOUBLE_EQ(*stats0.GetMax(), 10);
 | |
|   EXPECT_DOUBLE_EQ(*stats0.GetMean(), 3.6);
 | |
|   EXPECT_DOUBLE_EQ(*stats0.GetVariance(), 13.84);
 | |
|   EXPECT_DOUBLE_EQ(*stats0.GetStandardDeviation(), sqrt(13.84));
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_SUITE_P(RunningStatisticsTests,
 | |
|                          RunningStatisticsTest,
 | |
|                          ::testing::Range(0, SIZE_FOR_MERGE + 1));
 | |
| 
 | |
| }  // namespace webrtc
 |