336 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			336 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  *  Copyright 2017 The WebRTC Project Authors. All rights reserved.
 | |
|  *
 | |
|  *  Use of this source code is governed by a BSD-style license
 | |
|  *  that can be found in the LICENSE file in the root of the source
 | |
|  *  tree. An additional intellectual property rights grant can be found
 | |
|  *  in the file PATENTS.  All contributing project authors may
 | |
|  *  be found in the AUTHORS file in the root of the source tree.
 | |
|  */
 | |
| 
 | |
| // Minimum and maximum
 | |
| // ===================
 | |
| //
 | |
| //   rtc::SafeMin(x, y)
 | |
| //   rtc::SafeMax(x, y)
 | |
| //
 | |
| // (These are both constexpr.)
 | |
| //
 | |
| // Accept two arguments of either any two integral or any two floating-point
 | |
| // types, and return the smaller and larger value, respectively, with no
 | |
| // truncation or wrap-around. If only one of the input types is statically
 | |
| // guaranteed to be able to represent the result, the return type is that type;
 | |
| // if either one would do, the result type is the smaller type. (One of these
 | |
| // two cases always applies.)
 | |
| //
 | |
| //   * The case with one floating-point and one integral type is not allowed,
 | |
| //     because the floating-point type will have greater range, but may not
 | |
| //     have sufficient precision to represent the integer value exactly.)
 | |
| //
 | |
| // Clamp (a.k.a. constrain to a given interval)
 | |
| // ============================================
 | |
| //
 | |
| //   rtc::SafeClamp(x, a, b)
 | |
| //
 | |
| // Accepts three arguments of any mix of integral types or any mix of
 | |
| // floating-point types, and returns the value in the closed interval [a, b]
 | |
| // that is closest to x (that is, if x < a it returns a; if x > b it returns b;
 | |
| // and if a <= x <= b it returns x). As for SafeMin() and SafeMax(), there is
 | |
| // no truncation or wrap-around. The result type
 | |
| //
 | |
| //   1. is statically guaranteed to be able to represent the result;
 | |
| //
 | |
| //   2. is no larger than the largest of the three argument types; and
 | |
| //
 | |
| //   3. has the same signedness as the type of the first argument, if this is
 | |
| //      possible without violating the First or Second Law.
 | |
| //
 | |
| // There is always at least one type that meets criteria 1 and 2. If more than
 | |
| // one type meets these criteria equally well, the result type is one of the
 | |
| // types that is smallest. Note that unlike SafeMin() and SafeMax(),
 | |
| // SafeClamp() will sometimes pick a return type that isn't the type of any of
 | |
| // its arguments.
 | |
| //
 | |
| //   * In this context, a type A is smaller than a type B if it has a smaller
 | |
| //     range; that is, if A::max() - A::min() < B::max() - B::min(). For
 | |
| //     example, int8_t < int16_t == uint16_t < int32_t, and all integral types
 | |
| //     are smaller than all floating-point types.)
 | |
| //
 | |
| //   * As for SafeMin and SafeMax, mixing integer and floating-point arguments
 | |
| //     is not allowed, because floating-point types have greater range than
 | |
| //     integer types, but do not have sufficient precision to represent the
 | |
| //     values of most integer types exactly.
 | |
| //
 | |
| // Requesting a specific return type
 | |
| // =================================
 | |
| //
 | |
| // All three functions allow callers to explicitly specify the return type as a
 | |
| // template parameter, overriding the default return type. E.g.
 | |
| //
 | |
| //   rtc::SafeMin<int>(x, y)  // returns an int
 | |
| //
 | |
| // If the requested type is statically guaranteed to be able to represent the
 | |
| // result, then everything's fine, and the return type is as requested. But if
 | |
| // the requested type is too small, a static_assert is triggered.
 | |
| 
 | |
| #ifndef RTC_BASE_NUMERICS_SAFE_MINMAX_H_
 | |
| #define RTC_BASE_NUMERICS_SAFE_MINMAX_H_
 | |
| 
 | |
| #include <limits>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "rtc_base/checks.h"
 | |
| #include "rtc_base/numerics/safe_compare.h"
 | |
| #include "rtc_base/type_traits.h"
 | |
| 
 | |
| namespace rtc {
 | |
| 
 | |
| namespace safe_minmax_impl {
 | |
| 
 | |
| // Make the range of a type available via something other than a constexpr
 | |
| // function, to work around MSVC limitations. See
 | |
| // https://blogs.msdn.microsoft.com/vcblog/2015/12/02/partial-support-for-expression-sfinae-in-vs-2015-update-1/
 | |
| template <typename T>
 | |
| struct Limits {
 | |
|   static constexpr T lowest = std::numeric_limits<T>::lowest();
 | |
|   static constexpr T max = std::numeric_limits<T>::max();
 | |
| };
 | |
| 
 | |
| template <typename T, bool is_enum = std::is_enum<T>::value>
 | |
| struct UnderlyingType;
 | |
| 
 | |
| template <typename T>
 | |
| struct UnderlyingType<T, false> {
 | |
|   using type = T;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct UnderlyingType<T, true> {
 | |
|   using type = typename std::underlying_type<T>::type;
 | |
| };
 | |
| 
 | |
| // Given two types T1 and T2, find types that can hold the smallest (in
 | |
| // ::min_t) and the largest (in ::max_t) of the two values.
 | |
| template <typename T1,
 | |
|           typename T2,
 | |
|           bool int1 = IsIntlike<T1>::value,
 | |
|           bool int2 = IsIntlike<T2>::value>
 | |
| struct MType {
 | |
|   static_assert(int1 == int2,
 | |
|                 "You may not mix integral and floating-point arguments");
 | |
| };
 | |
| 
 | |
| // Specialization for when neither type is integral (and therefore presumably
 | |
| // floating-point).
 | |
| template <typename T1, typename T2>
 | |
| struct MType<T1, T2, false, false> {
 | |
|   using min_t = typename std::common_type<T1, T2>::type;
 | |
|   static_assert(std::is_same<min_t, T1>::value ||
 | |
|                     std::is_same<min_t, T2>::value,
 | |
|                 "");
 | |
| 
 | |
|   using max_t = typename std::common_type<T1, T2>::type;
 | |
|   static_assert(std::is_same<max_t, T1>::value ||
 | |
|                     std::is_same<max_t, T2>::value,
 | |
|                 "");
 | |
| };
 | |
| 
 | |
| // Specialization for when both types are integral.
 | |
| template <typename T1, typename T2>
 | |
| struct MType<T1, T2, true, true> {
 | |
|   // The type with the lowest minimum value. In case of a tie, the type with
 | |
|   // the lowest maximum value. In case that too is a tie, the types have the
 | |
|   // same range, and we arbitrarily pick T1.
 | |
|   using min_t = typename std::conditional<
 | |
|       SafeLt(Limits<T1>::lowest, Limits<T2>::lowest),
 | |
|       T1,
 | |
|       typename std::conditional<
 | |
|           SafeGt(Limits<T1>::lowest, Limits<T2>::lowest),
 | |
|           T2,
 | |
|           typename std::conditional<SafeLe(Limits<T1>::max, Limits<T2>::max),
 | |
|                                     T1,
 | |
|                                     T2>::type>::type>::type;
 | |
|   static_assert(std::is_same<min_t, T1>::value ||
 | |
|                     std::is_same<min_t, T2>::value,
 | |
|                 "");
 | |
| 
 | |
|   // The type with the highest maximum value. In case of a tie, the types have
 | |
|   // the same range (because in C++, integer types with the same maximum also
 | |
|   // have the same minimum).
 | |
|   static_assert(SafeNe(Limits<T1>::max, Limits<T2>::max) ||
 | |
|                     SafeEq(Limits<T1>::lowest, Limits<T2>::lowest),
 | |
|                 "integer types with the same max should have the same min");
 | |
|   using max_t = typename std::
 | |
|       conditional<SafeGe(Limits<T1>::max, Limits<T2>::max), T1, T2>::type;
 | |
|   static_assert(std::is_same<max_t, T1>::value ||
 | |
|                     std::is_same<max_t, T2>::value,
 | |
|                 "");
 | |
| };
 | |
| 
 | |
| // A dummy type that we pass around at compile time but never actually use.
 | |
| // Declared but not defined.
 | |
| struct DefaultType;
 | |
| 
 | |
| // ::type is A, except we fall back to B if A is DefaultType. We static_assert
 | |
| // that the chosen type can hold all values that B can hold.
 | |
| template <typename A, typename B>
 | |
| struct TypeOr {
 | |
|   using type = typename std::
 | |
|       conditional<std::is_same<A, DefaultType>::value, B, A>::type;
 | |
|   static_assert(SafeLe(Limits<type>::lowest, Limits<B>::lowest) &&
 | |
|                     SafeGe(Limits<type>::max, Limits<B>::max),
 | |
|                 "The specified type isn't large enough");
 | |
|   static_assert(IsIntlike<type>::value == IsIntlike<B>::value &&
 | |
|                     std::is_floating_point<type>::value ==
 | |
|                         std::is_floating_point<type>::value,
 | |
|                 "float<->int conversions not allowed");
 | |
| };
 | |
| 
 | |
| }  // namespace safe_minmax_impl
 | |
| 
 | |
| template <
 | |
|     typename R = safe_minmax_impl::DefaultType,
 | |
|     typename T1 = safe_minmax_impl::DefaultType,
 | |
|     typename T2 = safe_minmax_impl::DefaultType,
 | |
|     typename R2 = typename safe_minmax_impl::TypeOr<
 | |
|         R,
 | |
|         typename safe_minmax_impl::MType<
 | |
|             typename safe_minmax_impl::UnderlyingType<T1>::type,
 | |
|             typename safe_minmax_impl::UnderlyingType<T2>::type>::min_t>::type>
 | |
| constexpr R2 SafeMin(T1 a, T2 b) {
 | |
|   static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
 | |
|                 "The first argument must be integral or floating-point");
 | |
|   static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
 | |
|                 "The second argument must be integral or floating-point");
 | |
|   return SafeLt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
 | |
| }
 | |
| 
 | |
| template <
 | |
|     typename R = safe_minmax_impl::DefaultType,
 | |
|     typename T1 = safe_minmax_impl::DefaultType,
 | |
|     typename T2 = safe_minmax_impl::DefaultType,
 | |
|     typename R2 = typename safe_minmax_impl::TypeOr<
 | |
|         R,
 | |
|         typename safe_minmax_impl::MType<
 | |
|             typename safe_minmax_impl::UnderlyingType<T1>::type,
 | |
|             typename safe_minmax_impl::UnderlyingType<T2>::type>::max_t>::type>
 | |
| constexpr R2 SafeMax(T1 a, T2 b) {
 | |
|   static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
 | |
|                 "The first argument must be integral or floating-point");
 | |
|   static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
 | |
|                 "The second argument must be integral or floating-point");
 | |
|   return SafeGt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
 | |
| }
 | |
| 
 | |
| namespace safe_minmax_impl {
 | |
| 
 | |
| // Given three types T, L, and H, let ::type be a suitable return value for
 | |
| // SafeClamp(T, L, H). See the docs at the top of this file for details.
 | |
| template <typename T,
 | |
|           typename L,
 | |
|           typename H,
 | |
|           bool int1 = IsIntlike<T>::value,
 | |
|           bool int2 = IsIntlike<L>::value,
 | |
|           bool int3 = IsIntlike<H>::value>
 | |
| struct ClampType {
 | |
|   static_assert(int1 == int2 && int1 == int3,
 | |
|                 "You may not mix integral and floating-point arguments");
 | |
| };
 | |
| 
 | |
| // Specialization for when all three types are floating-point.
 | |
| template <typename T, typename L, typename H>
 | |
| struct ClampType<T, L, H, false, false, false> {
 | |
|   using type = typename std::common_type<T, L, H>::type;
 | |
| };
 | |
| 
 | |
| // Specialization for when all three types are integral.
 | |
| template <typename T, typename L, typename H>
 | |
| struct ClampType<T, L, H, true, true, true> {
 | |
|  private:
 | |
|   // Range of the return value. The return type must be able to represent this
 | |
|   // full range.
 | |
|   static constexpr auto r_min =
 | |
|       SafeMax(Limits<L>::lowest, SafeMin(Limits<H>::lowest, Limits<T>::lowest));
 | |
|   static constexpr auto r_max =
 | |
|       SafeMin(Limits<H>::max, SafeMax(Limits<L>::max, Limits<T>::max));
 | |
| 
 | |
|   // Is the given type an acceptable return type? (That is, can it represent
 | |
|   // all possible return values, and is it no larger than the largest of the
 | |
|   // input types?)
 | |
|   template <typename A>
 | |
|   struct AcceptableType {
 | |
|    private:
 | |
|     static constexpr bool not_too_large = sizeof(A) <= sizeof(L) ||
 | |
|                                           sizeof(A) <= sizeof(H) ||
 | |
|                                           sizeof(A) <= sizeof(T);
 | |
|     static constexpr bool range_contained =
 | |
|         SafeLe(Limits<A>::lowest, r_min) && SafeLe(r_max, Limits<A>::max);
 | |
| 
 | |
|    public:
 | |
|     static constexpr bool value = not_too_large && range_contained;
 | |
|   };
 | |
| 
 | |
|   using best_signed_type = typename std::conditional<
 | |
|       AcceptableType<int8_t>::value,
 | |
|       int8_t,
 | |
|       typename std::conditional<
 | |
|           AcceptableType<int16_t>::value,
 | |
|           int16_t,
 | |
|           typename std::conditional<AcceptableType<int32_t>::value,
 | |
|                                     int32_t,
 | |
|                                     int64_t>::type>::type>::type;
 | |
| 
 | |
|   using best_unsigned_type = typename std::conditional<
 | |
|       AcceptableType<uint8_t>::value,
 | |
|       uint8_t,
 | |
|       typename std::conditional<
 | |
|           AcceptableType<uint16_t>::value,
 | |
|           uint16_t,
 | |
|           typename std::conditional<AcceptableType<uint32_t>::value,
 | |
|                                     uint32_t,
 | |
|                                     uint64_t>::type>::type>::type;
 | |
| 
 | |
|  public:
 | |
|   // Pick the best type, preferring the same signedness as T but falling back
 | |
|   // to the other one if necessary.
 | |
|   using type = typename std::conditional<
 | |
|       std::is_signed<T>::value,
 | |
|       typename std::conditional<AcceptableType<best_signed_type>::value,
 | |
|                                 best_signed_type,
 | |
|                                 best_unsigned_type>::type,
 | |
|       typename std::conditional<AcceptableType<best_unsigned_type>::value,
 | |
|                                 best_unsigned_type,
 | |
|                                 best_signed_type>::type>::type;
 | |
|   static_assert(AcceptableType<type>::value, "");
 | |
| };
 | |
| 
 | |
| }  // namespace safe_minmax_impl
 | |
| 
 | |
| template <
 | |
|     typename R = safe_minmax_impl::DefaultType,
 | |
|     typename T = safe_minmax_impl::DefaultType,
 | |
|     typename L = safe_minmax_impl::DefaultType,
 | |
|     typename H = safe_minmax_impl::DefaultType,
 | |
|     typename R2 = typename safe_minmax_impl::TypeOr<
 | |
|         R,
 | |
|         typename safe_minmax_impl::ClampType<
 | |
|             typename safe_minmax_impl::UnderlyingType<T>::type,
 | |
|             typename safe_minmax_impl::UnderlyingType<L>::type,
 | |
|             typename safe_minmax_impl::UnderlyingType<H>::type>::type>::type>
 | |
| R2 SafeClamp(T x, L min, H max) {
 | |
|   static_assert(IsIntlike<H>::value || std::is_floating_point<H>::value,
 | |
|                 "The first argument must be integral or floating-point");
 | |
|   static_assert(IsIntlike<T>::value || std::is_floating_point<T>::value,
 | |
|                 "The second argument must be integral or floating-point");
 | |
|   static_assert(IsIntlike<L>::value || std::is_floating_point<L>::value,
 | |
|                 "The third argument must be integral or floating-point");
 | |
|   RTC_DCHECK_LE(min, max);
 | |
|   return SafeLe(x, min)
 | |
|              ? static_cast<R2>(min)
 | |
|              : SafeGe(x, max) ? static_cast<R2>(max) : static_cast<R2>(x);
 | |
| }
 | |
| 
 | |
| }  // namespace rtc
 | |
| 
 | |
| #endif  // RTC_BASE_NUMERICS_SAFE_MINMAX_H_
 |