222 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 | |
|  *
 | |
|  *  Use of this source code is governed by a BSD-style license
 | |
|  *  that can be found in the LICENSE file in the root of the source
 | |
|  *  tree. An additional intellectual property rights grant can be found
 | |
|  *  in the file PATENTS.  All contributing project authors may
 | |
|  *  be found in the AUTHORS file in the root of the source tree.
 | |
|  */
 | |
| 
 | |
| #include "rtc_base/numerics/samples_stats_counter.h"
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| #include "absl/algorithm/container.h"
 | |
| #include "test/gtest.h"
 | |
| 
 | |
| namespace webrtc {
 | |
| namespace {
 | |
| 
 | |
| SamplesStatsCounter CreateStatsFilledWithIntsFrom1ToN(int n) {
 | |
|   std::vector<double> data;
 | |
|   for (int i = 1; i <= n; i++) {
 | |
|     data.push_back(i);
 | |
|   }
 | |
|   absl::c_shuffle(data, std::mt19937(std::random_device()()));
 | |
| 
 | |
|   SamplesStatsCounter stats;
 | |
|   for (double v : data) {
 | |
|     stats.AddSample(v);
 | |
|   }
 | |
|   return stats;
 | |
| }
 | |
| 
 | |
| // Add n samples drawn from uniform distribution in [a;b].
 | |
| SamplesStatsCounter CreateStatsFromUniformDistribution(int n,
 | |
|                                                        double a,
 | |
|                                                        double b) {
 | |
|   std::mt19937 gen{std::random_device()()};
 | |
|   std::uniform_real_distribution<> dis(a, b);
 | |
| 
 | |
|   SamplesStatsCounter stats;
 | |
|   for (int i = 1; i <= n; i++) {
 | |
|     stats.AddSample(dis(gen));
 | |
|   }
 | |
|   return stats;
 | |
| }
 | |
| 
 | |
| class SamplesStatsCounterTest : public ::testing::TestWithParam<int> {};
 | |
| 
 | |
| constexpr int SIZE_FOR_MERGE = 10;
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, FullSimpleTest) {
 | |
|   SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(100);
 | |
| 
 | |
|   EXPECT_TRUE(!stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMax(), 100.0);
 | |
|   EXPECT_NEAR(stats.GetAverage(), 50.5, 1e-6);
 | |
|   for (int i = 1; i <= 100; i++) {
 | |
|     double p = i / 100.0;
 | |
|     EXPECT_GE(stats.GetPercentile(p), i);
 | |
|     EXPECT_LT(stats.GetPercentile(p), i + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, VarianceAndDeviation) {
 | |
|   SamplesStatsCounter stats;
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(2);
 | |
|   stats.AddSample(-1);
 | |
|   stats.AddSample(5);
 | |
| 
 | |
|   EXPECT_DOUBLE_EQ(stats.GetAverage(), 2.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetVariance(), 4.5);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetStandardDeviation(), sqrt(4.5));
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, FractionPercentile) {
 | |
|   SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(5);
 | |
| 
 | |
|   EXPECT_DOUBLE_EQ(stats.GetPercentile(0.5), 3);
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, TestBorderValues) {
 | |
|   SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(5);
 | |
| 
 | |
|   EXPECT_GE(stats.GetPercentile(0.01), 1);
 | |
|   EXPECT_LT(stats.GetPercentile(0.01), 2);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetPercentile(1.0), 5);
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, VarianceFromUniformDistribution) {
 | |
|   // Check variance converge to 1/12 for [0;1) uniform distribution.
 | |
|   // Acts as a sanity check for NumericStabilityForVariance test.
 | |
|   SamplesStatsCounter stats = CreateStatsFromUniformDistribution(1e6, 0, 1);
 | |
| 
 | |
|   EXPECT_NEAR(stats.GetVariance(), 1. / 12, 1e-3);
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, NumericStabilityForVariance) {
 | |
|   // Same test as VarianceFromUniformDistribution,
 | |
|   // except the range is shifted to [1e9;1e9+1).
 | |
|   // Variance should also converge to 1/12.
 | |
|   // NB: Although we lose precision for the samples themselves, the fractional
 | |
|   //     part still enjoys 22 bits of mantissa and errors should even out,
 | |
|   //     so that couldn't explain a mismatch.
 | |
|   SamplesStatsCounter stats =
 | |
|       CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1);
 | |
| 
 | |
|   EXPECT_NEAR(stats.GetVariance(), 1. / 12, 1e-3);
 | |
| }
 | |
| 
 | |
| TEST_P(SamplesStatsCounterTest, AddSamples) {
 | |
|   int data[SIZE_FOR_MERGE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 | |
|   // Split the data in different partitions.
 | |
|   // We have 11 distinct tests:
 | |
|   //   * Empty merged with full sequence.
 | |
|   //   * 1 sample merged with 9 last.
 | |
|   //   * 2 samples merged with 8 last.
 | |
|   //   [...]
 | |
|   //   * Full merged with empty sequence.
 | |
|   // All must lead to the same result.
 | |
|   SamplesStatsCounter stats0, stats1;
 | |
|   for (int i = 0; i < GetParam(); ++i) {
 | |
|     stats0.AddSample(data[i]);
 | |
|   }
 | |
|   for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) {
 | |
|     stats1.AddSample(data[i]);
 | |
|   }
 | |
|   stats0.AddSamples(stats1);
 | |
| 
 | |
|   EXPECT_EQ(stats0.GetMin(), 0);
 | |
|   EXPECT_EQ(stats0.GetMax(), 9);
 | |
|   EXPECT_DOUBLE_EQ(stats0.GetAverage(), 4.5);
 | |
|   EXPECT_DOUBLE_EQ(stats0.GetVariance(), 8.25);
 | |
|   EXPECT_DOUBLE_EQ(stats0.GetStandardDeviation(), sqrt(8.25));
 | |
|   EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.1), 0.9);
 | |
|   EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.5), 4.5);
 | |
|   EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.9), 8.1);
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, MultiplyRight) {
 | |
|   SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(10);
 | |
| 
 | |
|   EXPECT_TRUE(!stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5);
 | |
| 
 | |
|   SamplesStatsCounter multiplied_stats = stats * 10;
 | |
|   EXPECT_TRUE(!multiplied_stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(multiplied_stats.GetMin(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(multiplied_stats.GetMax(), 100.0);
 | |
|   EXPECT_DOUBLE_EQ(multiplied_stats.GetAverage(), 55.0);
 | |
|   EXPECT_EQ(multiplied_stats.GetSamples().size(), stats.GetSamples().size());
 | |
| 
 | |
|   // Check that origin stats were not modified.
 | |
|   EXPECT_TRUE(!stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5);
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, MultiplyLeft) {
 | |
|   SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(10);
 | |
| 
 | |
|   EXPECT_TRUE(!stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5);
 | |
| 
 | |
|   SamplesStatsCounter multiplied_stats = 10 * stats;
 | |
|   EXPECT_TRUE(!multiplied_stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(multiplied_stats.GetMin(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(multiplied_stats.GetMax(), 100.0);
 | |
|   EXPECT_DOUBLE_EQ(multiplied_stats.GetAverage(), 55.0);
 | |
|   EXPECT_EQ(multiplied_stats.GetSamples().size(), stats.GetSamples().size());
 | |
| 
 | |
|   // Check that origin stats were not modified.
 | |
|   EXPECT_TRUE(!stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5);
 | |
| }
 | |
| 
 | |
| TEST(SamplesStatsCounterTest, Divide) {
 | |
|   SamplesStatsCounter stats;
 | |
|   for (int i = 1; i <= 10; i++) {
 | |
|     stats.AddSample(i * 10);
 | |
|   }
 | |
| 
 | |
|   EXPECT_TRUE(!stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMin(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMax(), 100.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetAverage(), 55.0);
 | |
| 
 | |
|   SamplesStatsCounter divided_stats = stats / 10;
 | |
|   EXPECT_TRUE(!divided_stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(divided_stats.GetMin(), 1.0);
 | |
|   EXPECT_DOUBLE_EQ(divided_stats.GetMax(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(divided_stats.GetAverage(), 5.5);
 | |
|   EXPECT_EQ(divided_stats.GetSamples().size(), stats.GetSamples().size());
 | |
| 
 | |
|   // Check that origin stats were not modified.
 | |
|   EXPECT_TRUE(!stats.IsEmpty());
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMin(), 10.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetMax(), 100.0);
 | |
|   EXPECT_DOUBLE_EQ(stats.GetAverage(), 55.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_SUITE_P(SamplesStatsCounterTests,
 | |
|                          SamplesStatsCounterTest,
 | |
|                          ::testing::Range(0, SIZE_FOR_MERGE + 1));
 | |
| 
 | |
| }  // namespace webrtc
 |