307 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|  *  Copyright 2018 The WebRTC project authors. All Rights Reserved.
 | |
|  *
 | |
|  *  Use of this source code is governed by a BSD-style license
 | |
|  *  that can be found in the LICENSE file in the root of the source
 | |
|  *  tree. An additional intellectual property rights grant can be found
 | |
|  *  in the file PATENTS.  All contributing project authors may
 | |
|  *  be found in the AUTHORS file in the root of the source tree.
 | |
|  */
 | |
| #ifndef RTC_BASE_UNITS_UNIT_BASE_H_
 | |
| #define RTC_BASE_UNITS_UNIT_BASE_H_
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "rtc_base/checks.h"
 | |
| #include "rtc_base/numerics/safe_conversions.h"
 | |
| 
 | |
| namespace webrtc {
 | |
| namespace rtc_units_impl {
 | |
| 
 | |
| // UnitBase is a base class for implementing custom value types with a specific
 | |
| // unit. It provides type safety and commonly useful operations. The underlying
 | |
| // storage is always an int64_t, it's up to the unit implementation to choose
 | |
| // what scale it represents.
 | |
| //
 | |
| // It's used like:
 | |
| // class MyUnit: public UnitBase<MyUnit> {...};
 | |
| //
 | |
| // Unit_T is the subclass representing the specific unit.
 | |
| template <class Unit_T>
 | |
| class UnitBase {
 | |
|  public:
 | |
|   UnitBase() = delete;
 | |
|   static constexpr Unit_T Zero() { return Unit_T(0); }
 | |
|   static constexpr Unit_T PlusInfinity() { return Unit_T(PlusInfinityVal()); }
 | |
|   static constexpr Unit_T MinusInfinity() { return Unit_T(MinusInfinityVal()); }
 | |
| 
 | |
|   constexpr bool IsZero() const { return value_ == 0; }
 | |
|   constexpr bool IsFinite() const { return !IsInfinite(); }
 | |
|   constexpr bool IsInfinite() const {
 | |
|     return value_ == PlusInfinityVal() || value_ == MinusInfinityVal();
 | |
|   }
 | |
|   constexpr bool IsPlusInfinity() const { return value_ == PlusInfinityVal(); }
 | |
|   constexpr bool IsMinusInfinity() const {
 | |
|     return value_ == MinusInfinityVal();
 | |
|   }
 | |
| 
 | |
|   constexpr bool operator==(const Unit_T& other) const {
 | |
|     return value_ == other.value_;
 | |
|   }
 | |
|   constexpr bool operator!=(const Unit_T& other) const {
 | |
|     return value_ != other.value_;
 | |
|   }
 | |
|   constexpr bool operator<=(const Unit_T& other) const {
 | |
|     return value_ <= other.value_;
 | |
|   }
 | |
|   constexpr bool operator>=(const Unit_T& other) const {
 | |
|     return value_ >= other.value_;
 | |
|   }
 | |
|   constexpr bool operator>(const Unit_T& other) const {
 | |
|     return value_ > other.value_;
 | |
|   }
 | |
|   constexpr bool operator<(const Unit_T& other) const {
 | |
|     return value_ < other.value_;
 | |
|   }
 | |
|   constexpr Unit_T RoundTo(const Unit_T& resolution) const {
 | |
|     RTC_DCHECK(IsFinite());
 | |
|     RTC_DCHECK(resolution.IsFinite());
 | |
|     RTC_DCHECK_GT(resolution.value_, 0);
 | |
|     return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) *
 | |
|            resolution.value_;
 | |
|   }
 | |
|   constexpr Unit_T RoundUpTo(const Unit_T& resolution) const {
 | |
|     RTC_DCHECK(IsFinite());
 | |
|     RTC_DCHECK(resolution.IsFinite());
 | |
|     RTC_DCHECK_GT(resolution.value_, 0);
 | |
|     return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) *
 | |
|            resolution.value_;
 | |
|   }
 | |
|   constexpr Unit_T RoundDownTo(const Unit_T& resolution) const {
 | |
|     RTC_DCHECK(IsFinite());
 | |
|     RTC_DCHECK(resolution.IsFinite());
 | |
|     RTC_DCHECK_GT(resolution.value_, 0);
 | |
|     return Unit_T(value_ / resolution.value_) * resolution.value_;
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   template <
 | |
|       typename T,
 | |
|       typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
 | |
|   static constexpr Unit_T FromValue(T value) {
 | |
|     if (Unit_T::one_sided)
 | |
|       RTC_DCHECK_GE(value, 0);
 | |
|     RTC_DCHECK_GT(value, MinusInfinityVal());
 | |
|     RTC_DCHECK_LT(value, PlusInfinityVal());
 | |
|     return Unit_T(rtc::dchecked_cast<int64_t>(value));
 | |
|   }
 | |
|   template <typename T,
 | |
|             typename std::enable_if<std::is_floating_point<T>::value>::type* =
 | |
|                 nullptr>
 | |
|   static constexpr Unit_T FromValue(T value) {
 | |
|     if (value == std::numeric_limits<T>::infinity()) {
 | |
|       return PlusInfinity();
 | |
|     } else if (value == -std::numeric_limits<T>::infinity()) {
 | |
|       return MinusInfinity();
 | |
|     } else {
 | |
|       RTC_DCHECK(!std::isnan(value));
 | |
|       return FromValue(rtc::dchecked_cast<int64_t>(value));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <
 | |
|       typename T,
 | |
|       typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
 | |
|   static constexpr Unit_T FromFraction(int64_t denominator, T value) {
 | |
|     if (Unit_T::one_sided)
 | |
|       RTC_DCHECK_GE(value, 0);
 | |
|     RTC_DCHECK_GT(value, MinusInfinityVal() / denominator);
 | |
|     RTC_DCHECK_LT(value, PlusInfinityVal() / denominator);
 | |
|     return Unit_T(rtc::dchecked_cast<int64_t>(value * denominator));
 | |
|   }
 | |
|   template <typename T,
 | |
|             typename std::enable_if<std::is_floating_point<T>::value>::type* =
 | |
|                 nullptr>
 | |
|   static constexpr Unit_T FromFraction(int64_t denominator, T value) {
 | |
|     return FromValue(value * denominator);
 | |
|   }
 | |
| 
 | |
|   template <typename T = int64_t>
 | |
|   constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
 | |
|   ToValue() const {
 | |
|     RTC_DCHECK(IsFinite());
 | |
|     return rtc::dchecked_cast<T>(value_);
 | |
|   }
 | |
|   template <typename T>
 | |
|   constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
 | |
|   ToValue() const {
 | |
|     return IsPlusInfinity()
 | |
|                ? std::numeric_limits<T>::infinity()
 | |
|                : IsMinusInfinity() ? -std::numeric_limits<T>::infinity()
 | |
|                                    : value_;
 | |
|   }
 | |
|   template <typename T>
 | |
|   constexpr T ToValueOr(T fallback_value) const {
 | |
|     return IsFinite() ? value_ : fallback_value;
 | |
|   }
 | |
| 
 | |
|   template <int64_t Denominator, typename T = int64_t>
 | |
|   constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
 | |
|   ToFraction() const {
 | |
|     RTC_DCHECK(IsFinite());
 | |
|     if (Unit_T::one_sided) {
 | |
|       return rtc::dchecked_cast<T>(
 | |
|           DivRoundPositiveToNearest(value_, Denominator));
 | |
|     } else {
 | |
|       return rtc::dchecked_cast<T>(DivRoundToNearest(value_, Denominator));
 | |
|     }
 | |
|   }
 | |
|   template <int64_t Denominator, typename T>
 | |
|   constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
 | |
|   ToFraction() const {
 | |
|     return ToValue<T>() * (1 / static_cast<T>(Denominator));
 | |
|   }
 | |
| 
 | |
|   template <int64_t Denominator>
 | |
|   constexpr int64_t ToFractionOr(int64_t fallback_value) const {
 | |
|     return IsFinite() ? Unit_T::one_sided
 | |
|                             ? DivRoundPositiveToNearest(value_, Denominator)
 | |
|                             : DivRoundToNearest(value_, Denominator)
 | |
|                       : fallback_value;
 | |
|   }
 | |
| 
 | |
|   template <int64_t Factor, typename T = int64_t>
 | |
|   constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
 | |
|   ToMultiple() const {
 | |
|     RTC_DCHECK_GE(ToValue(), std::numeric_limits<T>::min() / Factor);
 | |
|     RTC_DCHECK_LE(ToValue(), std::numeric_limits<T>::max() / Factor);
 | |
|     return rtc::dchecked_cast<T>(ToValue() * Factor);
 | |
|   }
 | |
|   template <int64_t Factor, typename T>
 | |
|   constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
 | |
|   ToMultiple() const {
 | |
|     return ToValue<T>() * Factor;
 | |
|   }
 | |
| 
 | |
|   explicit constexpr UnitBase(int64_t value) : value_(value) {}
 | |
| 
 | |
|  private:
 | |
|   template <class RelativeUnit_T>
 | |
|   friend class RelativeUnit;
 | |
| 
 | |
|   static inline constexpr int64_t PlusInfinityVal() {
 | |
|     return std::numeric_limits<int64_t>::max();
 | |
|   }
 | |
|   static inline constexpr int64_t MinusInfinityVal() {
 | |
|     return std::numeric_limits<int64_t>::min();
 | |
|   }
 | |
| 
 | |
|   constexpr Unit_T& AsSubClassRef() { return static_cast<Unit_T&>(*this); }
 | |
|   constexpr const Unit_T& AsSubClassRef() const {
 | |
|     return static_cast<const Unit_T&>(*this);
 | |
|   }
 | |
|   // Assumes that n >= 0 and d > 0.
 | |
|   static constexpr int64_t DivRoundPositiveToNearest(int64_t n, int64_t d) {
 | |
|     return (n + d / 2) / d;
 | |
|   }
 | |
|   // Assumes that d > 0.
 | |
|   static constexpr int64_t DivRoundToNearest(int64_t n, int64_t d) {
 | |
|     return (n + (n >= 0 ? d / 2 : -d / 2)) / d;
 | |
|   }
 | |
| 
 | |
|   int64_t value_;
 | |
| };
 | |
| 
 | |
| // Extends UnitBase to provide operations for relative units, that is, units
 | |
| // that have a meaningful relation between values such that a += b is a
 | |
| // sensible thing to do. For a,b <- same unit.
 | |
| template <class Unit_T>
 | |
| class RelativeUnit : public UnitBase<Unit_T> {
 | |
|  public:
 | |
|   constexpr Unit_T Clamped(Unit_T min_value, Unit_T max_value) const {
 | |
|     return std::max(min_value,
 | |
|                     std::min(UnitBase<Unit_T>::AsSubClassRef(), max_value));
 | |
|   }
 | |
|   constexpr void Clamp(Unit_T min_value, Unit_T max_value) {
 | |
|     *this = Clamped(min_value, max_value);
 | |
|   }
 | |
|   constexpr Unit_T operator+(const Unit_T other) const {
 | |
|     if (this->IsPlusInfinity() || other.IsPlusInfinity()) {
 | |
|       RTC_DCHECK(!this->IsMinusInfinity());
 | |
|       RTC_DCHECK(!other.IsMinusInfinity());
 | |
|       return this->PlusInfinity();
 | |
|     } else if (this->IsMinusInfinity() || other.IsMinusInfinity()) {
 | |
|       RTC_DCHECK(!this->IsPlusInfinity());
 | |
|       RTC_DCHECK(!other.IsPlusInfinity());
 | |
|       return this->MinusInfinity();
 | |
|     }
 | |
|     return UnitBase<Unit_T>::FromValue(this->ToValue() + other.ToValue());
 | |
|   }
 | |
|   constexpr Unit_T operator-(const Unit_T other) const {
 | |
|     if (this->IsPlusInfinity() || other.IsMinusInfinity()) {
 | |
|       RTC_DCHECK(!this->IsMinusInfinity());
 | |
|       RTC_DCHECK(!other.IsPlusInfinity());
 | |
|       return this->PlusInfinity();
 | |
|     } else if (this->IsMinusInfinity() || other.IsPlusInfinity()) {
 | |
|       RTC_DCHECK(!this->IsPlusInfinity());
 | |
|       RTC_DCHECK(!other.IsMinusInfinity());
 | |
|       return this->MinusInfinity();
 | |
|     }
 | |
|     return UnitBase<Unit_T>::FromValue(this->ToValue() - other.ToValue());
 | |
|   }
 | |
|   constexpr Unit_T& operator+=(const Unit_T other) {
 | |
|     *this = *this + other;
 | |
|     return this->AsSubClassRef();
 | |
|   }
 | |
|   constexpr Unit_T& operator-=(const Unit_T other) {
 | |
|     *this = *this - other;
 | |
|     return this->AsSubClassRef();
 | |
|   }
 | |
|   constexpr double operator/(const Unit_T other) const {
 | |
|     return UnitBase<Unit_T>::template ToValue<double>() /
 | |
|            other.template ToValue<double>();
 | |
|   }
 | |
|   template <typename T>
 | |
|   constexpr typename std::enable_if<std::is_arithmetic<T>::value, Unit_T>::type
 | |
|   operator/(const T& scalar) const {
 | |
|     return UnitBase<Unit_T>::FromValue(
 | |
|         std::round(UnitBase<Unit_T>::template ToValue<int64_t>() / scalar));
 | |
|   }
 | |
|   constexpr Unit_T operator*(double scalar) const {
 | |
|     return UnitBase<Unit_T>::FromValue(std::round(this->ToValue() * scalar));
 | |
|   }
 | |
|   constexpr Unit_T operator*(int64_t scalar) const {
 | |
|     return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
 | |
|   }
 | |
|   constexpr Unit_T operator*(int32_t scalar) const {
 | |
|     return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   using UnitBase<Unit_T>::UnitBase;
 | |
| };
 | |
| 
 | |
| template <class Unit_T>
 | |
| inline constexpr Unit_T operator*(double scalar, RelativeUnit<Unit_T> other) {
 | |
|   return other * scalar;
 | |
| }
 | |
| template <class Unit_T>
 | |
| inline constexpr Unit_T operator*(int64_t scalar, RelativeUnit<Unit_T> other) {
 | |
|   return other * scalar;
 | |
| }
 | |
| template <class Unit_T>
 | |
| inline constexpr Unit_T operator*(int32_t scalar, RelativeUnit<Unit_T> other) {
 | |
|   return other * scalar;
 | |
| }
 | |
| 
 | |
| }  // namespace rtc_units_impl
 | |
| 
 | |
| }  // namespace webrtc
 | |
| 
 | |
| #endif  // RTC_BASE_UNITS_UNIT_BASE_H_
 |