489 lines
17 KiB
C++
489 lines
17 KiB
C++
/* -----------------------------------------------------------------------------
|
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
|
Forschung e.V. All rights reserved.
|
|
|
|
1. INTRODUCTION
|
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
|
a wide variety of Android devices.
|
|
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
|
full-bandwidth communications codec by independent studies and is widely
|
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
|
specifications.
|
|
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
|
those of Fraunhofer) may be obtained through Via Licensing
|
|
(www.vialicensing.com) or through the respective patent owners individually for
|
|
the purpose of encoding or decoding bit streams in products that are compliant
|
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
|
Android devices already license these patent claims through Via Licensing or
|
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
|
already be covered under those patent licenses when it is used for those
|
|
licensed purposes only.
|
|
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
|
encouraged to check the Fraunhofer website for additional applications
|
|
information and documentation.
|
|
|
|
2. COPYRIGHT LICENSE
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted without payment of copyright license fees provided that you
|
|
satisfy the following conditions:
|
|
|
|
You must retain the complete text of this software license in redistributions of
|
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
|
|
You must retain the complete text of this software license in the documentation
|
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
|
your modifications thereto in binary form. You must make available free of
|
|
charge copies of the complete source code of the FDK AAC Codec and your
|
|
modifications thereto to recipients of copies in binary form.
|
|
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
|
from this library without prior written permission.
|
|
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
|
the FDK AAC Codec software or your modifications thereto.
|
|
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
|
that you changed the software and the date of any change. For modified versions
|
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
|
AAC Codec Library for Android."
|
|
|
|
3. NO PATENT LICENSE
|
|
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
|
software.
|
|
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
|
purposes that are authorized by appropriate patent licenses.
|
|
|
|
4. DISCLAIMER
|
|
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
including but not limited to the implied warranties of merchantability and
|
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
|
or consequential damages, including but not limited to procurement of substitute
|
|
goods or services; loss of use, data, or profits, or business interruption,
|
|
however caused and on any theory of liability, whether in contract, strict
|
|
liability, or tort (including negligence), arising in any way out of the use of
|
|
this software, even if advised of the possibility of such damage.
|
|
|
|
5. CONTACT INFORMATION
|
|
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
|
Am Wolfsmantel 33
|
|
91058 Erlangen, Germany
|
|
|
|
www.iis.fraunhofer.de/amm
|
|
amm-info@iis.fraunhofer.de
|
|
----------------------------------------------------------------------------- */
|
|
|
|
/*********************** MPEG surround encoder library *************************
|
|
|
|
Author(s): Josef Hoepfl
|
|
|
|
Description: Encoder Library Interface
|
|
vector functions
|
|
|
|
*******************************************************************************/
|
|
|
|
/*****************************************************************************
|
|
\file
|
|
This file contains vector functions
|
|
******************************************************************************/
|
|
|
|
#ifndef SACENC_VECTORFUNCTIONS_H
|
|
#define SACENC_VECTORFUNCTIONS_H
|
|
|
|
/* Includes ******************************************************************/
|
|
#include "common_fix.h"
|
|
|
|
/* Defines *******************************************************************/
|
|
#define SUM_UP_STATIC_SCALE 0
|
|
#define SUM_UP_DYNAMIC_SCALE 1
|
|
|
|
/* Data Types ****************************************************************/
|
|
|
|
/* Constants *****************************************************************/
|
|
|
|
/* Function / Class Declarations *********************************************/
|
|
|
|
/**
|
|
* \brief Vector function : Sum up complex power
|
|
*
|
|
* Description : ret = sum( re{X[i]} * re{X[i]} + im{X[i]} *
|
|
* im{X[i]} ), i=0,...,n-1 ret is scaled by outScaleFactor
|
|
*
|
|
* \param const FIXP_DPK x[]
|
|
* Input: complex vector of the length n
|
|
*
|
|
* \param int scaleMode
|
|
* Input: choose static or dynamic scaling
|
|
* (SUM_UP_DYNAMIC_SCALE/SUM_UP_STATIC_SCALE)
|
|
*
|
|
* \param int inScaleFactor
|
|
* Input: determine headroom bits for the complex input vector
|
|
*
|
|
* \param int outScaleFactor
|
|
* Output: complete scaling in energy calculation
|
|
*
|
|
* \return FIXP_DBL ret
|
|
*/
|
|
FIXP_DBL sumUpCplxPow2(const FIXP_DPK *const x, const INT scaleMode,
|
|
const INT inScaleFactor, INT *const outScaleFactor,
|
|
const INT n);
|
|
|
|
/**
|
|
* \brief Vector function : Sum up complex power
|
|
*
|
|
* Description : ret = sum( re{X[i][j]} * re{X[i][]} +
|
|
* im{X[i][]} * im{X[i][]} ), i=sDim1,...,nDim1-1 i=sDim2,...,nDim2-1 ret is
|
|
* scaled by outScaleFactor
|
|
*
|
|
* \param const FIXP_DPK x[]
|
|
* Input: complex vector of the length n
|
|
*
|
|
* \param int scaleMode
|
|
* Input: choose static or dynamic scaling
|
|
* (SUM_UP_DYNAMIC_SCALE/SUM_UP_STATIC_SCALE)
|
|
*
|
|
* \param int inScaleFactor
|
|
* Input: determine headroom bits for the complex input vector
|
|
*
|
|
* \param int outScaleFactor
|
|
* Output: complete scaling in energy calculation
|
|
*
|
|
* \param int sDim1
|
|
* Input: start index for loop counter in dimension 1
|
|
*
|
|
* \param int nDim1
|
|
* Input: loop counter in dimension 1
|
|
*
|
|
* \param int sDim2
|
|
* Input: start index for loop counter in dimension 2
|
|
*
|
|
* \param int nDim2
|
|
* Input: loop counter in dimension 2
|
|
*
|
|
* \return FIXP_DBL ret
|
|
*/
|
|
FIXP_DBL sumUpCplxPow2Dim2(const FIXP_DPK *const *const x, const INT scaleMode,
|
|
const INT inScaleFactor, INT *const outScaleFactor,
|
|
const INT sDim1, const INT nDim1, const INT sDim2,
|
|
const INT nDim2);
|
|
|
|
/**
|
|
* \brief Vector function : Z[i] = X[i], i=0,...,n-1
|
|
*
|
|
* Description : re{Z[i]} = re{X[i]}, i=0,...,n-1
|
|
* im{Z[i]} = im{X[i]}, i=0,...,n-1
|
|
*
|
|
* Copy complex vector X[] to complex vector Z[].
|
|
* It is allowed to overlay X[] with Z[].
|
|
*
|
|
* \param FIXP_DPK Z[]
|
|
* Output: vector of the length n
|
|
*
|
|
* \param const FIXP_DPK X[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param int n
|
|
* Input: length of vector Z[] and X[]
|
|
*
|
|
* \return void
|
|
*/
|
|
void copyCplxVec(FIXP_DPK *const Z, const FIXP_DPK *const X, const INT n);
|
|
|
|
/**
|
|
* \brief Vector function : Z[i] = a, i=0,...,n-1
|
|
*
|
|
* Description : re{Z[i]} = a, i=0,...,n-1
|
|
* im{Z[i]} = a, i=0,...,n-1
|
|
*
|
|
* Set real and imaginary part of the complex value Z to a.
|
|
*
|
|
* \param FIPX_DPK Z[]
|
|
* Output: vector of the length n
|
|
*
|
|
* \param const FIXP_DBL a
|
|
* Input: constant value
|
|
*
|
|
* \param int n
|
|
* Input: length of vector Z[]
|
|
*
|
|
* \return void
|
|
*/
|
|
void setCplxVec(FIXP_DPK *const Z, const FIXP_DBL a, const INT n);
|
|
|
|
/**
|
|
* \brief Vector function : Calculate complex-valued result of complex
|
|
* scalar product
|
|
*
|
|
* Description : re{Z} = sum( re{X[i]} * re{Y[i]} + im{X[i]} *
|
|
* im{Y[i]}, i=0,...,n-1 ) im{Z} = sum( im{X[i]} * re{Y[i]} - re{X[i]} *
|
|
* im{Y[i]}, i=0,...,n-1 )
|
|
*
|
|
* The function returns the complex-valued result of the complex
|
|
* scalar product at the address of Z. The result is scaled by scaleZ.
|
|
*
|
|
* \param FIXP_DPK *Z
|
|
* Output: pointer to Z
|
|
*
|
|
* \param const FIXP_DPK *const *const X
|
|
* Input: vector of the length n
|
|
*
|
|
* \param const FIXP_DPK *const *const Y
|
|
* Input: vector of the length n
|
|
*
|
|
* \param int scaleX
|
|
* Input: scalefactor of vector X[]
|
|
*
|
|
* \param int scaleY
|
|
* Input: scalefactor of vector Y[]
|
|
*
|
|
* \param int scaleZ
|
|
* Output: scalefactor of vector Z[]
|
|
*
|
|
* \param int sDim1
|
|
* Input: start index for loop counter in dimension 1
|
|
*
|
|
* \param int nDim1
|
|
* Input: loop counter in dimension 1
|
|
*
|
|
* \param int sDim2
|
|
* Input: start index for loop counter in dimension 2
|
|
*
|
|
* \param int nDim2
|
|
* Input: loop counter in dimension 2
|
|
*
|
|
* \return void
|
|
*/
|
|
void cplx_cplxScalarProduct(FIXP_DPK *const Z, const FIXP_DPK *const *const X,
|
|
const FIXP_DPK *const *const Y, const INT scaleX,
|
|
const INT scaleY, INT *const scaleZ,
|
|
const INT sDim1, const INT nDim1, const INT sDim2,
|
|
const INT nDim2);
|
|
|
|
/**
|
|
* \brief Vector function : Calculate correlation
|
|
*
|
|
* Description : z[i] = pr12[i] / sqrt(p1[i]*p2[i]) ,
|
|
* i=0,...,n-1
|
|
*
|
|
* \param FIXP_DBL z[]
|
|
* Output: vector of length n
|
|
*
|
|
* \param const FIXP_DBL pr12[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param const FIXP_DBL p1[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param const FIXP_DBL p2[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param int n
|
|
* Input: length of vector pr12[], p1[] and p2[]
|
|
*
|
|
* \return void
|
|
*/
|
|
void FDKcalcCorrelationVec(FIXP_DBL *const z, const FIXP_DBL *const pr12,
|
|
const FIXP_DBL *const p1, const FIXP_DBL *const p2,
|
|
const INT n);
|
|
|
|
/**
|
|
* \brief Vector function : Calculate coherence
|
|
*
|
|
* Description : z[i] = sqrt( (p12r[i]*p12r[i] +
|
|
* p12i[i]*p12i[i]) / (p1[i]*p2[i]) ), i=0,...,n-1
|
|
*
|
|
* \param FIXP_DBL z[]
|
|
* Output: vector of length n
|
|
*
|
|
* \param const FIXP_DBL p12r[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param const FIXP_DBL p12i[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param const FIXP_DBL p1[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param const FIXP_DBL p2[]
|
|
* Input: vector of the length n
|
|
*
|
|
* \param int scaleP12[]
|
|
* Input: scalefactor of p12r and p12i
|
|
*
|
|
* \param int scaleP
|
|
* Input: scalefactor of p1 and p2
|
|
*
|
|
* \param int n
|
|
* Input: length of vector p12r[], p12i[], p1[] and p2[]
|
|
*
|
|
* \return void
|
|
*/
|
|
void calcCoherenceVec(FIXP_DBL *const z, const FIXP_DBL *const p12r,
|
|
const FIXP_DBL *const p12i, const FIXP_DBL *const p1,
|
|
const FIXP_DBL *const p2, const INT scaleP12,
|
|
const INT scaleP, const INT n);
|
|
|
|
/**
|
|
* \brief Vector function : Z[j][i] = a[pb] * X[j][i] + b[pb] *
|
|
* Y[j][i], j=0,...,nHybridBands-1; i=startTimeSlot,...,nTimeSlots-1;
|
|
* pb=0,...,nParameterBands-1
|
|
*
|
|
* Description : re{Z[j][i]} = a[pb] * re{X[j][i]} + b[pb] *
|
|
* re{Y[j][i]}, j=0,...,nHybridBands-1; i=startTimeSlot,...,nTimeSlots-1;
|
|
* pb=0,...,nParameterBands-1 im{Z[j][i]} = a[pb] * im{X[j][i]} + b[pb] *
|
|
* im{Y[j][i]}, j=0,...,nHybridBands-1;
|
|
* i=startTimeSlot,...,nTimeSlots-1; pb=0,...,nParameterBands-1
|
|
*
|
|
* It is allowed to overlay X[] or Y[] with Z[]. The scalefactor
|
|
* of channel 1 is updated with the common scalefactor of channel 1 and
|
|
* channel 2.
|
|
*
|
|
* \param FIXP_DPK **Z
|
|
* Output: vector of the length nHybridBands*nTimeSlots
|
|
*
|
|
* \param const FIXP_DBL *a
|
|
* Input: vector of length nParameterBands
|
|
*
|
|
* \param const FIXP_DPK **X
|
|
* Input: vector of the length nHybridBands*nTimeSlots
|
|
*
|
|
* \param const FIXP_DBL *b
|
|
* Input: vector of length nParameterBands
|
|
*
|
|
* \param const FIXP_DPK **Y
|
|
* Input: vector of the length nHybridBands*nTimeSlots
|
|
*
|
|
* \param int scale
|
|
* Input: scale of vector a and b
|
|
*
|
|
* \param int *scaleCh1
|
|
* Input: scale of ch1
|
|
*
|
|
* \param int scaleCh2
|
|
* Input: scale of ch2
|
|
*
|
|
* \param UCHAR *pParameterBand2HybridBandOffset
|
|
* Input: vector of length nParameterBands
|
|
*
|
|
* \param int nTimeSlots
|
|
* Input: number of time slots
|
|
*
|
|
* \param int startTimeSlot
|
|
* Input: start time slot
|
|
*
|
|
* \return void
|
|
*/
|
|
void addWeightedCplxVec(FIXP_DPK *const *const Z, const FIXP_DBL *const a,
|
|
const FIXP_DPK *const *const X, const FIXP_DBL *const b,
|
|
const FIXP_DPK *const *const Y, const INT scale,
|
|
INT *const scaleCh1, const INT scaleCh2,
|
|
const UCHAR *const pParameterBand2HybridBandOffset,
|
|
const INT nParameterBands, const INT nTimeSlots,
|
|
const INT startTimeSlot);
|
|
|
|
/**
|
|
* \brief Vector function : Calculate the headroom of a complex vector
|
|
* in a parameter band grid
|
|
*
|
|
* \param FIXP_DPK **x
|
|
* Input: pointer to complex input vector
|
|
*
|
|
* \param UCHAR *pParameterBand2HybridBandOffset
|
|
* Input: pointer to hybrid band offsets
|
|
*
|
|
* \param int *outScaleFactor
|
|
* Input: pointer to ouput scalefactor
|
|
*
|
|
* \param int startTimeSlot
|
|
* Input: start time slot
|
|
*
|
|
* \param int nTimeSlots
|
|
* Input: number of time slot
|
|
*
|
|
* \param int nParamBands
|
|
* Input: number of parameter bands
|
|
*
|
|
* \return void
|
|
*/
|
|
void FDKcalcPbScaleFactor(const FIXP_DPK *const *const x,
|
|
const UCHAR *const pParameterBand2HybridBandOffset,
|
|
INT *const outScaleFactor, const INT startTimeSlot,
|
|
const INT nTimeSlots, const INT nParamBands);
|
|
|
|
/**
|
|
* \brief Vector function : Calculate the common headroom of two
|
|
* sparate vectors
|
|
*
|
|
* \param FIXP_DBL *x
|
|
* Input: pointer to first input vector
|
|
*
|
|
* \param FIXP_DBL *y
|
|
* Input: pointer to second input vector
|
|
*
|
|
* \param int n
|
|
* Input: number of samples
|
|
*
|
|
* \return int headromm in bits
|
|
*/
|
|
INT FDKcalcScaleFactor(const FIXP_DBL *const x, const FIXP_DBL *const y,
|
|
const INT n);
|
|
|
|
/**
|
|
* \brief Vector function : Calculate the headroom of a complex vector
|
|
*
|
|
* \param FIXP_DPK *x
|
|
* Input: pointer to complex input vector
|
|
*
|
|
* \param INT startBand
|
|
* Input: start band
|
|
*
|
|
* \param INT bands
|
|
* Input: number of bands
|
|
*
|
|
* \return int headromm in bits
|
|
*/
|
|
INT FDKcalcScaleFactorDPK(const FIXP_DPK *RESTRICT x, const INT startBand,
|
|
const INT bands);
|
|
|
|
/* Function / Class Definition ***********************************************/
|
|
template <class T>
|
|
inline void FDKmemcpy_flex(T *const dst, const INT dstStride,
|
|
const T *const src, const INT srcStride,
|
|
const INT nSamples) {
|
|
int i;
|
|
|
|
for (i = 0; i < nSamples; i++) {
|
|
dst[i * dstStride] = src[i * srcStride];
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
inline void FDKmemset_flex(T *const x, const T c, const INT nSamples) {
|
|
int i;
|
|
|
|
for (i = 0; i < nSamples; i++) {
|
|
x[i] = c;
|
|
}
|
|
}
|
|
|
|
#endif /* SACENC_VECTORFUNCTIONS_H */
|