769 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			769 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains small standalone helper functions and enum definitions for
 | 
						|
// the X86 target useful for the compiler back-end and the MC libraries.
 | 
						|
// As such, it deliberately does not include references to LLVM core
 | 
						|
// code gen types, passes, etc..
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
 | 
						|
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
 | 
						|
 | 
						|
#include "X86MCTargetDesc.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
namespace X86 {
 | 
						|
  // Enums for memory operand decoding.  Each memory operand is represented with
 | 
						|
  // a 5 operand sequence in the form:
 | 
						|
  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
 | 
						|
  // These enums help decode this.
 | 
						|
  enum {
 | 
						|
    AddrBaseReg = 0,
 | 
						|
    AddrScaleAmt = 1,
 | 
						|
    AddrIndexReg = 2,
 | 
						|
    AddrDisp = 3,
 | 
						|
 | 
						|
    /// AddrSegmentReg - The operand # of the segment in the memory operand.
 | 
						|
    AddrSegmentReg = 4,
 | 
						|
 | 
						|
    /// AddrNumOperands - Total number of operands in a memory reference.
 | 
						|
    AddrNumOperands = 5
 | 
						|
  };
 | 
						|
 | 
						|
  /// AVX512 static rounding constants.  These need to match the values in
 | 
						|
  /// avx512fintrin.h.
 | 
						|
  enum STATIC_ROUNDING {
 | 
						|
    TO_NEAREST_INT = 0,
 | 
						|
    TO_NEG_INF = 1,
 | 
						|
    TO_POS_INF = 2,
 | 
						|
    TO_ZERO = 3,
 | 
						|
    CUR_DIRECTION = 4
 | 
						|
  };
 | 
						|
} // end namespace X86;
 | 
						|
 | 
						|
/// X86II - This namespace holds all of the target specific flags that
 | 
						|
/// instruction info tracks.
 | 
						|
///
 | 
						|
namespace X86II {
 | 
						|
  /// Target Operand Flag enum.
 | 
						|
  enum TOF {
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // X86 Specific MachineOperand flags.
 | 
						|
 | 
						|
    MO_NO_FLAG,
 | 
						|
 | 
						|
    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
 | 
						|
    /// relocation of:
 | 
						|
    ///    SYMBOL_LABEL + [. - PICBASELABEL]
 | 
						|
    MO_GOT_ABSOLUTE_ADDRESS,
 | 
						|
 | 
						|
    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
 | 
						|
    /// immediate should get the value of the symbol minus the PIC base label:
 | 
						|
    ///    SYMBOL_LABEL - PICBASELABEL
 | 
						|
    MO_PIC_BASE_OFFSET,
 | 
						|
 | 
						|
    /// MO_GOT - On a symbol operand this indicates that the immediate is the
 | 
						|
    /// offset to the GOT entry for the symbol name from the base of the GOT.
 | 
						|
    ///
 | 
						|
    /// See the X86-64 ELF ABI supplement for more details.
 | 
						|
    ///    SYMBOL_LABEL @GOT
 | 
						|
    MO_GOT,
 | 
						|
 | 
						|
    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset to the location of the symbol name from the base of the GOT.
 | 
						|
    ///
 | 
						|
    /// See the X86-64 ELF ABI supplement for more details.
 | 
						|
    ///    SYMBOL_LABEL @GOTOFF
 | 
						|
    MO_GOTOFF,
 | 
						|
 | 
						|
    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
 | 
						|
    /// offset to the GOT entry for the symbol name from the current code
 | 
						|
    /// location.
 | 
						|
    ///
 | 
						|
    /// See the X86-64 ELF ABI supplement for more details.
 | 
						|
    ///    SYMBOL_LABEL @GOTPCREL
 | 
						|
    MO_GOTPCREL,
 | 
						|
 | 
						|
    /// MO_PLT - On a symbol operand this indicates that the immediate is
 | 
						|
    /// offset to the PLT entry of symbol name from the current code location.
 | 
						|
    ///
 | 
						|
    /// See the X86-64 ELF ABI supplement for more details.
 | 
						|
    ///    SYMBOL_LABEL @PLT
 | 
						|
    MO_PLT,
 | 
						|
 | 
						|
    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset of the GOT entry with the TLS index structure that contains
 | 
						|
    /// the module number and variable offset for the symbol. Used in the
 | 
						|
    /// general dynamic TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @TLSGD
 | 
						|
    MO_TLSGD,
 | 
						|
 | 
						|
    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset of the GOT entry with the TLS index for the module that
 | 
						|
    /// contains the symbol. When this index is passed to a call to
 | 
						|
    /// __tls_get_addr, the function will return the base address of the TLS
 | 
						|
    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @TLSLD
 | 
						|
    MO_TLSLD,
 | 
						|
 | 
						|
    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset of the GOT entry with the TLS index for the module that
 | 
						|
    /// contains the symbol. When this index is passed to a call to
 | 
						|
    /// ___tls_get_addr, the function will return the base address of the TLS
 | 
						|
    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @TLSLDM
 | 
						|
    MO_TLSLDM,
 | 
						|
 | 
						|
    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset of the GOT entry with the thread-pointer offset for the
 | 
						|
    /// symbol. Used in the x86-64 initial exec TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @GOTTPOFF
 | 
						|
    MO_GOTTPOFF,
 | 
						|
 | 
						|
    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the absolute address of the GOT entry with the negative thread-pointer
 | 
						|
    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
 | 
						|
    /// model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @INDNTPOFF
 | 
						|
    MO_INDNTPOFF,
 | 
						|
 | 
						|
    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the thread-pointer offset for the symbol. Used in the x86-64 local
 | 
						|
    /// exec TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @TPOFF
 | 
						|
    MO_TPOFF,
 | 
						|
 | 
						|
    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset of the GOT entry with the TLS offset of the symbol. Used
 | 
						|
    /// in the local dynamic TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @DTPOFF
 | 
						|
    MO_DTPOFF,
 | 
						|
 | 
						|
    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the negative thread-pointer offset for the symbol. Used in the IA32
 | 
						|
    /// local exec TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @NTPOFF
 | 
						|
    MO_NTPOFF,
 | 
						|
 | 
						|
    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset of the GOT entry with the negative thread-pointer offset for
 | 
						|
    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
 | 
						|
    ///
 | 
						|
    /// See 'ELF Handling for Thread-Local Storage' for more details.
 | 
						|
    ///    SYMBOL_LABEL @GOTNTPOFF
 | 
						|
    MO_GOTNTPOFF,
 | 
						|
 | 
						|
    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
 | 
						|
    /// reference is actually to the "__imp_FOO" symbol.  This is used for
 | 
						|
    /// dllimport linkage on windows.
 | 
						|
    MO_DLLIMPORT,
 | 
						|
 | 
						|
    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
 | 
						|
    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
 | 
						|
    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
 | 
						|
    MO_DARWIN_NONLAZY,
 | 
						|
 | 
						|
    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
 | 
						|
    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
 | 
						|
    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
 | 
						|
    MO_DARWIN_NONLAZY_PIC_BASE,
 | 
						|
 | 
						|
    /// MO_TLVP - On a symbol operand this indicates that the immediate is
 | 
						|
    /// some TLS offset.
 | 
						|
    ///
 | 
						|
    /// This is the TLS offset for the Darwin TLS mechanism.
 | 
						|
    MO_TLVP,
 | 
						|
 | 
						|
    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
 | 
						|
    /// is some TLS offset from the picbase.
 | 
						|
    ///
 | 
						|
    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
 | 
						|
    MO_TLVP_PIC_BASE,
 | 
						|
 | 
						|
    /// MO_SECREL - On a symbol operand this indicates that the immediate is
 | 
						|
    /// the offset from beginning of section.
 | 
						|
    ///
 | 
						|
    /// This is the TLS offset for the COFF/Windows TLS mechanism.
 | 
						|
    MO_SECREL
 | 
						|
  };
 | 
						|
 | 
						|
  enum : uint64_t {
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // Instruction encodings.  These are the standard/most common forms for X86
 | 
						|
    // instructions.
 | 
						|
    //
 | 
						|
 | 
						|
    // PseudoFrm - This represents an instruction that is a pseudo instruction
 | 
						|
    // or one that has not been implemented yet.  It is illegal to code generate
 | 
						|
    // it, but tolerated for intermediate implementation stages.
 | 
						|
    Pseudo         = 0,
 | 
						|
 | 
						|
    /// Raw - This form is for instructions that don't have any operands, so
 | 
						|
    /// they are just a fixed opcode value, like 'leave'.
 | 
						|
    RawFrm         = 1,
 | 
						|
 | 
						|
    /// AddRegFrm - This form is used for instructions like 'push r32' that have
 | 
						|
    /// their one register operand added to their opcode.
 | 
						|
    AddRegFrm      = 2,
 | 
						|
 | 
						|
    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
 | 
						|
    /// to specify a destination, which in this case is a register.
 | 
						|
    ///
 | 
						|
    MRMDestReg     = 3,
 | 
						|
 | 
						|
    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
 | 
						|
    /// to specify a destination, which in this case is memory.
 | 
						|
    ///
 | 
						|
    MRMDestMem     = 4,
 | 
						|
 | 
						|
    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
 | 
						|
    /// to specify a source, which in this case is a register.
 | 
						|
    ///
 | 
						|
    MRMSrcReg      = 5,
 | 
						|
 | 
						|
    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
 | 
						|
    /// to specify a source, which in this case is memory.
 | 
						|
    ///
 | 
						|
    MRMSrcMem      = 6,
 | 
						|
 | 
						|
    /// RawFrmMemOffs - This form is for instructions that store an absolute
 | 
						|
    /// memory offset as an immediate with a possible segment override.
 | 
						|
    RawFrmMemOffs  = 7,
 | 
						|
 | 
						|
    /// RawFrmSrc - This form is for instructions that use the source index
 | 
						|
    /// register SI/ESI/RSI with a possible segment override.
 | 
						|
    RawFrmSrc      = 8,
 | 
						|
 | 
						|
    /// RawFrmDst - This form is for instructions that use the destination index
 | 
						|
    /// register DI/EDI/ESI.
 | 
						|
    RawFrmDst      = 9,
 | 
						|
 | 
						|
    /// RawFrmSrc - This form is for instructions that use the source index
 | 
						|
    /// register SI/ESI/ERI with a possible segment override, and also the
 | 
						|
    /// destination index register DI/ESI/RDI.
 | 
						|
    RawFrmDstSrc   = 10,
 | 
						|
 | 
						|
    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
 | 
						|
    /// immediates, the first of which is a 16-bit immediate (specified by
 | 
						|
    /// the imm encoding) and the second is a 8-bit fixed value.
 | 
						|
    RawFrmImm8 = 11,
 | 
						|
 | 
						|
    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
 | 
						|
    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
 | 
						|
    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
 | 
						|
    /// manual, this operand is described as pntr16:32 and pntr16:16
 | 
						|
    RawFrmImm16 = 12,
 | 
						|
 | 
						|
    /// MRMX[rm] - The forms are used to represent instructions that use a
 | 
						|
    /// Mod/RM byte, and don't use the middle field for anything.
 | 
						|
    MRMXr = 14, MRMXm = 15,
 | 
						|
 | 
						|
    /// MRM[0-7][rm] - These forms are used to represent instructions that use
 | 
						|
    /// a Mod/RM byte, and use the middle field to hold extended opcode
 | 
						|
    /// information.  In the intel manual these are represented as /0, /1, ...
 | 
						|
    ///
 | 
						|
 | 
						|
    // First, instructions that operate on a register r/m operand...
 | 
						|
    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
 | 
						|
    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
 | 
						|
 | 
						|
    // Next, instructions that operate on a memory r/m operand...
 | 
						|
    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
 | 
						|
    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
 | 
						|
 | 
						|
    //// MRM_XX - A mod/rm byte of exactly 0xXX.
 | 
						|
    MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
 | 
						|
    MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39,
 | 
						|
    MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43,
 | 
						|
    MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47,
 | 
						|
    MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51,
 | 
						|
    MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55,
 | 
						|
    MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59,
 | 
						|
    MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63,
 | 
						|
    MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67,
 | 
						|
    MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71,
 | 
						|
    MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75,
 | 
						|
    MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79,
 | 
						|
    MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83,
 | 
						|
    MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87,
 | 
						|
    MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91,
 | 
						|
    MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95,
 | 
						|
 | 
						|
    FormMask       = 127,
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // Actual flags...
 | 
						|
 | 
						|
    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
 | 
						|
    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
 | 
						|
    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
 | 
						|
    // prefix in 16-bit mode.
 | 
						|
    OpSizeShift = 7,
 | 
						|
    OpSizeMask = 0x3 << OpSizeShift,
 | 
						|
 | 
						|
    OpSizeFixed = 0 << OpSizeShift,
 | 
						|
    OpSize16    = 1 << OpSizeShift,
 | 
						|
    OpSize32    = 2 << OpSizeShift,
 | 
						|
 | 
						|
    // AsSize - AdSizeX implies this instruction determines its need of 0x67
 | 
						|
    // prefix from a normal ModRM memory operand. The other types indicate that
 | 
						|
    // an operand is encoded with a specific width and a prefix is needed if
 | 
						|
    // it differs from the current mode.
 | 
						|
    AdSizeShift = OpSizeShift + 2,
 | 
						|
    AdSizeMask  = 0x3 << AdSizeShift,
 | 
						|
 | 
						|
    AdSizeX  = 1 << AdSizeShift,
 | 
						|
    AdSize16 = 1 << AdSizeShift,
 | 
						|
    AdSize32 = 2 << AdSizeShift,
 | 
						|
    AdSize64 = 3 << AdSizeShift,
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // OpPrefix - There are several prefix bytes that are used as opcode
 | 
						|
    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
 | 
						|
    // no prefix.
 | 
						|
    //
 | 
						|
    OpPrefixShift = AdSizeShift + 2,
 | 
						|
    OpPrefixMask  = 0x7 << OpPrefixShift,
 | 
						|
 | 
						|
    // PS, PD - Prefix code for packed single and double precision vector
 | 
						|
    // floating point operations performed in the SSE registers.
 | 
						|
    PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
 | 
						|
 | 
						|
    // XS, XD - These prefix codes are for single and double precision scalar
 | 
						|
    // floating point operations performed in the SSE registers.
 | 
						|
    XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // OpMap - This field determines which opcode map this instruction
 | 
						|
    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
 | 
						|
    //
 | 
						|
    OpMapShift = OpPrefixShift + 3,
 | 
						|
    OpMapMask  = 0x7 << OpMapShift,
 | 
						|
 | 
						|
    // OB - OneByte - Set if this instruction has a one byte opcode.
 | 
						|
    OB = 0 << OpMapShift,
 | 
						|
 | 
						|
    // TB - TwoByte - Set if this instruction has a two byte opcode, which
 | 
						|
    // starts with a 0x0F byte before the real opcode.
 | 
						|
    TB = 1 << OpMapShift,
 | 
						|
 | 
						|
    // T8, TA - Prefix after the 0x0F prefix.
 | 
						|
    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
 | 
						|
 | 
						|
    // XOP8 - Prefix to include use of imm byte.
 | 
						|
    XOP8 = 4 << OpMapShift,
 | 
						|
 | 
						|
    // XOP9 - Prefix to exclude use of imm byte.
 | 
						|
    XOP9 = 5 << OpMapShift,
 | 
						|
 | 
						|
    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
 | 
						|
    XOPA = 6 << OpMapShift,
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
 | 
						|
    // They are used to specify GPRs and SSE registers, 64-bit operand size,
 | 
						|
    // etc. We only cares about REX.W and REX.R bits and only the former is
 | 
						|
    // statically determined.
 | 
						|
    //
 | 
						|
    REXShift    = OpMapShift + 3,
 | 
						|
    REX_W       = 1 << REXShift,
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // This three-bit field describes the size of an immediate operand.  Zero is
 | 
						|
    // unused so that we can tell if we forgot to set a value.
 | 
						|
    ImmShift = REXShift + 1,
 | 
						|
    ImmMask    = 15 << ImmShift,
 | 
						|
    Imm8       = 1 << ImmShift,
 | 
						|
    Imm8PCRel  = 2 << ImmShift,
 | 
						|
    Imm16      = 3 << ImmShift,
 | 
						|
    Imm16PCRel = 4 << ImmShift,
 | 
						|
    Imm32      = 5 << ImmShift,
 | 
						|
    Imm32PCRel = 6 << ImmShift,
 | 
						|
    Imm32S     = 7 << ImmShift,
 | 
						|
    Imm64      = 8 << ImmShift,
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // FP Instruction Classification...  Zero is non-fp instruction.
 | 
						|
 | 
						|
    // FPTypeMask - Mask for all of the FP types...
 | 
						|
    FPTypeShift = ImmShift + 4,
 | 
						|
    FPTypeMask  = 7 << FPTypeShift,
 | 
						|
 | 
						|
    // NotFP - The default, set for instructions that do not use FP registers.
 | 
						|
    NotFP      = 0 << FPTypeShift,
 | 
						|
 | 
						|
    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
 | 
						|
    ZeroArgFP  = 1 << FPTypeShift,
 | 
						|
 | 
						|
    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
 | 
						|
    OneArgFP   = 2 << FPTypeShift,
 | 
						|
 | 
						|
    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
 | 
						|
    // result back to ST(0).  For example, fcos, fsqrt, etc.
 | 
						|
    //
 | 
						|
    OneArgFPRW = 3 << FPTypeShift,
 | 
						|
 | 
						|
    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
 | 
						|
    // explicit argument, storing the result to either ST(0) or the implicit
 | 
						|
    // argument.  For example: fadd, fsub, fmul, etc...
 | 
						|
    TwoArgFP   = 4 << FPTypeShift,
 | 
						|
 | 
						|
    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
 | 
						|
    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
 | 
						|
    CompareFP  = 5 << FPTypeShift,
 | 
						|
 | 
						|
    // CondMovFP - "2 operand" floating point conditional move instructions.
 | 
						|
    CondMovFP  = 6 << FPTypeShift,
 | 
						|
 | 
						|
    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
 | 
						|
    SpecialFP  = 7 << FPTypeShift,
 | 
						|
 | 
						|
    // Lock prefix
 | 
						|
    LOCKShift = FPTypeShift + 3,
 | 
						|
    LOCK = 1 << LOCKShift,
 | 
						|
 | 
						|
    // REP prefix
 | 
						|
    REPShift = LOCKShift + 1,
 | 
						|
    REP = 1 << REPShift,
 | 
						|
 | 
						|
    // Execution domain for SSE instructions.
 | 
						|
    // 0 means normal, non-SSE instruction.
 | 
						|
    SSEDomainShift = REPShift + 1,
 | 
						|
 | 
						|
    // Encoding
 | 
						|
    EncodingShift = SSEDomainShift + 2,
 | 
						|
    EncodingMask = 0x3 << EncodingShift,
 | 
						|
 | 
						|
    // VEX - encoding using 0xC4/0xC5
 | 
						|
    VEX = 1 << EncodingShift,
 | 
						|
 | 
						|
    /// XOP - Opcode prefix used by XOP instructions.
 | 
						|
    XOP = 2 << EncodingShift,
 | 
						|
 | 
						|
    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
 | 
						|
    // syntax support up to 32 512-bit register operands and up to 7 16-bit
 | 
						|
    // mask operands as well as source operand data swizzling/memory operand
 | 
						|
    // conversion, eviction hint, and rounding mode.
 | 
						|
    EVEX = 3 << EncodingShift,
 | 
						|
 | 
						|
    // Opcode
 | 
						|
    OpcodeShift   = EncodingShift + 2,
 | 
						|
 | 
						|
    /// VEX_W - Has a opcode specific functionality, but is used in the same
 | 
						|
    /// way as REX_W is for regular SSE instructions.
 | 
						|
    VEX_WShift  = OpcodeShift + 8,
 | 
						|
    VEX_W       = 1ULL << VEX_WShift,
 | 
						|
 | 
						|
    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
 | 
						|
    /// address instructions in SSE are represented as 3 address ones in AVX
 | 
						|
    /// and the additional register is encoded in VEX_VVVV prefix.
 | 
						|
    VEX_4VShift = VEX_WShift + 1,
 | 
						|
    VEX_4V      = 1ULL << VEX_4VShift,
 | 
						|
 | 
						|
    /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
 | 
						|
    /// operand 3 with VEX.vvvv.
 | 
						|
    VEX_4VOp3Shift = VEX_4VShift + 1,
 | 
						|
    VEX_4VOp3   = 1ULL << VEX_4VOp3Shift,
 | 
						|
 | 
						|
    /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
 | 
						|
    /// must be encoded in the i8 immediate field. This usually happens in
 | 
						|
    /// instructions with 4 operands.
 | 
						|
    VEX_I8IMMShift = VEX_4VOp3Shift + 1,
 | 
						|
    VEX_I8IMM   = 1ULL << VEX_I8IMMShift,
 | 
						|
 | 
						|
    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
 | 
						|
    /// instruction uses 256-bit wide registers. This is usually auto detected
 | 
						|
    /// if a VR256 register is used, but some AVX instructions also have this
 | 
						|
    /// field marked when using a f256 memory references.
 | 
						|
    VEX_LShift = VEX_I8IMMShift + 1,
 | 
						|
    VEX_L       = 1ULL << VEX_LShift,
 | 
						|
 | 
						|
    // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
 | 
						|
    // prefix. Usually used for scalar instructions. Needed by disassembler.
 | 
						|
    VEX_LIGShift = VEX_LShift + 1,
 | 
						|
    VEX_LIG     = 1ULL << VEX_LIGShift,
 | 
						|
 | 
						|
    // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
 | 
						|
    // with following encoding:
 | 
						|
    // - 00 V128
 | 
						|
    // - 01 V256
 | 
						|
    // - 10 V512
 | 
						|
    // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
 | 
						|
    // this will save 1 tsflag bit
 | 
						|
 | 
						|
    // EVEX_K - Set if this instruction requires masking
 | 
						|
    EVEX_KShift = VEX_LIGShift + 1,
 | 
						|
    EVEX_K      = 1ULL << EVEX_KShift,
 | 
						|
 | 
						|
    // EVEX_Z - Set if this instruction has EVEX.Z field set.
 | 
						|
    EVEX_ZShift = EVEX_KShift + 1,
 | 
						|
    EVEX_Z      = 1ULL << EVEX_ZShift,
 | 
						|
 | 
						|
    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
 | 
						|
    EVEX_L2Shift = EVEX_ZShift + 1,
 | 
						|
    EVEX_L2     = 1ULL << EVEX_L2Shift,
 | 
						|
 | 
						|
    // EVEX_B - Set if this instruction has EVEX.B field set.
 | 
						|
    EVEX_BShift = EVEX_L2Shift + 1,
 | 
						|
    EVEX_B      = 1ULL << EVEX_BShift,
 | 
						|
 | 
						|
    // The scaling factor for the AVX512's 8-bit compressed displacement.
 | 
						|
    CD8_Scale_Shift = EVEX_BShift + 1,
 | 
						|
    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
 | 
						|
 | 
						|
    /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
 | 
						|
    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
 | 
						|
    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
 | 
						|
    /// storing a classifier in the imm8 field.  To simplify our implementation,
 | 
						|
    /// we handle this by storeing the classifier in the opcode field and using
 | 
						|
    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
 | 
						|
    Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
 | 
						|
    Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
 | 
						|
 | 
						|
    /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
 | 
						|
    /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
 | 
						|
    MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
 | 
						|
    MemOp4 = 1ULL << MemOp4Shift,
 | 
						|
 | 
						|
    /// Explicitly specified rounding control
 | 
						|
    EVEX_RCShift = MemOp4Shift + 1,
 | 
						|
    EVEX_RC = 1ULL << EVEX_RCShift
 | 
						|
  };
 | 
						|
 | 
						|
  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
 | 
						|
  // specified machine instruction.
 | 
						|
  //
 | 
						|
  inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
 | 
						|
    return TSFlags >> X86II::OpcodeShift;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool hasImm(uint64_t TSFlags) {
 | 
						|
    return (TSFlags & X86II::ImmMask) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
 | 
						|
  /// of the specified instruction.
 | 
						|
  inline unsigned getSizeOfImm(uint64_t TSFlags) {
 | 
						|
    switch (TSFlags & X86II::ImmMask) {
 | 
						|
    default: llvm_unreachable("Unknown immediate size");
 | 
						|
    case X86II::Imm8:
 | 
						|
    case X86II::Imm8PCRel:  return 1;
 | 
						|
    case X86II::Imm16:
 | 
						|
    case X86II::Imm16PCRel: return 2;
 | 
						|
    case X86II::Imm32:
 | 
						|
    case X86II::Imm32S:
 | 
						|
    case X86II::Imm32PCRel: return 4;
 | 
						|
    case X86II::Imm64:      return 8;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// isImmPCRel - Return true if the immediate of the specified instruction's
 | 
						|
  /// TSFlags indicates that it is pc relative.
 | 
						|
  inline unsigned isImmPCRel(uint64_t TSFlags) {
 | 
						|
    switch (TSFlags & X86II::ImmMask) {
 | 
						|
    default: llvm_unreachable("Unknown immediate size");
 | 
						|
    case X86II::Imm8PCRel:
 | 
						|
    case X86II::Imm16PCRel:
 | 
						|
    case X86II::Imm32PCRel:
 | 
						|
      return true;
 | 
						|
    case X86II::Imm8:
 | 
						|
    case X86II::Imm16:
 | 
						|
    case X86II::Imm32:
 | 
						|
    case X86II::Imm32S:
 | 
						|
    case X86II::Imm64:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// isImmSigned - Return true if the immediate of the specified instruction's
 | 
						|
  /// TSFlags indicates that it is signed.
 | 
						|
  inline unsigned isImmSigned(uint64_t TSFlags) {
 | 
						|
    switch (TSFlags & X86II::ImmMask) {
 | 
						|
    default: llvm_unreachable("Unknown immediate signedness");
 | 
						|
    case X86II::Imm32S:
 | 
						|
      return true;
 | 
						|
    case X86II::Imm8:
 | 
						|
    case X86II::Imm8PCRel:
 | 
						|
    case X86II::Imm16:
 | 
						|
    case X86II::Imm16PCRel:
 | 
						|
    case X86II::Imm32:
 | 
						|
    case X86II::Imm32PCRel:
 | 
						|
    case X86II::Imm64:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// getOperandBias - compute any additional adjustment needed to
 | 
						|
  ///                  the offset to the start of the memory operand
 | 
						|
  ///                  in this instruction.
 | 
						|
  /// If this is a two-address instruction,skip one of the register operands.
 | 
						|
  /// FIXME: This should be handled during MCInst lowering.
 | 
						|
  inline int getOperandBias(const MCInstrDesc& Desc)
 | 
						|
  {
 | 
						|
    unsigned NumOps = Desc.getNumOperands();
 | 
						|
    unsigned CurOp = 0;
 | 
						|
    if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
 | 
						|
      ++CurOp;
 | 
						|
    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
 | 
						|
             Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
 | 
						|
      // Special case for AVX-512 GATHER with 2 TIED_TO operands
 | 
						|
      // Skip the first 2 operands: dst, mask_wb
 | 
						|
      CurOp += 2;
 | 
						|
    else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
 | 
						|
             Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
 | 
						|
      // Special case for GATHER with 2 TIED_TO operands
 | 
						|
      // Skip the first 2 operands: dst, mask_wb
 | 
						|
      CurOp += 2;
 | 
						|
    else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
 | 
						|
      // SCATTER
 | 
						|
      ++CurOp;
 | 
						|
    return CurOp;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getMemoryOperandNo - The function returns the MCInst operand # for the
 | 
						|
  /// first field of the memory operand.  If the instruction doesn't have a
 | 
						|
  /// memory operand, this returns -1.
 | 
						|
  ///
 | 
						|
  /// Note that this ignores tied operands.  If there is a tied register which
 | 
						|
  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
 | 
						|
  /// counted as one operand.
 | 
						|
  ///
 | 
						|
  inline int getMemoryOperandNo(uint64_t TSFlags) {
 | 
						|
    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
 | 
						|
    bool HasMemOp4 = TSFlags & X86II::MemOp4;
 | 
						|
    bool HasEVEX_K = TSFlags & X86II::EVEX_K;
 | 
						|
 | 
						|
    switch (TSFlags & X86II::FormMask) {
 | 
						|
    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
 | 
						|
    case X86II::Pseudo:
 | 
						|
    case X86II::RawFrm:
 | 
						|
    case X86II::AddRegFrm:
 | 
						|
    case X86II::MRMDestReg:
 | 
						|
    case X86II::MRMSrcReg:
 | 
						|
    case X86II::RawFrmImm8:
 | 
						|
    case X86II::RawFrmImm16:
 | 
						|
    case X86II::RawFrmMemOffs:
 | 
						|
    case X86II::RawFrmSrc:
 | 
						|
    case X86II::RawFrmDst:
 | 
						|
    case X86II::RawFrmDstSrc:
 | 
						|
      return -1;
 | 
						|
    case X86II::MRMDestMem:
 | 
						|
      return 0;
 | 
						|
    case X86II::MRMSrcMem:
 | 
						|
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
 | 
						|
      // mask register.
 | 
						|
      return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
 | 
						|
    case X86II::MRMXr:
 | 
						|
    case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
    case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
    case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
    case X86II::MRM6r: case X86II::MRM7r:
 | 
						|
      return -1;
 | 
						|
    case X86II::MRMXm:
 | 
						|
    case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
    case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
    case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
    case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
 | 
						|
      return 0 + HasVEX_4V + HasEVEX_K;
 | 
						|
    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
 | 
						|
    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
 | 
						|
    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
 | 
						|
    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
 | 
						|
    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
 | 
						|
    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
 | 
						|
    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
 | 
						|
    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
 | 
						|
    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
 | 
						|
    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
 | 
						|
    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
 | 
						|
    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
 | 
						|
    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
 | 
						|
    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
 | 
						|
    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
 | 
						|
    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
 | 
						|
    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
 | 
						|
    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
 | 
						|
    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
 | 
						|
    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
 | 
						|
    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
 | 
						|
    case X86II::MRM_FF:
 | 
						|
      return -1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
 | 
						|
  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
 | 
						|
  inline bool isX86_64ExtendedReg(unsigned RegNo) {
 | 
						|
    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
 | 
						|
        (RegNo >= X86::XMM24 && RegNo <= X86::XMM31) ||
 | 
						|
        (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
 | 
						|
        (RegNo >= X86::YMM24 && RegNo <= X86::YMM31) ||
 | 
						|
        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM15) ||
 | 
						|
        (RegNo >= X86::ZMM24 && RegNo <= X86::ZMM31))
 | 
						|
      return true;
 | 
						|
 | 
						|
    switch (RegNo) {
 | 
						|
    default: break;
 | 
						|
    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
 | 
						|
    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
 | 
						|
    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
 | 
						|
    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
 | 
						|
    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
 | 
						|
    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
 | 
						|
    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
 | 
						|
    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
 | 
						|
    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
 | 
						|
    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
 | 
						|
  /// registers? e.g. zmm21, etc.
 | 
						|
  static inline bool is32ExtendedReg(unsigned RegNo) {
 | 
						|
    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
 | 
						|
            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
 | 
						|
            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
 | 
						|
    return (reg == X86::SPL || reg == X86::BPL ||
 | 
						|
            reg == X86::SIL || reg == X86::DIL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm;
 | 
						|
 | 
						|
#endif
 |