android13/hardware/google/graphics/common/libhwc2.1/libdrmresource/drm/vsyncworker.cpp

221 lines
6.4 KiB
C++

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL)
#define LOG_TAG "hwc-vsync-worker"
#include "vsyncworker.h"
#include <hardware/hardware.h>
#include <log/log.h>
#include <stdlib.h>
#include <time.h>
#include <utils/Trace.h>
#include <xf86drm.h>
#include <xf86drmMode.h>
#include <map>
#include "drmdevice.h"
#include "worker.h"
using namespace std::chrono_literals;
constexpr auto nsecsPerSec = std::chrono::nanoseconds(1s).count();
constexpr auto hwVsyncPeriodTag = "HWVsyncPeriod";
namespace android {
VSyncWorker::VSyncWorker()
: Worker("vsync", 2, true),
drm_(NULL),
display_(-1),
enabled_(false),
last_timestamp_(-1) {
}
VSyncWorker::~VSyncWorker() {
Exit();
}
int VSyncWorker::Init(DrmDevice *drm, int display) {
drm_ = drm;
display_ = display;
return InitWorker();
}
void VSyncWorker::RegisterCallback(std::shared_ptr<VsyncCallback> callback) {
Lock();
callback_ = callback;
Unlock();
}
void VSyncWorker::VSyncControl(bool enabled) {
Lock();
enabled_ = enabled;
last_timestamp_ = -1;
Unlock();
ATRACE_INT("HWCVsync", static_cast<int32_t>(enabled));
ATRACE_INT64(hwVsyncPeriodTag, 0);
Signal();
}
/*
* Returns the timestamp of the next vsync in phase with last_timestamp_.
* For example:
* last_timestamp_ = 137
* frame_ns = 50
* current = 683
*
* expect = (50 * ((683 - 137)/50 + 1)) + 137
* expect = 687
*
* Thus, we must sleep until timestamp 687 to maintain phase with the last
* timestamp. But if we don't know last vblank timestamp, sleep one vblank
* then try to get vblank from driver again.
*/
int VSyncWorker::GetPhasedVSync(int64_t frame_ns, int64_t &expect) {
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now)) {
ALOGE("clock_gettime failed %d", errno);
return -EPERM;
}
int64_t current = now.tv_sec * nsecsPerSec + now.tv_nsec;
if (last_timestamp_ < 0) {
expect = current + frame_ns;
return -EAGAIN;
}
expect = frame_ns * ((current - last_timestamp_) / frame_ns + 1) + last_timestamp_;
return 0;
}
int VSyncWorker::SyntheticWaitVBlank(int64_t &timestamp) {
float refresh = 60.0f; // Default to 60Hz refresh rate
DrmConnector *conn = drm_->GetConnectorForDisplay(display_);
if (conn && conn->active_mode().v_refresh() != 0.0f) {
refresh = conn->active_mode().v_refresh();
} else {
ALOGW("Vsync worker active with conn=%p refresh=%f\n", conn,
conn ? conn->active_mode().v_refresh() : 0.0f);
}
int64_t phased_timestamp;
int ret = GetPhasedVSync(nsecsPerSec / refresh, phased_timestamp);
if (ret && ret != -EAGAIN) return -1;
struct timespec vsync;
vsync.tv_sec = phased_timestamp / nsecsPerSec;
vsync.tv_nsec = phased_timestamp % nsecsPerSec;
int err;
do {
err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &vsync, nullptr);
} while (err == EINTR);
if (err || ret) return -1;
timestamp = (int64_t)vsync.tv_sec * nsecsPerSec + (int64_t)vsync.tv_nsec;
return 0;
}
void VSyncWorker::Routine() {
int ret;
Lock();
if (!enabled_) {
ret = WaitForSignalOrExitLocked();
if (ret == -EINTR) {
Unlock();
return;
}
}
int display = display_;
std::shared_ptr<VsyncCallback> callback(callback_);
Unlock();
DrmCrtc *crtc = drm_->GetCrtcForDisplay(display);
if (!crtc) {
ALOGE("Failed to get crtc for display");
return;
}
uint32_t high_crtc = (crtc->pipe() << DRM_VBLANK_HIGH_CRTC_SHIFT);
drmVBlank vblank;
memset(&vblank, 0, sizeof(vblank));
vblank.request.type =
(drmVBlankSeqType)(DRM_VBLANK_RELATIVE | (high_crtc & DRM_VBLANK_HIGH_CRTC_MASK));
vblank.request.sequence = 1;
int64_t timestamp;
ret = drmWaitVBlank(drm_->fd(), &vblank);
if (ret) {
if (SyntheticWaitVBlank(timestamp)) {
// postpone the callback until we get a real value from the hardware
return;
}
} else {
timestamp = (int64_t)vblank.reply.tval_sec * nsecsPerSec +
(int64_t)vblank.reply.tval_usec * 1000;
}
/*
* VSync could be disabled during routine execution so it could potentially
* lead to crash since callback's inner hook could be invalid anymore. We have
* no control over lifetime of this hook, therefore we can't rely that it'll
* be valid after vsync disabling.
*
* Blocking VSyncControl to wait until routine
* will finish execution is logically correct way to fix this issue, but it
* creates visible lags and stutters, so we have to resort to other ways of
* mitigating this issue.
*
* Doing check before attempt to invoke callback drastically shortens the
* window when such situation could happen and that allows us to practically
* avoid this issue.
*
* Please note that issue described below is different one and it is related
* to RegisterCallback, not to disabling vsync via VSyncControl.
*/
if (!enabled_) return;
/*
* There's a race here where a change in callback_ will not take effect until
* the next subsequent requested vsync. This is unavoidable since we can't
* call the vsync hook while holding the thread lock.
*
* We could shorten the race window by caching callback_ right before calling
* the hook. However, in practice, callback_ is only updated once, so it's not
* worth the overhead.
*/
if (callback) callback->Callback(display, timestamp);
if (last_timestamp_ >= 0) {
int64_t period = timestamp - last_timestamp_;
ATRACE_INT64(hwVsyncPeriodTag, period);
ALOGV("HW vsync period %" PRId64 "ns", period);
}
last_timestamp_ = timestamp;
}
} // namespace android