264 lines
10 KiB
C++
264 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2019 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/runtime/NEON/NEFunctions.h"
|
|
|
|
#include "arm_compute/core/Types.h"
|
|
#include "utils/ImageLoader.h"
|
|
#include "utils/Utils.h"
|
|
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
using namespace arm_compute;
|
|
using namespace utils;
|
|
|
|
class NeonOpticalFlowExample : public Example
|
|
{
|
|
public:
|
|
NeonOpticalFlowExample()
|
|
: input_points(100), output_points(100), point_estimates(100)
|
|
{
|
|
}
|
|
|
|
bool do_setup(int argc, char **argv) override
|
|
{
|
|
if(argc < 5)
|
|
{
|
|
// Print help
|
|
std::cout << "Usage: ./build/neon_opticalflow [src_1st.ppm] [src_2nd.ppm] [keypoints] [estimates]\n\n";
|
|
const unsigned int img_width = 64;
|
|
const unsigned int img_height = 64;
|
|
const unsigned int rect_x = 20;
|
|
const unsigned int rect_y = 40;
|
|
const unsigned int rect_s = 8;
|
|
const unsigned int offsetx = 24;
|
|
const unsigned int offsety = 3;
|
|
std::cout << "No input_image provided, creating test data:\n";
|
|
std::cout << "\t Image src_1st = (" << img_width << "," << img_height << ")" << std::endl;
|
|
std::cout << "\t Image src_2nd = (" << img_width << "," << img_height << ")" << std::endl;
|
|
init_img(src_1st, img_width, img_height, rect_x, rect_y, rect_s);
|
|
init_img(src_2nd, img_width, img_height, rect_x + offsetx, rect_y + offsety, rect_s);
|
|
const int num_points = 4;
|
|
input_points.resize(num_points);
|
|
point_estimates.resize(num_points);
|
|
const std::array<unsigned int, num_points> tracking_coordsx = { rect_x - 1, rect_x, rect_x + 1, rect_x + 2 };
|
|
const std::array<unsigned int, num_points> tracking_coordsy = { rect_y - 1, rect_y, rect_y + 1, rect_y + 2 };
|
|
const std::array<unsigned int, num_points> estimate_coordsx = { rect_x + offsetx - 1, rect_x + offsetx, rect_x + offsetx + 1, rect_x + offsetx + 2 };
|
|
const std::array<unsigned int, num_points> estimate_coordsy = { rect_y + offsety - 1, rect_y + offsety, rect_y + offsety + 1, rect_y + offsety + 2 };
|
|
|
|
for(int k = 0; k < num_points; ++k)
|
|
{
|
|
auto &keypoint = input_points.at(k);
|
|
keypoint.x = tracking_coordsx[k];
|
|
keypoint.y = tracking_coordsy[k];
|
|
keypoint.tracking_status = 1;
|
|
}
|
|
for(int k = 0; k < num_points; ++k)
|
|
{
|
|
auto &keypoint = point_estimates.at(k);
|
|
keypoint.x = estimate_coordsx[k];
|
|
keypoint.y = estimate_coordsy[k];
|
|
keypoint.tracking_status = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
load_ppm(argv[1], src_1st);
|
|
load_ppm(argv[2], src_2nd);
|
|
load_keypoints(argv[3], input_points);
|
|
load_keypoints(argv[4], point_estimates);
|
|
}
|
|
|
|
print_points(input_points, "Tracking points : ");
|
|
print_points(point_estimates, "Estimates points : ");
|
|
|
|
const unsigned int num_levels = 3;
|
|
// Initialise and allocate pyramids
|
|
PyramidInfo pyramid_info(num_levels, SCALE_PYRAMID_HALF, src_1st.info()->tensor_shape(), src_1st.info()->format());
|
|
pyr_1st.init_auto_padding(pyramid_info);
|
|
pyr_2nd.init_auto_padding(pyramid_info);
|
|
|
|
pyrf_1st.configure(&src_1st, &pyr_1st, BorderMode::UNDEFINED, 0);
|
|
pyrf_2nd.configure(&src_2nd, &pyr_2nd, BorderMode::UNDEFINED, 0);
|
|
|
|
output_points.resize(input_points.num_values());
|
|
|
|
optkf.configure(&pyr_1st, &pyr_2nd,
|
|
&input_points, &point_estimates, &output_points,
|
|
Termination::TERM_CRITERIA_BOTH, 0.01f, 15, 5, true, BorderMode::UNDEFINED, 0);
|
|
|
|
pyr_1st.allocate();
|
|
pyr_2nd.allocate();
|
|
|
|
return true;
|
|
}
|
|
void do_run() override
|
|
{
|
|
//Execute the functions:
|
|
pyrf_1st.run();
|
|
pyrf_2nd.run();
|
|
optkf.run();
|
|
}
|
|
void do_teardown() override
|
|
{
|
|
print_points(output_points, "Output points : ");
|
|
}
|
|
|
|
private:
|
|
/** Loads the input keypoints from a file into an array
|
|
*
|
|
* @param[in] fn Filename containing the keypoints. Each line must have two values X Y.
|
|
* @param[out] img Reference to an unintialised KeyPointArray
|
|
*/
|
|
bool load_keypoints(const std::string &fn, KeyPointArray &array)
|
|
{
|
|
assert(!fn.empty());
|
|
std::ifstream f(fn);
|
|
if(f.is_open())
|
|
{
|
|
std::cout << "Reading points from " << fn << std::endl;
|
|
std::vector<KeyPoint> v;
|
|
for(std::string line; std::getline(f, line);)
|
|
{
|
|
std::stringstream ss(line);
|
|
std::string xcoord;
|
|
std::string ycoord;
|
|
getline(ss, xcoord, ' ');
|
|
getline(ss, ycoord, ' ');
|
|
KeyPoint kp;
|
|
kp.x = std::stoi(xcoord);
|
|
kp.y = std::stoi(ycoord);
|
|
kp.tracking_status = 1;
|
|
v.push_back(kp);
|
|
}
|
|
const int num_points = v.size();
|
|
array.resize(num_points);
|
|
for(int k = 0; k < num_points; ++k)
|
|
{
|
|
auto &keypoint = array.at(k);
|
|
keypoint = v[k];
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
std::cout << "Cannot open keypoints file " << fn << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/** Creates and Image and fills it with the ppm data from the file
|
|
*
|
|
* @param[in] fn PPM filename to be loaded
|
|
* @param[out] img Reference to an unintialised image instance
|
|
*/
|
|
bool load_ppm(const std::string &fn, Image &img)
|
|
{
|
|
assert(!fn.empty());
|
|
PPMLoader ppm;
|
|
ppm.open(fn);
|
|
ppm.init_image(img, Format::U8);
|
|
img.allocator()->allocate();
|
|
if(ppm.is_open())
|
|
{
|
|
std::cout << "Reading image " << fn << std::endl;
|
|
ppm.fill_image(img);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
std::cout << "Cannot open " << fn << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
/** Creates and Image and draws a square in the specified coordinares.
|
|
*
|
|
* @param[out] img Reference to an unintialised image instance
|
|
* @param[in] img_width Width of the image to be created
|
|
* @param[in] img_height Height of the image to be created
|
|
* @param[in] square_center_x Coordinate along x-axis to be used as the center for the square
|
|
* @param[in] square_center_y Coordinate along y-axis to be used as the center for the square
|
|
* @param[in] square_size Size in pixels to be used for the square
|
|
*/
|
|
void init_img(Image &img, unsigned int img_width, unsigned int img_height,
|
|
unsigned int square_center_x, unsigned int square_center_y,
|
|
unsigned int square_size)
|
|
{
|
|
img.allocator()->init(TensorInfo(img_width, img_height, Format::U8));
|
|
img.allocator()->allocate();
|
|
const unsigned int square_half = square_size / 2;
|
|
// assert the square is in the bounds of the image
|
|
assert(square_center_x > square_half && square_center_x + square_half < img_width);
|
|
assert(square_center_y > square_half && square_center_y + square_half < img_height);
|
|
// get ptr to the top left pixel for the squeare
|
|
std::fill(img.buffer(), img.buffer() + img_width * img_height, 0);
|
|
for(unsigned int i = 0; i < square_size; ++i)
|
|
{
|
|
for(unsigned int j = 0; j < square_size; ++j)
|
|
{
|
|
uint8_t *ptr = img.ptr_to_element(Coordinates(square_center_x - square_half + j, square_center_y - square_half + i));
|
|
*ptr = 0xFF;
|
|
}
|
|
}
|
|
}
|
|
/** Prints an array of keypoints and an optional label
|
|
*
|
|
* @param[in] a Keypoint array to be printed
|
|
* @param[in] str Label to be printed before the array
|
|
*/
|
|
void print_points(const KeyPointArray &a, const std::string &str = "")
|
|
{
|
|
std::cout << str << std::endl;
|
|
for(unsigned int k = 0; k < a.num_values(); ++k)
|
|
{
|
|
auto kp = a.at(k);
|
|
std::cout << "\t "
|
|
<< " (x,y) = (" << kp.x << "," << kp.y << ")";
|
|
std::cout << " strength = " << kp.strength << " "
|
|
<< " scale = " << kp.scale << " orientation " << kp.orientation << " status " << kp.tracking_status << " err = " << kp.error << std::endl;
|
|
}
|
|
}
|
|
|
|
Pyramid pyr_1st{};
|
|
Pyramid pyr_2nd{};
|
|
NEGaussianPyramidHalf pyrf_1st{};
|
|
NEGaussianPyramidHalf pyrf_2nd{};
|
|
NEOpticalFlow optkf{};
|
|
Image src_1st{}, src_2nd{};
|
|
KeyPointArray input_points;
|
|
KeyPointArray output_points;
|
|
KeyPointArray point_estimates;
|
|
};
|
|
|
|
/** Main program for optical flow test
|
|
*
|
|
* @param[in] argc Number of arguments
|
|
* @param[in] argv Arguments ( [optional] Path to PPM image to process )
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
return utils::run_example<NeonOpticalFlowExample>(argc, argv);
|
|
}
|