124 lines
5.5 KiB
C++
124 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2017 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_GOOGLENETINCEPTIONV1_ACTIVATION_LAYER_DATASET
|
|
#define ARM_COMPUTE_TEST_GOOGLENETINCEPTIONV1_ACTIVATION_LAYER_DATASET
|
|
|
|
#include "tests/framework/datasets/Datasets.h"
|
|
|
|
#include "utils/TypePrinter.h"
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace datasets
|
|
{
|
|
class GoogLeNetInceptionV1ActivationLayerDataset final : public
|
|
framework::dataset::CartesianProductDataset<framework::dataset::InitializerListDataset<TensorShape>, framework::dataset::SingletonDataset<ActivationLayerInfo>>
|
|
{
|
|
public:
|
|
GoogLeNetInceptionV1ActivationLayerDataset()
|
|
: CartesianProductDataset
|
|
{
|
|
framework::dataset::make("Shape", { // conv1/relu_7x7
|
|
TensorShape(112U, 112U, 64U),
|
|
// conv2/relu_3x3_reduce
|
|
TensorShape(56U, 56U, 64U),
|
|
// conv2/relu_3x3
|
|
TensorShape(56U, 56U, 192U),
|
|
// inception_3a/relu_1x1, inception_3b/relu_pool_proj
|
|
TensorShape(28U, 28U, 64U),
|
|
// inception_3a/relu_3x3_reduce, inception_3b/relu_5x5
|
|
TensorShape(28U, 28U, 96U),
|
|
// inception_3a/relu_3x3, inception_3b/relu_1x1, inception_3b/relu_3x3_reduce
|
|
TensorShape(28U, 28U, 128U),
|
|
// inception_3a/relu_5x5_reduce
|
|
TensorShape(28U, 28U, 16U),
|
|
// inception_3a/relu_5x5, inception_3a/relu_pool_proj, inception_3b/relu_5x5_reduce
|
|
TensorShape(28U, 28U, 32U),
|
|
// inception_3b/relu_3x3
|
|
TensorShape(28U, 28U, 192U),
|
|
// inception_4a/relu_1x1
|
|
TensorShape(14U, 14U, 192U),
|
|
// inception_4a/relu_3x3_reduce
|
|
TensorShape(14U, 14U, 96U),
|
|
// inception_4a/relu_3x3
|
|
TensorShape(14U, 14U, 208U),
|
|
// inception_4a/relu_5x5_reduce
|
|
TensorShape(14U, 14U, 16U),
|
|
// inception_4a/relu_5x5
|
|
TensorShape(14U, 14U, 48U),
|
|
// inception_4a/relu_pool_proj, inception_4b/relu_5x5, inception_4b/relu_pool_proj, inception_4c/relu_5x5, inception_4c/relu_pool_proj, inception_4d/relu_5x5, inception_4d/relu_pool_proj
|
|
TensorShape(14U, 14U, 64U),
|
|
// inception_4b/relu_1x1, inception_4e/relu_3x3_reduce
|
|
TensorShape(14U, 14U, 160U),
|
|
// inception_4b/relu_3x3_reduce, inception_4d/relu_1x1
|
|
TensorShape(14U, 14U, 112U),
|
|
// inception_4b/relu_3x3
|
|
TensorShape(14U, 14U, 224U),
|
|
// inception_4b/relu_5x5_reduce, inception_4c/relu_5x5_reduce
|
|
TensorShape(14U, 14U, 24U),
|
|
// inception_4c/relu_1x1, inception_4c/relu_3x3_reduce, inception_4e/relu_5x5, inception_4e/relu_pool_proj
|
|
TensorShape(14U, 14U, 128U),
|
|
// inception_4c/relu_3x3, inception_4e/relu_1x1
|
|
TensorShape(14U, 14U, 256U),
|
|
// inception_4d/relu_3x3_reduce
|
|
TensorShape(14U, 14U, 144U),
|
|
// inception_4d/relu_3x3
|
|
TensorShape(14U, 14U, 288U),
|
|
// inception_4d/relu_5x5_reduce, inception_4e/relu_5x5_reduce
|
|
TensorShape(14U, 14U, 32U),
|
|
// inception_4e/relu_3x3
|
|
TensorShape(14U, 14U, 320U),
|
|
// inception_5a/relu_1x1
|
|
TensorShape(7U, 7U, 256U),
|
|
// inception_5a/relu_3x3_reduce
|
|
TensorShape(7U, 7U, 160U),
|
|
// inception_5a/relu_3x3
|
|
TensorShape(7U, 7U, 320U),
|
|
// inception_5a/relu_5x5_reduce
|
|
TensorShape(7U, 7U, 32U),
|
|
// inception_5a/relu_5x5, inception_5a/relu_pool_proj, inception_5b/relu_5x5, inception_5b/relu_pool_proj
|
|
TensorShape(7U, 7U, 128U),
|
|
// inception_5b/relu_1x1, inception_5b/relu_3x3
|
|
TensorShape(7U, 7U, 384U),
|
|
// inception_5b/relu_3x3_reduce
|
|
TensorShape(7U, 7U, 192U),
|
|
// inception_5b/relu_5x5_reduce
|
|
TensorShape(7U, 7U, 48U) }),
|
|
framework::dataset::make("Info", ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
|
|
}
|
|
{
|
|
}
|
|
GoogLeNetInceptionV1ActivationLayerDataset(GoogLeNetInceptionV1ActivationLayerDataset &&) = default;
|
|
~GoogLeNetInceptionV1ActivationLayerDataset() = default;
|
|
};
|
|
} // namespace datasets
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_GOOGLENETINCEPTIONV1_ACTIVATION_LAYER_DATASET */
|