201 lines
9.8 KiB
C++
201 lines
9.8 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/NEON/functions/NEReductionOperation.h"
|
|
#include "arm_compute/runtime/Tensor.h"
|
|
#include "arm_compute/runtime/TensorAllocator.h"
|
|
#include "tests/NEON/Accessor.h"
|
|
#include "tests/PaddingCalculator.h"
|
|
#include "tests/datasets/ShapeDatasets.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Macros.h"
|
|
#include "tests/framework/datasets/Datasets.h"
|
|
#include "tests/validation/Validation.h"
|
|
#include "tests/validation/fixtures/ReductionOperationFixture.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace
|
|
{
|
|
/** Tolerance for float operations */
|
|
AbsoluteTolerance<float> tolerance_f32(0.0001f);
|
|
RelativeTolerance<float> rel_tolerance_f32(0.0001f);
|
|
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
|
AbsoluteTolerance<float> tolerance_f16(0.2f);
|
|
RelativeTolerance<float> rel_tolerance_f16(0.1f);
|
|
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
|
/** Tolerance for quantized operations */
|
|
RelativeTolerance<float> tolerance_quantized(1.f);
|
|
|
|
const auto ReductionOperations = framework::dataset::make("ReductionOperation",
|
|
{
|
|
ReductionOperation::SUM,
|
|
ReductionOperation::PROD,
|
|
ReductionOperation::MIN,
|
|
ReductionOperation::MAX,
|
|
});
|
|
|
|
const auto QuantizationInfos = framework::dataset::make("QuantizationInfo",
|
|
{
|
|
QuantizationInfo(1.f / 117, 10), // Numbers chosen so that the quantized values are in range of qasymm8_signed data type
|
|
QuantizationInfo(1.f / 64, 5),
|
|
QuantizationInfo(1.f / 32, 2)
|
|
});
|
|
|
|
const auto Axises = framework::dataset::make("Axis",
|
|
{ 0, 1, 2, 3 });
|
|
|
|
const auto KeepDims = framework::dataset::make("KeepDims", { true, false });
|
|
|
|
} // namespace
|
|
|
|
TEST_SUITE(NEON)
|
|
TEST_SUITE(ReductionOperation)
|
|
|
|
// *INDENT-OFF*
|
|
// clang-format off
|
|
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
|
|
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(128U, 64U), 1, DataType::F32), // Mismatching data type input/output
|
|
TensorInfo(TensorShape(128U, 64U), 2, DataType::F32), // Number of Input channels != 1
|
|
TensorInfo(TensorShape(128U, 64U), 1, DataType::S16), // DataType != F32
|
|
TensorInfo(TensorShape(128U, 64U), 1, DataType::F32), // Axis >= num_max_dimensions
|
|
TensorInfo(TensorShape(128U, 64U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(128U, 64U), 1, DataType::F32) // Kept dimension when keep_dims = false
|
|
}),
|
|
framework::dataset::make("OutputInfo", { TensorInfo(TensorShape(1U, 64U), 1, DataType::F16),
|
|
TensorInfo(TensorShape(1U, 64U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(1U, 64U), 1, DataType::S16),
|
|
TensorInfo(TensorShape(1U, 64U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(1U, 64U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(1U, 64U), 1, DataType::F32)
|
|
})),
|
|
framework::dataset::make("Axis", { 0U, 0U, 0U, static_cast<unsigned int>(TensorShape::num_max_dimensions), 0U, 0U })),
|
|
framework::dataset::make("KeepDims", { true, true, true, true, true, false})),
|
|
framework::dataset::make("Expected", { false, false, false, false, true, false })),
|
|
input_info, output_info, axis, keep_dims, expected)
|
|
{
|
|
bool is_valid = bool(NEReductionOperation::validate(&input_info.clone()->set_is_resizable(false),
|
|
&output_info.clone()->set_is_resizable(true),
|
|
axis,
|
|
ReductionOperation::SUM_SQUARE,
|
|
keep_dims));
|
|
ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
DATA_TEST_CASE(ValidateNoPadding, framework::DatasetMode::ALL, combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::F32)), framework::dataset::make("Axis",
|
|
{ 0, 1 })), framework::dataset::make("ReductionOperation", {ReductionOperation::SUM,})), KeepDims),
|
|
shape, data_type, axis, op, keep_dims)
|
|
{
|
|
TensorShape input_shape = TensorShape(shape);
|
|
TensorInfo input_info = TensorInfo(input_shape, 1, data_type);
|
|
const bool is_arg_min_max = (op == ReductionOperation::ARG_IDX_MAX) || (op == ReductionOperation::ARG_IDX_MIN);
|
|
const bool _keep_dims = keep_dims && !is_arg_min_max;
|
|
const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_reduced_shape(shape, axis, keep_dims);
|
|
|
|
// Create tensors
|
|
Tensor src = create_tensor<Tensor>(input_shape, data_type, 1, QuantizationInfo());
|
|
Tensor dst = create_tensor<Tensor>(output_shape, data_type, 1, QuantizationInfo());
|
|
|
|
// Create and configure function
|
|
NEReductionOperation reduction;
|
|
reduction.configure(&src, &dst, axis, op, _keep_dims);
|
|
|
|
validate(src.info()->padding(), PaddingSize(0, 0, 0, 0));
|
|
validate(dst.info()->padding(), PaddingSize(0, 0, 0, 0));
|
|
}
|
|
// clang-format on
|
|
// *INDENT-ON*
|
|
|
|
template <typename T>
|
|
using NEReductionOperationFixture = ReductionOperationFixture<Tensor, Accessor, NEReductionOperation, T>;
|
|
|
|
TEST_SUITE(FP32)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationFixture<float>, framework::DatasetMode::PRECOMMIT,
|
|
combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::F32)), Axises), ReductionOperations), KeepDims))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f32);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge, NEReductionOperationFixture<float>, framework::DatasetMode::NIGHTLY,
|
|
combine(combine(combine(combine(datasets::Large4DShapes(), framework::dataset::make("DataType", DataType::F32)), Axises), ReductionOperations), KeepDims))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, rel_tolerance_f32, 0, tolerance_f32);
|
|
}
|
|
TEST_SUITE_END() // FP32
|
|
|
|
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
|
TEST_SUITE(FP16)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationFixture<half>, framework::DatasetMode::PRECOMMIT,
|
|
combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::F16)), Axises), ReductionOperations), KeepDims))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f16);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge, NEReductionOperationFixture<half>, framework::DatasetMode::NIGHTLY,
|
|
combine(combine(combine(combine(datasets::Large4DShapes(), framework::dataset::make("DataType", DataType::F16)), Axises), ReductionOperations), KeepDims))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, rel_tolerance_f16, 0, tolerance_f16);
|
|
}
|
|
TEST_SUITE_END() // FP16
|
|
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
|
|
|
template <typename T>
|
|
using NEReductionOperationQuantizedFixture = ReductionOperationQuantizedFixture<Tensor, Accessor, NEReductionOperation, T>;
|
|
|
|
TEST_SUITE(QASYMM8)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationQuantizedFixture<uint8_t>, framework::DatasetMode::ALL,
|
|
combine(combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::QASYMM8)), Axises),
|
|
ReductionOperations),
|
|
QuantizationInfos),
|
|
KeepDims))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_quantized);
|
|
}
|
|
TEST_SUITE_END() // QASYMM8
|
|
|
|
TEST_SUITE(QASYMM8_SIGNED)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationQuantizedFixture<int8_t>, framework::DatasetMode::ALL,
|
|
combine(combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)), Axises),
|
|
ReductionOperations),
|
|
QuantizationInfos),
|
|
KeepDims))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_quantized);
|
|
}
|
|
TEST_SUITE_END() // QASYMM8_SIGNED
|
|
|
|
TEST_SUITE_END() // ReductionOperation
|
|
TEST_SUITE_END() // NEON
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|