241 lines
10 KiB
C++
241 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2018-2019 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_BOUNDINGBOXTRANSFORM_FIXTURE
|
|
#define ARM_COMPUTE_TEST_BOUNDINGBOXTRANSFORM_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/BoundingBoxTransform.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace
|
|
{
|
|
std::vector<float> generate_deltas(std::vector<float> &boxes, const TensorShape &image_shape, size_t num_boxes, size_t num_classes, std::mt19937 &gen)
|
|
{
|
|
std::vector<float> deltas(num_boxes * 4 * num_classes);
|
|
|
|
std::uniform_int_distribution<> dist_x1(0, image_shape[0] - 1);
|
|
std::uniform_int_distribution<> dist_y1(0, image_shape[1] - 1);
|
|
std::uniform_int_distribution<> dist_w(1, image_shape[0]);
|
|
std::uniform_int_distribution<> dist_h(1, image_shape[1]);
|
|
|
|
for(size_t i = 0; i < num_boxes; ++i)
|
|
{
|
|
const float ex_width = boxes[4 * i + 2] - boxes[4 * i] + 1.f;
|
|
const float ex_height = boxes[4 * i + 3] - boxes[4 * i + 1] + 1.f;
|
|
const float ex_ctr_x = boxes[4 * i] + 0.5f * ex_width;
|
|
const float ex_ctr_y = boxes[4 * i + 1] + 0.5f * ex_height;
|
|
|
|
for(size_t j = 0; j < num_classes; ++j)
|
|
{
|
|
const float x1 = dist_x1(gen);
|
|
const float y1 = dist_y1(gen);
|
|
const float width = dist_w(gen);
|
|
const float height = dist_h(gen);
|
|
const float ctr_x = x1 + 0.5f * width;
|
|
const float ctr_y = y1 + 0.5f * height;
|
|
|
|
deltas[4 * num_classes * i + 4 * j] = (ctr_x - ex_ctr_x) / ex_width;
|
|
deltas[4 * num_classes * i + 4 * j + 1] = (ctr_y - ex_ctr_y) / ex_height;
|
|
deltas[4 * num_classes * i + 4 * j + 2] = log(width / ex_width);
|
|
deltas[4 * num_classes * i + 4 * j + 3] = log(height / ex_height);
|
|
}
|
|
}
|
|
return deltas;
|
|
}
|
|
|
|
std::vector<float> generate_boxes(const TensorShape &image_shape, size_t num_boxes, std::mt19937 &gen)
|
|
{
|
|
std::vector<float> boxes(num_boxes * 4);
|
|
|
|
std::uniform_int_distribution<> dist_x1(0, image_shape[0] - 1);
|
|
std::uniform_int_distribution<> dist_y1(0, image_shape[1] - 1);
|
|
std::uniform_int_distribution<> dist_w(1, image_shape[0]);
|
|
std::uniform_int_distribution<> dist_h(1, image_shape[1]);
|
|
|
|
for(size_t i = 0; i < num_boxes; ++i)
|
|
{
|
|
boxes[4 * i] = dist_x1(gen);
|
|
boxes[4 * i + 1] = dist_y1(gen);
|
|
boxes[4 * i + 2] = boxes[4 * i] + dist_w(gen) - 1;
|
|
boxes[4 * i + 3] = boxes[4 * i + 1] + dist_h(gen) - 1;
|
|
}
|
|
return boxes;
|
|
}
|
|
} // namespace
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class BoundingBoxTransformGenericFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
using TDeltas = typename std::conditional<std::is_same<typename std::decay<T>::type, uint16_t>::value, uint8_t, T>::type;
|
|
|
|
template <typename...>
|
|
void setup(TensorShape deltas_shape, const BoundingBoxTransformInfo &info, DataType data_type, QuantizationInfo deltas_qinfo)
|
|
{
|
|
const bool is_qasymm16 = data_type == DataType::QASYMM16;
|
|
_data_type_deltas = (is_qasymm16) ? DataType::QASYMM8 : data_type;
|
|
_boxes_qinfo = (is_qasymm16) ? QuantizationInfo(.125f, 0) : QuantizationInfo();
|
|
|
|
std::mt19937 gen_target(library->seed());
|
|
_target = compute_target(deltas_shape, data_type, info, gen_target, deltas_qinfo);
|
|
|
|
std::mt19937 gen_reference(library->seed());
|
|
_reference = compute_reference(deltas_shape, data_type, info, gen_reference, deltas_qinfo);
|
|
}
|
|
|
|
protected:
|
|
template <typename data_type, typename U>
|
|
void fill(U &&tensor, std::vector<float> values)
|
|
{
|
|
data_type *data_ptr = reinterpret_cast<data_type *>(tensor.data());
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
for(size_t i = 0; i < values.size(); ++i)
|
|
{
|
|
data_ptr[i] = quantize_qasymm8(values[i], tensor.quantization_info());
|
|
}
|
|
break;
|
|
case DataType::QASYMM16:
|
|
for(size_t i = 0; i < values.size(); ++i)
|
|
{
|
|
data_ptr[i] = quantize_qasymm16(values[i], tensor.quantization_info());
|
|
}
|
|
break;
|
|
default:
|
|
for(size_t i = 0; i < values.size(); ++i)
|
|
{
|
|
data_ptr[i] = static_cast<data_type>(values[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &deltas_shape, DataType data_type,
|
|
const BoundingBoxTransformInfo &bbox_info, std::mt19937 &gen,
|
|
QuantizationInfo deltas_qinfo)
|
|
{
|
|
// Create tensors
|
|
TensorShape boxes_shape(4, deltas_shape[1]);
|
|
TensorType deltas = create_tensor<TensorType>(deltas_shape, _data_type_deltas, 1, deltas_qinfo);
|
|
TensorType boxes = create_tensor<TensorType>(boxes_shape, data_type, 1, _boxes_qinfo);
|
|
TensorType pred_boxes;
|
|
|
|
// Create and configure function
|
|
FunctionType bbox_transform;
|
|
bbox_transform.configure(&boxes, &pred_boxes, &deltas, bbox_info);
|
|
|
|
ARM_COMPUTE_EXPECT(deltas.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(boxes.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(pred_boxes.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
deltas.allocator()->allocate();
|
|
boxes.allocator()->allocate();
|
|
pred_boxes.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!deltas.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!boxes.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
TensorShape img_shape(bbox_info.scale() * bbox_info.img_width(), bbox_info.scale() * bbox_info.img_height());
|
|
std::vector<float> boxes_vec = generate_boxes(img_shape, boxes_shape[1], gen);
|
|
std::vector<float> deltas_vec = generate_deltas(boxes_vec, img_shape, deltas_shape[1], deltas_shape[0] / 4, gen);
|
|
fill<T>(AccessorType(boxes), boxes_vec);
|
|
fill<TDeltas>(AccessorType(deltas), deltas_vec);
|
|
|
|
// Compute function
|
|
bbox_transform.run();
|
|
|
|
return pred_boxes;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &deltas_shape,
|
|
DataType data_type,
|
|
const BoundingBoxTransformInfo &bbox_info,
|
|
std::mt19937 &gen,
|
|
QuantizationInfo deltas_qinfo)
|
|
{
|
|
// Create reference tensor
|
|
TensorShape boxes_shape(4, deltas_shape[1]);
|
|
SimpleTensor<T> boxes{ boxes_shape, data_type, 1, _boxes_qinfo };
|
|
SimpleTensor<TDeltas> deltas{ deltas_shape, _data_type_deltas, 1, deltas_qinfo };
|
|
|
|
// Fill reference tensor
|
|
TensorShape img_shape(bbox_info.scale() * bbox_info.img_width(), bbox_info.scale() * bbox_info.img_height());
|
|
std::vector<float> boxes_vec = generate_boxes(img_shape, boxes_shape[1], gen);
|
|
std::vector<float> deltas_vec = generate_deltas(boxes_vec, img_shape, deltas_shape[1], deltas_shape[0] / 4, gen);
|
|
fill<T>(boxes, boxes_vec);
|
|
fill<TDeltas>(deltas, deltas_vec);
|
|
|
|
return reference::bounding_box_transform(boxes, deltas, bbox_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
DataType _data_type_deltas{};
|
|
QuantizationInfo _boxes_qinfo{};
|
|
|
|
private:
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class BoundingBoxTransformFixture : public BoundingBoxTransformGenericFixture<TensorType, AccessorType, FunctionType, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape deltas_shape, const BoundingBoxTransformInfo &info, DataType data_type)
|
|
{
|
|
BoundingBoxTransformGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(deltas_shape, info, data_type, QuantizationInfo());
|
|
}
|
|
|
|
private:
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class BoundingBoxTransformQuantizedFixture : public BoundingBoxTransformGenericFixture<TensorType, AccessorType, FunctionType, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape deltas_shape, const BoundingBoxTransformInfo &info, DataType data_type, QuantizationInfo deltas_qinfo)
|
|
{
|
|
BoundingBoxTransformGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(deltas_shape, info, data_type, deltas_qinfo);
|
|
}
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_BOUNDINGBOXTRANSFORM_FIXTURE */
|