1569 lines
65 KiB
C++
1569 lines
65 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_GEMM_FIXTURE
|
|
#define ARM_COMPUTE_TEST_GEMM_FIXTURE
|
|
|
|
#include "arm_compute/core/KernelDescriptors.h"
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/ActivationLayer.h"
|
|
#include "tests/validation/reference/GEMM.h"
|
|
|
|
#include <random>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool disable_c = false, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false>
|
|
class GEMMValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_c, TensorShape output_shape, float alpha, float beta, bool pretranspose, DataType data_type)
|
|
{
|
|
ARM_COMPUTE_UNUSED(pretranspose);
|
|
_target = compute_target(shape_a, shape_b, shape_c, output_shape, alpha, beta, data_type);
|
|
_reference = compute_reference(shape_a, shape_b, output_shape, alpha, beta, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
|
|
{
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::F16:
|
|
case DataType::F32:
|
|
{
|
|
std::uniform_real_distribution<> distribution(lo, hi);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
default:
|
|
library->fill_tensor_uniform(tensor, i);
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_c, const TensorShape &output_shape, float alpha, float beta,
|
|
DataType data_type)
|
|
{
|
|
// Create tensors
|
|
TensorType a = create_tensor<TensorType>(shape_a, data_type, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_b, data_type, 1);
|
|
TensorType c = create_tensor<TensorType>(shape_c, data_type, 1);
|
|
TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1);
|
|
|
|
// Create and configure function
|
|
FunctionType gemm;
|
|
// The GEMMinfo includes the values of the depth in case of reinterpreted 3d output.
|
|
// If the output shape has the same number of dimensions of the input the method called is a 2D matrix multiplication (depth_output_reinterpreted_as_3D = 0),
|
|
// in the other case we have to use the reinterpreted version of GEMM (depth_output_reinterpreted_as_3D = depth of the 3D output).
|
|
gemm.configure(&a,
|
|
&b,
|
|
(disable_c) ? nullptr : &c,
|
|
&dst,
|
|
alpha, beta,
|
|
GEMMInfo(false, false, false, (reinterpret_output_as_3d ? output_shape[2] : 0), reinterpret_input_as_3d, false, GEMMLowpOutputStageInfo(), false, (reinterpret_input_as_3d
|
|
|| reinterpret_output_as_3d)));
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
b.allocator()->allocate();
|
|
c.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(a), 0);
|
|
fill(AccessorType(b), 1);
|
|
if(!disable_c)
|
|
{
|
|
fill(AccessorType(c), 2);
|
|
}
|
|
|
|
// Compute GEMM function
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, float alpha, float beta,
|
|
DataType data_type)
|
|
{
|
|
TensorShape shape_a_to_use = shape_a;
|
|
|
|
if(reinterpret_input_as_3d)
|
|
{
|
|
// Collapse the second and third dimension if the input is 3D
|
|
shape_a_to_use.collapse(2U, 1U);
|
|
}
|
|
|
|
// Create reference
|
|
SimpleTensor<T> a{ shape_a_to_use, data_type, 1 };
|
|
SimpleTensor<T> b{ shape_b, data_type, 1 };
|
|
SimpleTensor<T> c{ output_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
fill(b, 1);
|
|
fill(c, 2);
|
|
|
|
if(reinterpret_input_as_3d || reinterpret_output_as_3d)
|
|
{
|
|
const int n = shape_b[0];
|
|
const int m = reinterpret_output_as_3d ? output_shape[1] * output_shape[2] : output_shape[1];
|
|
const int batch_size = reinterpret_output_as_3d ? output_shape[3] : output_shape[2];
|
|
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(c.data() + i * n, c.data(), n * sizeof(T));
|
|
}
|
|
}
|
|
|
|
// Setting beta to 0 will effectively disable C for the
|
|
// computation of the reference: alpha * A * B + 0 * C
|
|
return reference::gemm<T>(a, b, c, alpha, disable_c ? 0.f : beta);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiplyValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, bool broadcast_bias, bool fp16_mixed_precision, const ActivationLayerInfo &act_info,
|
|
DataType data_type, GPUTarget gpu_arch)
|
|
{
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n,
|
|
broadcast_bias ? 1 : m,
|
|
broadcast_bias ? 1 : batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, broadcast_bias, fp16_mixed_precision, act_info, gpu_arch);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, broadcast_bias, act_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
|
|
// Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
|
|
std::uniform_real_distribution<> distribution_inf(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity());
|
|
library->fill_borders_with_garbage(tensor, distribution_inf, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
|
|
bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType dst;
|
|
|
|
const unsigned int m = lhs_shape[1];
|
|
const unsigned int n = rhs_shape[0];
|
|
const unsigned int k = lhs_shape[0];
|
|
GEMMReshapeInfo reshape_info(m, n, k, 1, 1, 0, false, broadcast_bias);
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
GEMMFunctionType gemm;
|
|
gemm.configure(gpu_arch, &lhs, &rhs, &bias, &dst, alpha, beta, false, reshape_info, fp16_mixed_precision, act_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
if(broadcast_bias)
|
|
{
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiply3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, bool broadcast_bias, bool fp16_mixed_precision,
|
|
const ActivationLayerInfo &act_info, DataType data_type, GPUTarget gpu_arch)
|
|
{
|
|
ARM_COMPUTE_UNUSED(broadcast_bias);
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n, 1, 1);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, data_type, alpha, beta, m_h, fp16_mixed_precision, act_info, gpu_arch);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, m_h, act_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
|
|
bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType dst;
|
|
|
|
const unsigned int m = lhs_shape[1];
|
|
const unsigned int n = rhs_shape[0];
|
|
const unsigned int k = lhs_shape[0];
|
|
GEMMReshapeInfo reshape_info(m, n, k, 1, 1, m_h, false, true);
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
GEMMFunctionType gemm;
|
|
gemm.configure(gpu_arch, &lhs, &rhs, &bias, &dst, alpha, beta, false, reshape_info, fp16_mixed_precision, act_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiplyInterleavedTransposedValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, unsigned int v0, unsigned int h0, bool broadcast_bias, bool fp16_mixed_precision,
|
|
const ActivationLayerInfo &act_info, DataType data_type, GPUTarget gpu_arch)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = 4;
|
|
lhs_info.k0 = 4;
|
|
lhs_info.v0 = v0;
|
|
lhs_info.interleave = true;
|
|
lhs_info.transpose = true;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = 16 / sizeof(T);
|
|
rhs_info.k0 = 1;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = false;
|
|
rhs_info.transpose = false;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n,
|
|
broadcast_bias ? 1 : m,
|
|
broadcast_bias ? 1 : batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, broadcast_bias, fp16_mixed_precision, act_info, gpu_arch);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, broadcast_bias, act_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
|
|
// Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
|
|
std::uniform_real_distribution<> distribution_inf(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity());
|
|
library->fill_borders_with_garbage(tensor, distribution_inf, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta, bool broadcast_bias, bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType lhs_reshaped;
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int m = lhs_shape[1];
|
|
const unsigned int n = rhs_shape[0];
|
|
const unsigned int k = lhs_shape[0];
|
|
GEMMReshapeInfo reshape_info(m, n, k, rhs_info.h0, lhs_info.v0, 0, false, broadcast_bias);
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeLHSFunctionType reshape_lhs;
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(gpu_arch, &lhs_reshaped, &rhs_reshaped, &bias, &dst, alpha, beta, true, reshape_info, fp16_mixed_precision, act_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
lhs_reshaped.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
reshape_lhs.run();
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
if(broadcast_bias)
|
|
{
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiplyInterleavedTransposed3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, float alpha, float beta, unsigned int v0, unsigned int h0, bool broadcast_bias,
|
|
bool fp16_mixed_precision, const ActivationLayerInfo &act_info, DataType data_type, GPUTarget gpu_arch)
|
|
{
|
|
ARM_COMPUTE_UNUSED(broadcast_bias);
|
|
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = 4;
|
|
lhs_info.k0 = 4;
|
|
lhs_info.v0 = v0;
|
|
lhs_info.interleave = true;
|
|
lhs_info.transpose = true;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = 16 / sizeof(T);
|
|
rhs_info.k0 = 1;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = false;
|
|
rhs_info.transpose = false;
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n, 1, 1);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, m_h, fp16_mixed_precision, act_info, gpu_arch);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, m_h, act_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta, unsigned int m_h, bool fp16_mixed_precision, const ActivationLayerInfo &act_info, GPUTarget gpu_arch)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType lhs_reshaped;
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int m = lhs_shape[1];
|
|
const unsigned int n = rhs_shape[0];
|
|
const unsigned int k = lhs_shape[0];
|
|
GEMMReshapeInfo reshape_info(m, n, k, rhs_info.h0, lhs_info.v0, m_h, false, true);
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeLHSFunctionType reshape_lhs;
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(gpu_arch, &lhs_reshaped, &rhs_reshaped, &bias, &dst, alpha, beta, true, reshape_info, fp16_mixed_precision, act_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
lhs_reshaped.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
reshape_lhs.run();
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType, bool fp_mixed_precision = false>
|
|
class GEMMMatrixMultiplyReshapedValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs,
|
|
bool interleave_rhs, bool export_to_cl_image, DataType data_type, float alpha, float beta, bool broadcast_bias, bool lhs_transpose, const ActivationLayerInfo &act_info)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
lhs_info.v0 = v0;
|
|
lhs_info.interleave = interleave_lhs;
|
|
lhs_info.transpose = lhs_transpose;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = !lhs_transpose;
|
|
rhs_info.export_to_cl_image = export_to_cl_image;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n,
|
|
broadcast_bias ? 1 : m,
|
|
broadcast_bias ? 1 : batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, broadcast_bias, act_info);
|
|
if(validate_result)
|
|
{
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, broadcast_bias, act_info);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
|
|
// Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
|
|
std::uniform_real_distribution<> distribution_inf(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity());
|
|
library->fill_borders_with_garbage(tensor, distribution_inf, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType lhs_reshaped;
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
GEMMKernelInfo kernel_info;
|
|
kernel_info.m = M;
|
|
kernel_info.n = N;
|
|
kernel_info.k = K;
|
|
kernel_info.depth_output_gemm3d = 0;
|
|
kernel_info.reinterpret_input_as_3d = false;
|
|
kernel_info.broadcast_bias = broadcast_bias;
|
|
kernel_info.activation_info = act_info;
|
|
kernel_info.fp_mixed_precision = fp_mixed_precision;
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeLHSFunctionType reshape_lhs;
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
|
|
validate_result = bool(reshape_rhs.validate(rhs.info(), rhs_reshaped.info(), rhs_info));
|
|
validate_result = validate_result || !rhs_info.export_to_cl_image;
|
|
if(!validate_result)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs_reshaped, &rhs_reshaped, &bias, &dst, alpha, beta, lhs_info, rhs_info, kernel_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
lhs_reshaped.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
reshape_lhs.run();
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
if(broadcast_bias)
|
|
{
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
}
|
|
|
|
if(fp_mixed_precision)
|
|
{
|
|
return reference::activation_layer(reference::gemm_mixed_precision<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
else
|
|
{
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
}
|
|
|
|
bool validate_result = true;
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType, bool fp_mixed_precision = false>
|
|
class GEMMMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0,
|
|
bool interleave_lhs, bool interleave_rhs, bool export_to_cl_image, DataType data_type, float alpha, float beta, bool lhs_transpose, const ActivationLayerInfo &act_info)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
lhs_info.v0 = v0;
|
|
lhs_info.interleave = interleave_lhs;
|
|
lhs_info.transpose = lhs_transpose;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = !lhs_transpose;
|
|
rhs_info.export_to_cl_image = export_to_cl_image;
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n, 1, 1);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, m_h, act_info);
|
|
if(validate_result)
|
|
{
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, m_h, act_info);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta, unsigned int m_h, const ActivationLayerInfo &act_info)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType lhs_reshaped;
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
GEMMKernelInfo kernel_info;
|
|
kernel_info.m = M;
|
|
kernel_info.n = N;
|
|
kernel_info.k = K;
|
|
kernel_info.depth_output_gemm3d = m_h;
|
|
kernel_info.reinterpret_input_as_3d = false;
|
|
kernel_info.broadcast_bias = true;
|
|
kernel_info.activation_info = act_info;
|
|
kernel_info.fp_mixed_precision = fp_mixed_precision;
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeLHSFunctionType reshape_lhs;
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
|
|
validate_result = bool(reshape_rhs.validate(rhs.info(), rhs_reshaped.info(), rhs_info));
|
|
validate_result = validate_result || !rhs_info.export_to_cl_image;
|
|
if(!validate_result)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs_reshaped, &rhs_reshaped, &bias, &dst, alpha, beta, lhs_info, rhs_info, kernel_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
lhs_reshaped.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
reshape_lhs.run();
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
|
|
if(fp_mixed_precision)
|
|
{
|
|
return reference::activation_layer(reference::gemm_mixed_precision<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
else
|
|
{
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
}
|
|
|
|
bool validate_result = true;
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiplyReshapedOnlyRHSValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0,
|
|
bool interleave_rhs, bool transpose_rhs, bool export_to_cl_image, DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = transpose_rhs;
|
|
rhs_info.export_to_cl_image = export_to_cl_image;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n,
|
|
broadcast_bias ? 1 : m,
|
|
broadcast_bias ? 1 : batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, broadcast_bias, act_info);
|
|
if(validate_result)
|
|
{
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, broadcast_bias, act_info);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
|
|
// Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
|
|
std::uniform_real_distribution<> distribution_inf(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity());
|
|
library->fill_borders_with_garbage(tensor, distribution_inf, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
GEMMKernelInfo kernel_info;
|
|
kernel_info.m = M;
|
|
kernel_info.n = N;
|
|
kernel_info.k = K;
|
|
kernel_info.depth_output_gemm3d = 0;
|
|
kernel_info.reinterpret_input_as_3d = false;
|
|
kernel_info.broadcast_bias = broadcast_bias;
|
|
kernel_info.activation_info = act_info;
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
|
|
validate_result = bool(reshape_rhs.validate(rhs.info(), rhs_reshaped.info(), rhs_info));
|
|
validate_result = validate_result || !rhs_info.export_to_cl_image;
|
|
if(!validate_result)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs, &rhs_reshaped, &bias, &dst, alpha, beta, lhs_info, rhs_info, kernel_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
if(broadcast_bias)
|
|
{
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
bool validate_result = true;
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiplyReshapedOnlyRHS3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0,
|
|
bool interleave_rhs, bool transpose_rhs, bool export_to_cl_image, bool has_pad_y, DataType data_type, float alpha, float beta, const ActivationLayerInfo &act_info)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = transpose_rhs;
|
|
rhs_info.export_to_cl_image = export_to_cl_image;
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n, 1, 1);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, m_h, act_info, has_pad_y);
|
|
if(validate_result)
|
|
{
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, m_h, act_info);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta,
|
|
unsigned int m_h, const ActivationLayerInfo &act_info, bool has_pad_y)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
GEMMKernelInfo kernel_info;
|
|
kernel_info.m = M;
|
|
kernel_info.n = N;
|
|
kernel_info.k = K;
|
|
kernel_info.depth_output_gemm3d = m_h;
|
|
kernel_info.reinterpret_input_as_3d = false;
|
|
kernel_info.broadcast_bias = true;
|
|
kernel_info.activation_info = act_info;
|
|
kernel_info.has_pad_y = has_pad_y;
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
// Create and configure function
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
|
|
validate_result = bool(reshape_rhs.validate(rhs.info(), rhs_reshaped.info(), rhs_info));
|
|
validate_result = validate_result || !rhs_info.export_to_cl_image;
|
|
if(!validate_result)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs, &rhs_reshaped, &bias, &dst, alpha, beta, lhs_info, rhs_info, kernel_info);
|
|
|
|
if(has_pad_y)
|
|
{
|
|
// Add dummy padding into lhs to validate has_pad_y path
|
|
lhs.info()->extend_padding(PaddingSize(2, 0, 2, 0));
|
|
dst.info()->extend_padding(PaddingSize(2, 0, 1, 0));
|
|
}
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
bool validate_result = true;
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiplyNativeValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, DataType data_type, float alpha, float beta, bool broadcast_bias,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n,
|
|
broadcast_bias ? 1 : m,
|
|
broadcast_bias ? 1 : batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, broadcast_bias, act_info);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, broadcast_bias, act_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
|
|
// Fill border with infinity in order to check the presence of NaN values (i.e. inf * 0)
|
|
std::uniform_real_distribution<> distribution_inf(std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity());
|
|
library->fill_borders_with_garbage(tensor, distribution_inf, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
GEMMKernelInfo kernel_info;
|
|
kernel_info.m = M;
|
|
kernel_info.n = N;
|
|
kernel_info.k = K;
|
|
kernel_info.depth_output_gemm3d = 0;
|
|
kernel_info.reinterpret_input_as_3d = false;
|
|
kernel_info.broadcast_bias = broadcast_bias;
|
|
kernel_info.activation_info = act_info;
|
|
|
|
// Create and configure function
|
|
GEMMFunctionType gemm;
|
|
gemm.configure(&lhs, &rhs, &bias, &dst, alpha, beta, lhs_info, rhs_info, kernel_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, bool broadcast_bias,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
if(broadcast_bias)
|
|
{
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename T, typename GEMMFunctionType>
|
|
class GEMMMatrixMultiplyNative3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, DataType data_type, float alpha, float beta,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
const TensorShape bias_shape(n, 1, 1);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, alpha, beta, m_h, act_info);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type, alpha, beta, m_h, act_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
|
|
DataType data_type, float alpha, float beta, unsigned int m_h, const ActivationLayerInfo &act_info)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, data_type, 1);
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
GEMMKernelInfo kernel_info;
|
|
kernel_info.m = M;
|
|
kernel_info.n = N;
|
|
kernel_info.k = K;
|
|
kernel_info.depth_output_gemm3d = m_h;
|
|
kernel_info.reinterpret_input_as_3d = false;
|
|
kernel_info.broadcast_bias = true;
|
|
kernel_info.activation_info = act_info;
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
GEMMFunctionType gemm;
|
|
gemm.configure(&lhs, &rhs, &bias, &dst, alpha, beta, lhs_info, rhs_info, kernel_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute GEMM
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type, float alpha, float beta, unsigned int m_h,
|
|
const ActivationLayerInfo &act_info)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
// Create reference
|
|
SimpleTensor<T> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<T> rhs{ rhs_shape, data_type, 1 };
|
|
SimpleTensor<T> bias{ dst_shape, data_type, 1 };
|
|
|
|
const int n = rhs_shape[0];
|
|
const int m = lhs_shape[1];
|
|
const int batch_size = lhs_shape[2];
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
fill(bias, 2);
|
|
|
|
// In case of broadcast, we need simply copy the first into the following "M" ones
|
|
for(int i = 1; i < m * batch_size; i++)
|
|
{
|
|
memcpy(bias.data() + i * n, bias.data(), n * sizeof(T));
|
|
}
|
|
|
|
return reference::activation_layer(reference::gemm<T>(lhs, rhs, bias, alpha, beta), act_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_GEMM_FIXTURE */
|