1641 lines
64 KiB
C++
1641 lines
64 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
|
|
#define ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
|
|
|
|
#include "arm_compute/core/KernelDescriptors.h"
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/GEMMLowp.h"
|
|
|
|
#include <random>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace
|
|
{
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::QSYMM8_PER_CHANNEL:
|
|
{
|
|
int min_bound = 128;
|
|
int max_bound = -127;
|
|
for(size_t j = 0; j < tensor.quantization_info().scale().size(); j++)
|
|
{
|
|
std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
|
|
if(bounds.first < min_bound)
|
|
{
|
|
min_bound = bounds.first;
|
|
}
|
|
if(bounds.second > max_bound)
|
|
{
|
|
max_bound = bounds.second;
|
|
}
|
|
}
|
|
std::uniform_int_distribution<int8_t> distribution(min_bound, max_bound);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
case DataType::QASYMM8:
|
|
{
|
|
std::uniform_int_distribution<uint8_t> distribution(1, 254);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
case DataType::F16:
|
|
case DataType::F32:
|
|
{
|
|
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
default:
|
|
library->fill_tensor_uniform(tensor, i);
|
|
}
|
|
}
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d, bool reinterpret_output_as_3d, typename OutputType, bool is_fused = false>
|
|
TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
|
|
GEMMLowpOutputStageInfo output_stage = GEMMLowpOutputStageInfo(), DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8,
|
|
QuantizationInfo b_qinfo = QuantizationInfo())
|
|
{
|
|
// Create tensors
|
|
DataType data_type_output = output_stage.type == GEMMLowpOutputStageType::NONE ? DataType::S32 : data_type_a;
|
|
|
|
TensorType a = create_tensor<TensorType>(shape_a, data_type_a, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_b, data_type_b, 1); // gemm output before output stage mismatch if i pass data_layout_output here. to be investigated
|
|
TensorType output = create_tensor<TensorType>(shape_output, data_type_output, 1);
|
|
|
|
a.info()->set_quantization_info(QuantizationInfo(1.0f / 255, a_offset));
|
|
|
|
if(data_type_b == DataType::QSYMM8_PER_CHANNEL)
|
|
{
|
|
b.info()->set_quantization_info(b_qinfo);
|
|
}
|
|
else
|
|
{
|
|
b.info()->set_quantization_info(QuantizationInfo(1.0f / 255, b_offset));
|
|
}
|
|
TensorType bias;
|
|
if(is_fused)
|
|
{
|
|
TensorShape bias_shape(shape_b[0]);
|
|
bias = create_tensor<TensorType>(bias_shape, DataType::S32, 1);
|
|
}
|
|
|
|
// Create and configure function
|
|
// The GEMMinfo includes the values of the depth in case of reinterpreted 3d input/output
|
|
FunctionType gemmlowp;
|
|
// TODO (COMPMID-1672) - Extending the test to validate add bias in offset contribution
|
|
gemmlowp.configure(&a, &b, is_fused ? &bias : nullptr, &output, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_output[2] : 0), reinterpret_input_as_3d, false, output_stage));
|
|
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(output.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
b.allocator()->allocate();
|
|
output.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!output.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(a), 0);
|
|
fill(AccessorType(b), 1);
|
|
|
|
if(is_fused)
|
|
{
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
bias.allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
fill(AccessorType(bias), 2);
|
|
}
|
|
// Compute GEMM function
|
|
gemmlowp.run();
|
|
return output;
|
|
}
|
|
|
|
template <bool reinterpret_input_as_3d, typename TI = uint8_t, typename TW = uint8_t>
|
|
SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
|
|
DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8, QuantizationInfo b_qinfo = QuantizationInfo())
|
|
{
|
|
TensorShape shape_a_to_use = shape_a;
|
|
if(reinterpret_input_as_3d)
|
|
{
|
|
// Collapse the second and third dimension if the input is 3D
|
|
shape_a_to_use.collapse(2U, 1U);
|
|
}
|
|
|
|
// Create reference
|
|
SimpleTensor<TI> a{ shape_a_to_use, data_type_a, 1 };
|
|
SimpleTensor<TW> b{ shape_b, data_type_b, 1, data_type_b == DataType::QSYMM8_PER_CHANNEL ? b_qinfo : QuantizationInfo(1.0f / 255, b_offset) };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
fill(b, 1);
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, TI, TW>(a, b, shape_output, a_offset, b_offset);
|
|
}
|
|
}
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false>
|
|
class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset)
|
|
{
|
|
_target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset);
|
|
_reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset);
|
|
}
|
|
|
|
protected:
|
|
TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
|
|
{
|
|
return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, int32_t>(shape_a, shape_b, shape_output, a_offset, b_offset);
|
|
}
|
|
|
|
SimpleTensor<int32_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
|
|
{
|
|
return compute_gemmlowp_reference<reinterpret_input_as_3d>(shape_a, shape_b, shape_output, a_offset, b_offset);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int32_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, typename TI = uint8_t, typename TW = uint8_t>
|
|
class GEMMLowpMatrixMultiplyCoreFusedOffsetOutputValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage, DataType data_type_b)
|
|
{
|
|
ARM_COMPUTE_EXPECT(output_stage.type != GEMMLowpOutputStageType::NONE, framework::LogLevel::ERRORS);
|
|
DataType data_type_a = data_type_b == DataType::QASYMM8_SIGNED ? DataType::QASYMM8_SIGNED : DataType::QASYMM8;
|
|
|
|
if(data_type_b == DataType::QSYMM8_PER_CHANNEL)
|
|
{
|
|
output_stage.is_quantized_per_channel = true;
|
|
const size_t num_channels = shape_b[0];
|
|
std::vector<float> scales(num_channels);
|
|
std::uniform_real_distribution<> distribution(0, 1);
|
|
library->fill(scales, distribution, 0);
|
|
output_stage.gemmlowp_multipliers.resize(num_channels);
|
|
output_stage.gemmlowp_shifts.resize(num_channels);
|
|
for(size_t i = 0; i < num_channels; ++i)
|
|
{
|
|
quantization::calculate_quantized_multiplier(scales[i], &output_stage.gemmlowp_multipliers[i], &output_stage.gemmlowp_shifts[i]);
|
|
}
|
|
|
|
_reference = compute_reference(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales));
|
|
_target = compute_target(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales));
|
|
}
|
|
else
|
|
{
|
|
_reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo());
|
|
_target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo());
|
|
}
|
|
}
|
|
|
|
protected:
|
|
TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage,
|
|
DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo)
|
|
{
|
|
return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, qasymm8_t, true>(shape_a, shape_b, shape_output, a_offset, b_offset,
|
|
output_stage, data_type_a, data_type_b, b_qinfo);
|
|
}
|
|
|
|
SimpleTensor<TI> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
|
|
GEMMLowpOutputStageInfo output_stage, DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo)
|
|
{
|
|
SimpleTensor<int32_t> output = compute_gemmlowp_reference<reinterpret_input_as_3d, TI, TW>(shape_a, shape_b, shape_output, a_offset, b_offset, data_type_a, data_type_b, b_qinfo);
|
|
|
|
TensorShape bias_shape(shape_b[0]);
|
|
SimpleTensor<int32_t> bias{ bias_shape, DataType::S32, 1 };
|
|
fill(bias, 2);
|
|
|
|
switch(output_stage.type)
|
|
{
|
|
case GEMMLowpOutputStageType::QUANTIZE_DOWN:
|
|
return reference::gemmlowp_quantize_down_scale<int32_t, TW>(output, bias,
|
|
output_stage.gemmlowp_offset, output_stage.gemmlowp_multipliers, output_stage.gemmlowp_shifts, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound);
|
|
break;
|
|
case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT:
|
|
return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, TW>(output, bias,
|
|
output_stage.gemmlowp_multipliers, output_stage.gemmlowp_shifts, output_stage.gemmlowp_offset, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound);
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("Not Supported!");
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<TI> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType>
|
|
class GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
_target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
|
|
_reference = compute_reference(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_int_distribution<> distribution(-6000, 6000);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
// Create tensors
|
|
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
|
|
TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8, 1);
|
|
|
|
// Create and configure function
|
|
FunctionType output_stage;
|
|
GEMMLowpOutputStageInfo output_stage_info = GEMMLowpOutputStageInfo();
|
|
output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN;
|
|
output_stage_info.gemmlowp_offset = result_offset;
|
|
output_stage_info.gemmlowp_multiplier = result_mult_int;
|
|
output_stage_info.gemmlowp_shift = result_shift;
|
|
output_stage_info.gemmlowp_min_bound = min;
|
|
output_stage_info.gemmlowp_max_bound = max;
|
|
output_stage_info.output_data_type = DataType::QASYMM8;
|
|
output_stage.configure(&a, add_bias ? &b : nullptr, &c, output_stage_info);
|
|
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
c.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(a), 0);
|
|
|
|
if(add_bias)
|
|
{
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate bias tensor
|
|
b.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(b), 1);
|
|
}
|
|
|
|
// Compute GEMM function
|
|
output_stage.run();
|
|
return c;
|
|
}
|
|
|
|
SimpleTensor<uint8_t> compute_reference(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
// Create reference
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
|
|
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
|
|
const std::vector<int32_t> result_mult_int_vec = { result_mult_int };
|
|
const std::vector<int32_t> result_shift_vec = { result_shift };
|
|
|
|
if(add_bias)
|
|
{
|
|
// Fill bias
|
|
fill(b, 1);
|
|
|
|
return reference::gemmlowp_quantize_down_scale<int32_t, uint8_t>(a, b, result_offset, result_mult_int_vec, result_shift_vec, min, max);
|
|
}
|
|
else
|
|
{
|
|
return reference::gemmlowp_quantize_down_scale<int32_t, uint8_t>(a, result_offset, result_mult_int_vec, result_shift_vec, min, max);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<uint8_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType>
|
|
class GEMMLowpQuantizeDownInt32ToInt8ScaleValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
_target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
|
|
_reference = compute_reference(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_int_distribution<> distribution(-6000, 6000);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
// Create tensors
|
|
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
|
|
TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8_SIGNED, 1);
|
|
|
|
// Create and configure function
|
|
FunctionType output_stage;
|
|
GEMMLowpOutputStageInfo output_stage_info = GEMMLowpOutputStageInfo();
|
|
output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN;
|
|
output_stage_info.gemmlowp_offset = result_offset;
|
|
output_stage_info.gemmlowp_multiplier = result_mult_int;
|
|
output_stage_info.gemmlowp_shift = result_shift;
|
|
output_stage_info.gemmlowp_min_bound = min;
|
|
output_stage_info.gemmlowp_max_bound = max;
|
|
output_stage_info.output_data_type = DataType::QASYMM8_SIGNED;
|
|
output_stage.configure(&a, add_bias ? &b : nullptr, &c, output_stage_info);
|
|
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
c.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(a), 0);
|
|
|
|
if(add_bias)
|
|
{
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate bias tensor
|
|
b.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(b), 1);
|
|
}
|
|
|
|
// Compute GEMM function
|
|
output_stage.run();
|
|
return c;
|
|
}
|
|
|
|
SimpleTensor<int8_t> compute_reference(const TensorShape &shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
// Create reference
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
|
|
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
|
|
const std::vector<int32_t> result_mult_int_vec = { result_mult_int };
|
|
const std::vector<int32_t> result_shift_vec = { result_shift };
|
|
|
|
if(add_bias)
|
|
{
|
|
// Fill bias
|
|
fill(b, 1);
|
|
|
|
return reference::gemmlowp_quantize_down_scale<int32_t, int8_t>(a, b, result_offset, result_mult_int_vec, result_shift_vec, min, max);
|
|
}
|
|
else
|
|
{
|
|
return reference::gemmlowp_quantize_down_scale<int32_t, int8_t>(a, result_offset, result_mult_int_vec, result_shift_vec, min, max);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int8_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType>
|
|
class GEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
_target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
|
|
_reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_int_distribution<> distribution(-6000, 6000);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
// Create tensors
|
|
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
|
|
TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8_SIGNED, 1);
|
|
|
|
// Create and configure function
|
|
FunctionType output_stage;
|
|
output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
|
|
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
c.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(a), 0);
|
|
|
|
if(add_bias)
|
|
{
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate bias tensor
|
|
b.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(b), 1);
|
|
}
|
|
|
|
// Compute GEMM function
|
|
output_stage.run();
|
|
return c;
|
|
}
|
|
|
|
SimpleTensor<int8_t> compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max,
|
|
bool add_bias)
|
|
{
|
|
// Create reference
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
|
|
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
|
|
const std::vector<int32_t> result_fixed_point_multiplier_vec = { result_fixed_point_multiplier };
|
|
const std::vector<int32_t> result_shift_vec = { result_shift };
|
|
|
|
if(add_bias)
|
|
{
|
|
// Fill bias
|
|
fill(b, 1);
|
|
|
|
return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, int8_t>(a, b, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max);
|
|
}
|
|
else
|
|
{
|
|
return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, int8_t>(a, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int8_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType>
|
|
class GEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
_target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
|
|
_reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_int_distribution<> distribution(-6000, 6000);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
// Create tensors
|
|
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
|
|
TensorType c = create_tensor<TensorType>(shape, DataType::QASYMM8, 1);
|
|
|
|
// Create and configure function
|
|
FunctionType output_stage;
|
|
output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
|
|
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
c.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(a), 0);
|
|
|
|
if(add_bias)
|
|
{
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate bias tensor
|
|
b.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(b), 1);
|
|
}
|
|
|
|
// Compute GEMM function
|
|
output_stage.run();
|
|
return c;
|
|
}
|
|
|
|
SimpleTensor<uint8_t> compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max,
|
|
bool add_bias)
|
|
{
|
|
// Create reference
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
|
|
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
|
|
const std::vector<int32_t> result_fixed_point_multiplier_vec = { result_fixed_point_multiplier };
|
|
const std::vector<int32_t> result_shift_vec = { result_shift };
|
|
|
|
if(add_bias)
|
|
{
|
|
// Fill bias
|
|
fill(b, 1);
|
|
|
|
return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, uint8_t>(a, b, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max);
|
|
}
|
|
else
|
|
{
|
|
return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, uint8_t>(a, result_fixed_point_multiplier_vec, result_shift_vec, result_offset_after_shift, min, max);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<uint8_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class GEMMLowpQuantizeDownInt32ScaleByFloatValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(DataType data_type, TensorShape shape, float result_real_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
_target = compute_target(data_type, shape, result_real_multiplier, result_offset, min, max, add_bias);
|
|
_reference = compute_reference(shape, result_real_multiplier, result_offset, min, max, add_bias);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
// To avoid data all being clampped
|
|
std::uniform_int_distribution<> distribution(-500, 500);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(DataType data_type, const TensorShape &shape, float result_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
// Create tensors
|
|
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
|
|
TensorType c = create_tensor<TensorType>(shape, data_type, 1);
|
|
|
|
// create output stage info
|
|
GEMMLowpOutputStageInfo info;
|
|
info.gemmlowp_max_bound = max;
|
|
info.gemmlowp_min_bound = min;
|
|
info.gemmlowp_real_multiplier = result_multiplier;
|
|
info.gemmlowp_offset = result_offset;
|
|
info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT;
|
|
info.output_data_type = data_type;
|
|
|
|
// Create and configure function
|
|
FunctionType output_stage;
|
|
output_stage.configure(&a, add_bias ? &b : nullptr, &c, info);
|
|
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
c.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(a), 0);
|
|
|
|
if(add_bias)
|
|
{
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate bias tensor
|
|
b.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(b), 1);
|
|
}
|
|
|
|
// Compute GEMM function
|
|
output_stage.run();
|
|
return c;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &shape, float_t result_real_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
// Create reference
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
|
|
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
|
|
const std::vector<float_t> result_float_multiplier_vec = { result_real_multiplier };
|
|
|
|
if(add_bias)
|
|
{
|
|
// Fill bias
|
|
fill(b, 1);
|
|
|
|
return reference::gemmlowp_quantize_down_scale_by_float<int32_t, T>(a, b, result_float_multiplier_vec, result_offset, min, max);
|
|
}
|
|
else
|
|
{
|
|
return reference::gemmlowp_quantize_down_scale_by_float<int32_t, T>(a, result_float_multiplier_vec, result_offset, min, max);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType>
|
|
class GEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
_target = compute_target(shape, result_fixedpoint_multiplier, result_shift, min, max, add_bias);
|
|
_reference = compute_reference(shape, result_fixedpoint_multiplier, result_shift, min, max, add_bias);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_int_distribution<> distribution(-6000, 6000);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
|
|
{
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
// Create tensors
|
|
TensorType a = create_tensor<TensorType>(shape, DataType::S32, 1);
|
|
TensorType b = create_tensor<TensorType>(shape_bias, DataType::S32, 1);
|
|
TensorType c = create_tensor<TensorType>(shape, DataType::QSYMM16, 1);
|
|
|
|
// Create and configure function
|
|
FunctionType output_stage;
|
|
output_stage.configure(&a, add_bias ? &b : nullptr, &c, result_fixedpoint_multiplier, result_shift, min, max);
|
|
|
|
ARM_COMPUTE_EXPECT(a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
a.allocator()->allocate();
|
|
c.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!a.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!c.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(a), 0);
|
|
|
|
if(add_bias)
|
|
{
|
|
ARM_COMPUTE_EXPECT(b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate bias tensor
|
|
b.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!b.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
fill(AccessorType(b), 1);
|
|
}
|
|
|
|
// Compute GEMM function
|
|
output_stage.run();
|
|
return c;
|
|
}
|
|
|
|
SimpleTensor<int16_t> compute_reference(const TensorShape &shape, int32_t result_fixed_point_multiplier, int32_t result_shift, int32_t min, int32_t max,
|
|
bool add_bias)
|
|
{
|
|
// Create reference
|
|
TensorShape shape_bias(shape[0]);
|
|
|
|
SimpleTensor<int32_t> a{ shape, DataType::S32, 1 };
|
|
SimpleTensor<int32_t> b{ shape_bias, DataType::S32, 1 };
|
|
|
|
// Fill reference
|
|
fill(a, 0);
|
|
|
|
const std::vector<int32_t> result_fixed_point_multiplier_vec = { result_fixed_point_multiplier };
|
|
const std::vector<int32_t> result_shift_vec = { result_shift };
|
|
|
|
if(add_bias)
|
|
{
|
|
// Fill bias
|
|
fill(b, 1);
|
|
|
|
return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, int16_t>(a, b, result_fixed_point_multiplier_vec, result_shift_vec, 0, min, max);
|
|
}
|
|
else
|
|
{
|
|
return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, int16_t>(a, result_fixed_point_multiplier_vec, result_shift_vec, 0, min, max);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int16_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMLowpMatrixMultiplyReshapedValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs,
|
|
bool interleave_rhs, DataType data_type)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
lhs_info.v0 = v0;
|
|
lhs_info.interleave = interleave_lhs;
|
|
lhs_info.transpose = false;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = true;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
{
|
|
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
|
|
std::uniform_int_distribution<> distribution(1, 254);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
case DataType::QASYMM8_SIGNED:
|
|
{
|
|
std::uniform_int_distribution<> distribution(-127, 126);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported data type");
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, DataType data_type)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType lhs_reshaped;
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeLHSFunctionType reshape_lhs;
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
lhs_reshaped.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
|
|
// Compute GEMM
|
|
reshape_lhs.run();
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
switch(data_type)
|
|
{
|
|
case DataType::QASYMM8:
|
|
{
|
|
// Create reference
|
|
SimpleTensor<uint8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<uint8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
case DataType::QASYMM8_SIGNED:
|
|
{
|
|
// Create reference
|
|
SimpleTensor<int8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<int8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, int8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported data type");
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int32_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename ReshapeLHSFunctionType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMLowpMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0,
|
|
bool interleave_lhs, bool interleave_rhs, DataType data_type)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
lhs_info.v0 = v0;
|
|
lhs_info.interleave = interleave_lhs;
|
|
lhs_info.transpose = false;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = true;
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h, data_type);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, m_h, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
{
|
|
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
|
|
std::uniform_int_distribution<> distribution(1, 254);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
case DataType::QASYMM8_SIGNED:
|
|
{
|
|
std::uniform_int_distribution<> distribution(-127, 126);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported data type");
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h,
|
|
DataType data_type)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType lhs_reshaped;
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeLHSFunctionType reshape_lhs;
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
reshape_lhs.configure(&lhs, &lhs_reshaped, lhs_info);
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
lhs_reshaped.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!lhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
|
|
// Compute GEMM
|
|
reshape_lhs.run();
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h, DataType data_type)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
switch(data_type)
|
|
{
|
|
case DataType::QASYMM8:
|
|
{
|
|
// Create reference
|
|
SimpleTensor<uint8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<uint8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
case DataType::QASYMM8_SIGNED:
|
|
{
|
|
// Create reference
|
|
SimpleTensor<int8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<int8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, int8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported data type");
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int32_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMLowpMatrixMultiplyReshapedOnlyRHSValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0,
|
|
unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = transpose_rhs;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
{
|
|
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
|
|
std::uniform_int_distribution<> distribution(1, 254);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
case DataType::QASYMM8_SIGNED:
|
|
{
|
|
std::uniform_int_distribution<> distribution(-127, 126);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported data type");
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info,
|
|
const GEMMRHSMatrixInfo &rhs_info, DataType data_type)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
|
|
GEMMKernelInfo gemm_info;
|
|
gemm_info.m = M;
|
|
gemm_info.n = N;
|
|
gemm_info.k = K;
|
|
gemm_info.lhs_info = lhs_info;
|
|
gemm_info.rhs_info = rhs_info;
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs, &rhs_reshaped, &dst, gemm_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
|
|
// Compute GEMM
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
if(data_type == DataType::QASYMM8)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<uint8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<uint8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
else
|
|
{
|
|
// Create reference
|
|
SimpleTensor<int8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<int8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, int8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int32_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename ReshapeRHSFunctionType, typename GEMMFunctionType>
|
|
class GEMMLowpMatrixMultiplyReshapedOnlyRHS3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0,
|
|
unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
rhs_info.h0 = h0;
|
|
rhs_info.interleave = interleave_rhs;
|
|
rhs_info.transpose = transpose_rhs;
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h, data_type);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, m_h, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
{
|
|
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
|
|
std::uniform_int_distribution<> distribution(1, 254);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
case DataType::QASYMM8_SIGNED:
|
|
{
|
|
std::uniform_int_distribution<> distribution(-127, 126);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported data type");
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info,
|
|
const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h, DataType data_type)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
|
|
TensorType rhs_reshaped;
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
|
|
GEMMKernelInfo gemm_info;
|
|
gemm_info.m = M;
|
|
gemm_info.n = N;
|
|
gemm_info.k = K;
|
|
gemm_info.depth_output_gemm3d = m_h;
|
|
gemm_info.lhs_info = lhs_info;
|
|
gemm_info.rhs_info = rhs_info;
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
ReshapeRHSFunctionType reshape_rhs;
|
|
GEMMFunctionType gemm;
|
|
reshape_rhs.configure(&rhs, &rhs_reshaped, rhs_info);
|
|
gemm.configure(&lhs, &rhs_reshaped, &dst, gemm_info);
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
rhs_reshaped.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs_reshaped.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
|
|
// Compute GEMM
|
|
reshape_rhs.run();
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h, DataType data_type)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
if(data_type == DataType::QASYMM8)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<uint8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<uint8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
else
|
|
{
|
|
// Create reference
|
|
SimpleTensor<int8_t> lhs{ lhs_shape, data_type, 1 };
|
|
SimpleTensor<int8_t> rhs{ rhs_shape, data_type, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, int8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int32_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename GEMMFunctionType>
|
|
class GEMMLowpMatrixMultiplyNativeValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info);
|
|
_reference = compute_reference(lhs_shape, rhs_shape);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
|
|
std::uniform_int_distribution<> distribution(1, 254);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, DataType::QASYMM8, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, DataType::QASYMM8, 1);
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
GEMMFunctionType gemm;
|
|
gemm.configure(&lhs, &rhs, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
|
|
// Compute GEMM
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape[0] = rhs_shape[0];
|
|
dst_shape[1] = lhs_shape[1];
|
|
|
|
// Create reference
|
|
SimpleTensor<uint8_t> lhs{ lhs_shape, DataType::QASYMM8, 1 };
|
|
SimpleTensor<uint8_t> rhs{ rhs_shape, DataType::QASYMM8, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int32_t> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename GEMMFunctionType>
|
|
class GEMMLowpMatrixMultiplyNative3DValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0)
|
|
{
|
|
GEMMLHSMatrixInfo lhs_info;
|
|
lhs_info.m0 = m0;
|
|
lhs_info.k0 = k0;
|
|
|
|
GEMMRHSMatrixInfo rhs_info;
|
|
rhs_info.n0 = n0;
|
|
rhs_info.k0 = k0;
|
|
|
|
// In case of GEMM3D, m is the product between m_w and m_h
|
|
const unsigned int m = m_w * m_h;
|
|
|
|
// Set the tensor shapes for LHS and RHS matrices
|
|
const TensorShape lhs_shape(k, m, batch_size);
|
|
const TensorShape rhs_shape(n, k, batch_size);
|
|
|
|
_target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, m_h);
|
|
_reference = compute_reference(lhs_shape, rhs_shape, m_h);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
// Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
|
|
std::uniform_int_distribution<> distribution(1, 254);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, unsigned int m_h)
|
|
{
|
|
// Create tensors
|
|
TensorType lhs = create_tensor<TensorType>(lhs_shape, DataType::QASYMM8, 1);
|
|
TensorType rhs = create_tensor<TensorType>(rhs_shape, DataType::QASYMM8, 1);
|
|
TensorType dst;
|
|
|
|
const unsigned int M = lhs_shape[1];
|
|
const unsigned int N = rhs_shape[0];
|
|
const unsigned int K = lhs_shape[0];
|
|
|
|
// The output tensor will be auto-initialized within the function
|
|
|
|
// Create and configure function
|
|
GEMMFunctionType gemm;
|
|
gemm.configure(&lhs, &rhs, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));
|
|
|
|
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
lhs.allocator()->allocate();
|
|
rhs.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(lhs), 0);
|
|
fill(AccessorType(rhs), 1);
|
|
|
|
// Compute GEMM
|
|
gemm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, unsigned int m_h)
|
|
{
|
|
TensorShape dst_shape = lhs_shape;
|
|
dst_shape.set(0, rhs_shape[0]);
|
|
dst_shape.set(1, lhs_shape[1] / m_h);
|
|
dst_shape.set(2, m_h);
|
|
dst_shape.set(3, lhs_shape[2]);
|
|
|
|
// Create reference
|
|
SimpleTensor<uint8_t> lhs{ lhs_shape, DataType::QASYMM8, 1 };
|
|
SimpleTensor<uint8_t> rhs{ rhs_shape, DataType::QASYMM8, 1 };
|
|
|
|
// Fill reference
|
|
fill(lhs, 0);
|
|
fill(rhs, 1);
|
|
|
|
return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<int32_t> _reference{};
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE */
|