160 lines
7.1 KiB
C++
160 lines
7.1 KiB
C++
/*
|
|
* Copyright (c) 2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE
|
|
#define ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
|
|
#include "arm_compute/runtime/Tensor.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/reference/MaxUnpoolingLayer.h"
|
|
#include "tests/validation/reference/PoolingLayer.h"
|
|
#include <random>
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename AccessorType, typename PoolingFunctionType, typename MaxUnpoolingFunctionType, typename T>
|
|
class MaxUnpoolingLayerValidationGenericFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, PoolingLayerInfo pool_info, DataType data_type, DataLayout data_layout)
|
|
{
|
|
std::mt19937 gen(library->seed());
|
|
std::uniform_int_distribution<> offset_dis(0, 20);
|
|
const float scale = data_type == DataType::QASYMM8_SIGNED ? 1.f / 127.f : 1.f / 255.f;
|
|
const int scale_in = data_type == DataType::QASYMM8_SIGNED ? -offset_dis(gen) : offset_dis(gen);
|
|
const int scale_out = data_type == DataType::QASYMM8_SIGNED ? -offset_dis(gen) : offset_dis(gen);
|
|
const QuantizationInfo input_qinfo(scale, scale_in);
|
|
const QuantizationInfo output_qinfo(scale, scale_out);
|
|
_pool_info = pool_info;
|
|
_target = compute_target(shape, pool_info, data_type, data_layout, input_qinfo, output_qinfo);
|
|
_reference = compute_reference(shape, pool_info, data_type, input_qinfo, output_qinfo);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor)
|
|
{
|
|
if(!is_data_type_quantized(tensor.data_type()))
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.f, 1.f);
|
|
library->fill(tensor, distribution, 0);
|
|
}
|
|
else // data type is quantized_asymmetric
|
|
{
|
|
library->fill_tensor_uniform(tensor, 0);
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(TensorShape input_shape, PoolingLayerInfo pool_info,
|
|
DataType data_type, DataLayout data_layout,
|
|
QuantizationInfo input_qinfo, QuantizationInfo output_qinfo)
|
|
{
|
|
// Change shape in case of NHWC.
|
|
if(data_layout == DataLayout::NHWC)
|
|
{
|
|
permute(input_shape, PermutationVector(2U, 0U, 1U));
|
|
}
|
|
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, input_qinfo, data_layout);
|
|
const TensorShape dst_shape = misc::shape_calculator::compute_pool_shape(*(src.info()), pool_info);
|
|
TensorType dst = create_tensor<TensorType>(dst_shape, data_type, 1, output_qinfo, data_layout);
|
|
TensorType unpooled = create_tensor<TensorType>(input_shape, data_type, 1, output_qinfo, data_layout);
|
|
TensorType indices = create_tensor<TensorType>(dst_shape, DataType::U32, 1, output_qinfo, data_layout);
|
|
|
|
// Create and configure function
|
|
PoolingFunctionType pool_layer;
|
|
pool_layer.configure(&src, &dst, pool_info, &indices);
|
|
// Create and configure function
|
|
|
|
MaxUnpoolingFunctionType unpool_layer;
|
|
unpool_layer.configure(&dst, &indices, &unpooled, pool_info);
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(indices.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
indices.allocator()->allocate();
|
|
unpooled.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!indices.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!unpooled.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src));
|
|
|
|
// Compute function
|
|
pool_layer.run();
|
|
unpool_layer.run();
|
|
return unpooled;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(TensorShape input_shape, PoolingLayerInfo info, DataType data_type,
|
|
QuantizationInfo input_qinfo, QuantizationInfo output_qinfo)
|
|
{
|
|
SimpleTensor<T> src(input_shape, data_type, 1, input_qinfo);
|
|
SimpleTensor<uint32_t> indices{};
|
|
// Fill reference
|
|
fill(src);
|
|
auto pooled_tensor = reference::pooling_layer<T>(src, info, output_qinfo, &indices);
|
|
return reference::max_unpooling_layer<T>(pooled_tensor, info, output_qinfo, indices, input_shape);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
PoolingLayerInfo _pool_info{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename F1, typename F2, typename T>
|
|
class MaxUnpoolingLayerValidationFixture : public MaxUnpoolingLayerValidationGenericFixture<TensorType, AccessorType, F1, F2, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, PoolingType pool_type, Size2D pool_size, PadStrideInfo pad_stride_info, DataType data_type, DataLayout data_layout)
|
|
{
|
|
MaxUnpoolingLayerValidationGenericFixture<TensorType, AccessorType, F1, F2, T>::setup(shape, PoolingLayerInfo(pool_type, pool_size, data_layout, pad_stride_info, true),
|
|
data_type, data_layout);
|
|
}
|
|
};
|
|
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE */
|