139 lines
5.4 KiB
C++
139 lines
5.4 KiB
C++
/*
|
|
* Copyright (c) 2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_QLSTM_LAYER_NORMALIZATION_FIXTURE
|
|
#define ARM_COMPUTE_TEST_QLSTM_LAYER_NORMALIZATION_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/QLSTMLayerNormalization.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class QLSTMLayerNormalizationValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape input_shape, TensorShape weight_shape, TensorShape bias_shape, DataType data_type, QuantizationInfo weight_qinfo)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(data_type != DataType::QSYMM16);
|
|
|
|
_data_type = data_type;
|
|
_qinfo = weight_qinfo;
|
|
|
|
_target = compute_target(input_shape, weight_shape, bias_shape);
|
|
_reference = compute_reference(input_shape, weight_shape, bias_shape);
|
|
}
|
|
|
|
protected:
|
|
template <typename InputType, typename BiasType>
|
|
void fill(InputType &&input_tensor, InputType &&weight_tensor, BiasType &&bias_tensor)
|
|
{
|
|
switch(_data_type)
|
|
{
|
|
case DataType::QSYMM16:
|
|
{
|
|
// Value ranges are based on reference implementation's test case.
|
|
constexpr int16_t input_min = -1000;
|
|
constexpr int16_t input_max = 1000;
|
|
constexpr int16_t weight_min = 19000;
|
|
constexpr int16_t weight_max = 27000;
|
|
constexpr int32_t bias_min = -16000000;
|
|
constexpr int32_t bias_max = -13000000;
|
|
|
|
std::uniform_int_distribution<> input_distribution(input_min, input_max);
|
|
std::uniform_int_distribution<> weight_distribution(weight_min, weight_max);
|
|
std::uniform_int_distribution<> bias_distribution(bias_min, bias_max);
|
|
|
|
library->fill(input_tensor, input_distribution, 0);
|
|
library->fill(weight_tensor, weight_distribution, 0);
|
|
library->fill(bias_tensor, bias_distribution, 0);
|
|
break;
|
|
}
|
|
default:
|
|
ARM_COMPUTE_ERROR("non-supported data type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void allocate_tensors(const std::vector<TensorType *> &tensors)
|
|
{
|
|
for(auto t : tensors)
|
|
{
|
|
ARM_COMPUTE_EXPECT(t->info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
t->allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!t->info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &input_shape, const TensorShape &weight_shape, const TensorShape &bias_shape)
|
|
{
|
|
TensorType input = create_tensor<TensorType>(input_shape, _data_type, 1);
|
|
TensorType weight = create_tensor<TensorType>(weight_shape, _data_type, 1, _qinfo);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, DataType::S32, 1);
|
|
TensorType output = create_tensor<TensorType>(input_shape, _data_type, 1);
|
|
|
|
FunctionType fn;
|
|
fn.configure(&input, &output, &weight, &bias);
|
|
allocate_tensors({ &input, &weight, &bias, &output });
|
|
fill(AccessorType(input), AccessorType(weight), AccessorType(bias));
|
|
fn.run();
|
|
|
|
return output;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weight_shape, const TensorShape &bias_shape)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> input{ input_shape, _data_type, 1 };
|
|
SimpleTensor<T> weight{ weight_shape, _data_type, 1, _qinfo };
|
|
SimpleTensor<int32_t> bias{ bias_shape, DataType::S32, 1 };
|
|
|
|
// Fill reference
|
|
fill(input, weight, bias);
|
|
|
|
return reference::qlstm_layer_normalization(input, weight, bias);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
DataType _data_type{};
|
|
QuantizationInfo _qinfo{};
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
|
|
#endif /* ARM_COMPUTE_TEST_QLSTM_LAYER_NORMALIZATION_FIXTURE */
|