261 lines
8.3 KiB
C++
261 lines
8.3 KiB
C++
/*
|
|
* Copyright (c) 2018-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_SPLIT_FIXTURE
|
|
#define ARM_COMPUTE_TEST_SPLIT_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/RawLutAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/SliceOperations.h"
|
|
|
|
#include <algorithm>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename ITensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class SplitFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, unsigned int axis, unsigned int splits, DataType data_type)
|
|
{
|
|
_target = compute_target(shape, axis, splits, data_type);
|
|
_reference = compute_reference(shape, axis, splits, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
library->fill_tensor_uniform(tensor, i);
|
|
}
|
|
|
|
std::vector<TensorType> compute_target(const TensorShape &shape, unsigned int axis, unsigned int splits, DataType data_type)
|
|
{
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(shape, data_type);
|
|
std::vector<TensorType> dsts(splits);
|
|
std::vector<ITensorType *> dsts_ptr;
|
|
for(auto &dst : dsts)
|
|
{
|
|
dsts_ptr.emplace_back(&dst);
|
|
}
|
|
|
|
// Create and configure function
|
|
FunctionType split;
|
|
split.configure(&src, dsts_ptr, axis);
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(std::all_of(dsts.cbegin(), dsts.cend(), [](const TensorType & t)
|
|
{
|
|
return t.info()->is_resizable();
|
|
}),
|
|
framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
for(unsigned int i = 0; i < splits; ++i)
|
|
{
|
|
dsts[i].allocator()->allocate();
|
|
}
|
|
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(std::all_of(dsts.cbegin(), dsts.cend(), [](const TensorType & t)
|
|
{
|
|
return !t.info()->is_resizable();
|
|
}),
|
|
framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src), 0);
|
|
|
|
// Compute function
|
|
split.run();
|
|
|
|
return dsts;
|
|
}
|
|
|
|
std::vector<SimpleTensor<T>> compute_reference(const TensorShape &shape, unsigned int axis, unsigned int splits, DataType data_type)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> src{ shape, data_type };
|
|
std::vector<SimpleTensor<T>> dsts;
|
|
|
|
// Fill reference
|
|
fill(src, 0);
|
|
|
|
// Calculate splice for each split
|
|
const size_t axis_split_step = shape[axis] / splits;
|
|
unsigned int axis_offset = 0;
|
|
|
|
// Start/End coordinates
|
|
Coordinates start_coords;
|
|
Coordinates end_coords;
|
|
for(unsigned int d = 0; d < shape.num_dimensions(); ++d)
|
|
{
|
|
end_coords.set(d, -1);
|
|
}
|
|
|
|
for(unsigned int i = 0; i < splits; ++i)
|
|
{
|
|
// Update coordinate on axis
|
|
start_coords.set(axis, axis_offset);
|
|
end_coords.set(axis, axis_offset + axis_split_step);
|
|
|
|
dsts.emplace_back(std::move(reference::slice(src, start_coords, end_coords)));
|
|
|
|
axis_offset += axis_split_step;
|
|
}
|
|
|
|
return dsts;
|
|
}
|
|
|
|
std::vector<TensorType> _target{};
|
|
std::vector<SimpleTensor<T>> _reference{};
|
|
};
|
|
|
|
template <typename TensorType, typename ITensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class SplitShapesFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, unsigned int axis, std::vector<TensorShape> split_shapes, DataType data_type)
|
|
{
|
|
_target = compute_target(shape, axis, split_shapes, data_type);
|
|
_reference = compute_reference(shape, axis, split_shapes, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
library->fill_tensor_uniform(tensor, i);
|
|
}
|
|
|
|
std::vector<TensorType> compute_target(TensorShape shape, unsigned int axis, std::vector<TensorShape> split_shapes, DataType data_type)
|
|
{
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(shape, data_type);
|
|
std::vector<TensorType> dsts{};
|
|
std::vector<ITensorType *> dsts_ptr;
|
|
|
|
for(const auto &split_shape : split_shapes)
|
|
{
|
|
TensorType dst = create_tensor<TensorType>(split_shape, data_type);
|
|
dsts.push_back(std::move(dst));
|
|
}
|
|
|
|
for(auto &dst : dsts)
|
|
{
|
|
dsts_ptr.emplace_back(&dst);
|
|
}
|
|
|
|
// Create and configure function
|
|
FunctionType split;
|
|
split.configure(&src, dsts_ptr, axis);
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(std::all_of(dsts.cbegin(), dsts.cend(), [](const TensorType & t)
|
|
{
|
|
return t.info()->is_resizable();
|
|
}),
|
|
framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
for(unsigned int i = 0; i < dsts.size(); ++i)
|
|
{
|
|
dsts[i].allocator()->allocate();
|
|
}
|
|
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(std::all_of(dsts.cbegin(), dsts.cend(), [](const TensorType & t)
|
|
{
|
|
return !t.info()->is_resizable();
|
|
}),
|
|
framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src), 0);
|
|
|
|
// Compute function
|
|
split.run();
|
|
|
|
return dsts;
|
|
}
|
|
|
|
std::vector<SimpleTensor<T>> compute_reference(TensorShape shape, unsigned int axis, std::vector<TensorShape> split_shapes, DataType data_type)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> src{ shape, data_type };
|
|
std::vector<SimpleTensor<T>> dsts;
|
|
|
|
// Fill reference
|
|
fill(src, 0);
|
|
|
|
unsigned int axis_offset{ 0 };
|
|
for(const auto &split_shape : split_shapes)
|
|
{
|
|
// Calculate splice for each split
|
|
const size_t axis_split_step = split_shape[axis];
|
|
|
|
// Start/End coordinates
|
|
Coordinates start_coords;
|
|
Coordinates end_coords;
|
|
for(unsigned int d = 0; d < shape.num_dimensions(); ++d)
|
|
{
|
|
end_coords.set(d, -1);
|
|
}
|
|
|
|
// Update coordinate on axis
|
|
start_coords.set(axis, axis_offset);
|
|
end_coords.set(axis, axis_offset + axis_split_step);
|
|
|
|
dsts.emplace_back(std::move(reference::slice(src, start_coords, end_coords)));
|
|
|
|
axis_offset += axis_split_step;
|
|
}
|
|
|
|
return dsts;
|
|
}
|
|
|
|
std::vector<TensorType> _target{};
|
|
std::vector<SimpleTensor<T>> _reference{};
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_SPLIT_FIXTURE */
|