192 lines
5.9 KiB
C++
192 lines
5.9 KiB
C++
//
|
|
// Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
#include "../DriverTestHelpers.hpp"
|
|
#include "../TestTensor.hpp"
|
|
|
|
#include "../1.3/HalPolicy.hpp"
|
|
|
|
#include <armnn/utility/IgnoreUnused.hpp>
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/data/test_case.hpp>
|
|
|
|
|
|
BOOST_AUTO_TEST_SUITE(QosTests)
|
|
|
|
using ArmnnDriver = armnn_driver::ArmnnDriver;
|
|
using DriverOptions = armnn_driver::DriverOptions;
|
|
|
|
using namespace android::nn;
|
|
using namespace android::hardware;
|
|
using namespace driverTestHelpers;
|
|
using namespace armnn_driver;
|
|
|
|
using HalPolicy = hal_1_3::HalPolicy;
|
|
|
|
namespace
|
|
{
|
|
|
|
void ExecuteModel(const armnn_driver::hal_1_3::HalPolicy::Model& model,
|
|
armnn_driver::ArmnnDriver& driver,
|
|
const V1_0::Request& request)
|
|
{
|
|
android::sp<V1_3::IPreparedModel> preparedModel = PrepareModel_1_3(model, driver);
|
|
if (preparedModel.get() != nullptr)
|
|
{
|
|
Execute(preparedModel, request);
|
|
}
|
|
}
|
|
|
|
#ifndef ARMCOMPUTECL_ENABLED
|
|
static const std::array<armnn::Compute, 1> COMPUTE_DEVICES = {{ armnn::Compute::CpuRef }};
|
|
#else
|
|
static const std::array<armnn::Compute, 2> COMPUTE_DEVICES = {{ armnn::Compute::CpuRef, armnn::Compute::CpuAcc }};
|
|
#endif
|
|
|
|
BOOST_AUTO_TEST_CASE(ConcurrentExecuteWithQosPriority)
|
|
{
|
|
ALOGI("ConcurrentExecuteWithQOSPriority: entry");
|
|
|
|
auto driver = std::make_unique<ArmnnDriver>(DriverOptions(armnn::Compute::CpuRef));
|
|
HalPolicy::Model model = {};
|
|
|
|
// add operands
|
|
int32_t actValue = 0;
|
|
float weightValue[] = {2, 4, 1};
|
|
float biasValue[] = {4};
|
|
|
|
AddInputOperand<HalPolicy>(model, hidl_vec<uint32_t>{1, 3});
|
|
AddTensorOperand<HalPolicy>(model,
|
|
hidl_vec<uint32_t>{1, 3},
|
|
weightValue,
|
|
HalPolicy::OperandType::TENSOR_FLOAT32,
|
|
V1_3::OperandLifeTime::CONSTANT_COPY);
|
|
AddTensorOperand<HalPolicy>(model,
|
|
hidl_vec<uint32_t>{1},
|
|
biasValue,
|
|
HalPolicy::OperandType::TENSOR_FLOAT32,
|
|
V1_3::OperandLifeTime::CONSTANT_COPY);
|
|
AddIntOperand<HalPolicy>(model, actValue);
|
|
AddOutputOperand<HalPolicy>(model, hidl_vec<uint32_t>{1, 1});
|
|
|
|
// make the fully connected operation
|
|
model.main.operations.resize(1);
|
|
model.main.operations[0].type = HalPolicy::OperationType::FULLY_CONNECTED;
|
|
model.main.operations[0].inputs = hidl_vec<uint32_t>{0, 1, 2, 3};
|
|
model.main.operations[0].outputs = hidl_vec<uint32_t>{4};
|
|
|
|
// make the prepared models
|
|
const size_t maxRequests = 45;
|
|
size_t preparedModelsSize = 0;
|
|
android::sp<V1_3::IPreparedModel> preparedModels[maxRequests];
|
|
V1_3::ErrorStatus status(V1_3::ErrorStatus::NONE);
|
|
size_t start = preparedModelsSize;
|
|
for (size_t i = start; i < start+15; ++i)
|
|
{
|
|
preparedModels[i] = PrepareModelWithStatus_1_3(model, *driver, status, V1_3::Priority::LOW);
|
|
preparedModelsSize++;
|
|
}
|
|
start = preparedModelsSize;
|
|
for (size_t i = start; i < start+15; ++i)
|
|
{
|
|
preparedModels[i] = PrepareModelWithStatus_1_3(model, *driver, status, V1_3::Priority::MEDIUM);
|
|
preparedModelsSize++;
|
|
}
|
|
start = preparedModelsSize;
|
|
for (size_t i = start; i < start+15; ++i)
|
|
{
|
|
preparedModels[i] = PrepareModelWithStatus_1_3(model, *driver, status, V1_3::Priority::HIGH);
|
|
preparedModelsSize++;
|
|
}
|
|
|
|
BOOST_TEST(maxRequests == preparedModelsSize);
|
|
|
|
// construct the request data
|
|
DataLocation inloc = {};
|
|
inloc.poolIndex = 0;
|
|
inloc.offset = 0;
|
|
inloc.length = 3 * sizeof(float);
|
|
RequestArgument input = {};
|
|
input.location = inloc;
|
|
input.dimensions = hidl_vec<uint32_t>{};
|
|
|
|
DataLocation outloc = {};
|
|
outloc.poolIndex = 1;
|
|
outloc.offset = 0;
|
|
outloc.length = 1 * sizeof(float);
|
|
RequestArgument output = {};
|
|
output.location = outloc;
|
|
output.dimensions = hidl_vec<uint32_t>{};
|
|
|
|
// build the requests
|
|
V1_0::Request requests[maxRequests];
|
|
android::sp<IMemory> outMemory[maxRequests];
|
|
float* outdata[maxRequests];
|
|
for (size_t i = 0; i < maxRequests; ++i)
|
|
{
|
|
requests[i].inputs = hidl_vec<RequestArgument>{input};
|
|
requests[i].outputs = hidl_vec<RequestArgument>{output};
|
|
// set the input data (matching source test)
|
|
float inDataLow[] = {2, 32, 16};
|
|
float inDataMedium[] = {1, 31, 11};
|
|
float inDataHigh[] = {3, 33, 17};
|
|
if (i < 15)
|
|
{
|
|
AddPoolAndSetData<float>(3, requests[i], inDataLow);
|
|
}
|
|
else if (i < 30)
|
|
{
|
|
AddPoolAndSetData<float>(3, requests[i], inDataMedium);
|
|
}
|
|
else
|
|
{
|
|
AddPoolAndSetData<float>(3, requests[i], inDataHigh);
|
|
}
|
|
// add memory for the output
|
|
outMemory[i] = AddPoolAndGetData<float>(1, requests[i]);
|
|
outdata[i] = static_cast<float*>(static_cast<void*>(outMemory[i]->getPointer()));
|
|
}
|
|
|
|
// invoke the execution of the requests
|
|
ALOGI("ConcurrentExecuteWithQOSPriority: executing requests");
|
|
android::sp<ExecutionCallback> cb[maxRequests];
|
|
for (size_t i = 0; i < maxRequests; ++i)
|
|
{
|
|
cb[i] = ExecuteNoWait(preparedModels[i], requests[i]);
|
|
}
|
|
|
|
// wait for the requests to complete
|
|
ALOGI("ConcurrentExecuteWithQOSPriority: waiting for callbacks");
|
|
for (size_t i = 0; i < maxRequests; ++i)
|
|
{
|
|
ARMNN_ASSERT(cb[i]);
|
|
cb[i]->wait();
|
|
}
|
|
|
|
// check the results
|
|
ALOGI("ConcurrentExecuteWithQOSPriority: validating results");
|
|
for (size_t i = 0; i < maxRequests; ++i)
|
|
{
|
|
if (i < 15)
|
|
{
|
|
BOOST_TEST(outdata[i][0] == 152);
|
|
}
|
|
else if (i < 30)
|
|
{
|
|
BOOST_TEST(outdata[i][0] == 141);
|
|
}
|
|
else
|
|
{
|
|
BOOST_TEST(outdata[i][0] == 159);
|
|
}
|
|
|
|
}
|
|
ALOGI("ConcurrentExecuteWithQOSPriority: exit");
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
BOOST_AUTO_TEST_SUITE_END() |