103 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			103 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
// Copyright (c) Facebook, Inc. and its affiliates.
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Copyright 2019 Google LLC
 | 
						|
//
 | 
						|
// This source code is licensed under the BSD-style license found in the
 | 
						|
// LICENSE file in the root directory of this source tree.
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtest/gtest.h>
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdlib>
 | 
						|
#include <functional>
 | 
						|
#include <limits>
 | 
						|
#include <random>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include <xnnpack/params.h>
 | 
						|
 | 
						|
 | 
						|
class LUTNormMicrokernelTester {
 | 
						|
 public:
 | 
						|
  inline LUTNormMicrokernelTester& n(size_t n) {
 | 
						|
    assert(n != 0);
 | 
						|
    this->n_ = n;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  inline size_t n() const {
 | 
						|
    return this->n_;
 | 
						|
  }
 | 
						|
 | 
						|
  inline LUTNormMicrokernelTester& inplace(bool inplace) {
 | 
						|
    this->inplace_ = inplace;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool inplace() const {
 | 
						|
    return this->inplace_;
 | 
						|
  }
 | 
						|
 | 
						|
  inline LUTNormMicrokernelTester& iterations(size_t iterations) {
 | 
						|
    this->iterations_ = iterations;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  inline size_t iterations() const {
 | 
						|
    return this->iterations_;
 | 
						|
  }
 | 
						|
 | 
						|
  void Test(xnn_u8_lut32norm_ukernel_function lutnorm) const {
 | 
						|
    std::random_device random_device;
 | 
						|
    auto rng = std::mt19937(random_device());
 | 
						|
    auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
 | 
						|
    auto u32rng = std::bind(
 | 
						|
      std::uniform_int_distribution<uint32_t>(1, std::numeric_limits<uint32_t>::max() / (257 * n())),
 | 
						|
      rng);
 | 
						|
 | 
						|
    std::vector<uint8_t> x(n());
 | 
						|
    std::vector<uint32_t> t(256);
 | 
						|
    std::vector<uint8_t> y(n());
 | 
						|
    std::vector<float> y_ref(n());
 | 
						|
    for (size_t iteration = 0; iteration < iterations(); iteration++) {
 | 
						|
      std::generate(x.begin(), x.end(), std::ref(u8rng));
 | 
						|
      std::generate(t.begin(), t.end(), std::ref(u32rng));
 | 
						|
      if (inplace()) {
 | 
						|
        std::generate(y.begin(), y.end(), std::ref(u8rng));
 | 
						|
      } else {
 | 
						|
        std::fill(y.begin(), y.end(), 0xA5);
 | 
						|
      }
 | 
						|
      const uint8_t* x_data = inplace() ? y.data() : x.data();
 | 
						|
 | 
						|
      // Compute reference results.
 | 
						|
      uint32_t sum = 0;
 | 
						|
      for (size_t i = 0; i < n(); i++) {
 | 
						|
        sum += t[x_data[i]];
 | 
						|
      }
 | 
						|
      for (size_t i = 0; i < n(); i++) {
 | 
						|
        y_ref[i] = 256.0f * float(t[x_data[i]]) / float(sum);
 | 
						|
        y_ref[i] = std::min(y_ref[i], 255.0f);
 | 
						|
      }
 | 
						|
 | 
						|
      // Call optimized micro-kernel.
 | 
						|
      lutnorm(n(), x_data, t.data(), y.data());
 | 
						|
 | 
						|
      // Verify results.
 | 
						|
      for (size_t i = 0; i < n(); i++) {
 | 
						|
        ASSERT_NEAR(y_ref[i], float(y[i]), 0.5f)
 | 
						|
          << "at position " << i << ", n = " << n() << ", sum = " << sum;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  size_t n_{1};
 | 
						|
  bool inplace_{false};
 | 
						|
  size_t iterations_{15};
 | 
						|
};
 |