157 lines
5.6 KiB
C++
157 lines
5.6 KiB
C++
/*
|
|
* Copyright (c) 2019-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/CL/OpenCL.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/CL/CLHelpers.h"
|
|
#include "arm_compute/runtime/CL/CLScheduler.h"
|
|
#include "arm_compute/runtime/CL/Utils.h"
|
|
#include "arm_compute/runtime/CL/functions/CLPermute.h"
|
|
#include "utils/Utils.h"
|
|
|
|
using namespace arm_compute;
|
|
using namespace utils;
|
|
|
|
namespace
|
|
{
|
|
} // namespace
|
|
|
|
class CLCacheExample : public Example
|
|
{
|
|
public:
|
|
CLCacheExample() = default;
|
|
|
|
bool do_setup(int argc, char **argv) override
|
|
{
|
|
std::cout << "Once the program has run and created the file cache.bin, rerun with --restore_cache." << std::endl;
|
|
CLScheduler::get().default_init();
|
|
|
|
if(argc > 1)
|
|
{
|
|
std::string argv1 = argv[1];
|
|
std::transform(argv1.begin(), argv1.end(), argv1.begin(), ::tolower);
|
|
if(argv1 == "--restore_cache")
|
|
{
|
|
// Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
|
|
// compilation won't be required.
|
|
restore_program_cache_from_file();
|
|
}
|
|
else
|
|
{
|
|
std::cout << "Unkown option " << argv1 << std::endl;
|
|
}
|
|
}
|
|
|
|
// Initialise shapes
|
|
init_tensor(TensorShape(8U, 4U, 2U), tensor_nchw, DataType::U8, DataLayout::NCHW);
|
|
init_tensor(TensorShape(2U, 8U, 4U), tensor_nhwc, DataType::U8, DataLayout::NHWC);
|
|
init_tensor(TensorShape(8U, 4U, 2U), tensor_nchw_result, DataType::U8, DataLayout::NCHW);
|
|
|
|
// Create the permutation vector to turn a NCHW tensor to NHWC.
|
|
// The input tensor is NCHW, which means that the fastest changing coordinate is W=8U.
|
|
// For permutation vectors the fastest changing coordinate is the one on the left too.
|
|
// Each element in the permutation vector specifies a mapping from the source tensor to the destination one, thus if we
|
|
// use 2U in the permutation vector's first element we are telling the function to move the channels to the fastest
|
|
// changing coordinate in the destination tensor.
|
|
|
|
const PermutationVector vector_nchw_to_nhwc(2U, 0U, 1U);
|
|
permute_nhwc.configure(&tensor_nchw, &tensor_nhwc, vector_nchw_to_nhwc);
|
|
|
|
// Allocate and fill tensors
|
|
tensor_nhwc.allocator()->allocate();
|
|
tensor_nchw.allocator()->allocate();
|
|
fill_tensor(tensor_nchw);
|
|
|
|
// Demostrate autoconfigure for the output tensor
|
|
const PermutationVector vector_nhwc_to_nchw(1U, 2U, 0U);
|
|
permute_nchw.configure(&tensor_nhwc, &tensor_nchw_result, vector_nhwc_to_nchw);
|
|
tensor_nchw_result.allocator()->allocate();
|
|
|
|
// Save the opencl kernels to a file
|
|
save_program_cache_to_file();
|
|
|
|
return true;
|
|
}
|
|
void do_run() override
|
|
{
|
|
permute_nhwc.run();
|
|
permute_nchw.run();
|
|
}
|
|
void do_teardown() override
|
|
{
|
|
}
|
|
|
|
private:
|
|
void validate_result(CLTensor &reference, CLTensor &result)
|
|
{
|
|
reference.map();
|
|
result.map();
|
|
Window window;
|
|
window.use_tensor_dimensions(reference.info()->tensor_shape());
|
|
Iterator it_ref(&reference, window);
|
|
Iterator it_res(&result, window);
|
|
execute_window_loop(window, [&](const Coordinates &)
|
|
{
|
|
assert(*reinterpret_cast<unsigned char *>(it_ref.ptr()) == *reinterpret_cast<unsigned char *>(it_res.ptr()));
|
|
},
|
|
it_ref, it_res);
|
|
reference.unmap();
|
|
result.unmap();
|
|
}
|
|
|
|
void fill_tensor(CLTensor &tensor)
|
|
{
|
|
tensor.map();
|
|
Window window;
|
|
window.use_tensor_dimensions(tensor.info()->tensor_shape());
|
|
Iterator it_tensor(&tensor, window);
|
|
unsigned char val(0);
|
|
execute_window_loop(window, [&](const Coordinates &)
|
|
{
|
|
*reinterpret_cast<unsigned char *>(it_tensor.ptr()) = val++;
|
|
},
|
|
it_tensor);
|
|
tensor.unmap();
|
|
}
|
|
void init_tensor(const TensorShape shape, CLTensor &tensor, DataType type, DataLayout layout)
|
|
{
|
|
tensor.allocator()->init(TensorInfo(shape, 1, type).set_data_layout(layout));
|
|
}
|
|
|
|
CLTensor tensor_nchw{};
|
|
CLTensor tensor_nhwc{};
|
|
CLTensor tensor_nchw_result{};
|
|
CLPermute permute_nhwc{};
|
|
CLPermute permute_nchw{};
|
|
};
|
|
|
|
/** Main program creating an example that demostrates how to load precompiled kernels from a file.
|
|
*
|
|
* @param[in] argc Number of arguments
|
|
* @param[in] argv Arguments
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
return utils::run_example<CLCacheExample>(argc, argv);
|
|
}
|