365 lines
26 KiB
C++
365 lines
26 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/CL/CLTensor.h"
|
|
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
|
|
#include "arm_compute/runtime/CL/functions/CLDirectConvolutionLayer.h"
|
|
#include "tests/CL/CLAccessor.h"
|
|
#include "tests/PaddingCalculator.h"
|
|
#include "tests/datasets/DirectConvolutionLayerDataset.h"
|
|
#include "tests/datasets/ShapeDatasets.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Macros.h"
|
|
#include "tests/framework/datasets/Datasets.h"
|
|
#include "tests/validation/Validation.h"
|
|
#include "tests/validation/fixtures/DirectConvolutionLayerFixture.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace
|
|
{
|
|
RelativeTolerance<half> tolerance_fp16(half(0.2)); /**< Tolerance for floating point tests */
|
|
RelativeTolerance<float> tolerance_fp32(0.05f); /**< Tolerance for floating point tests */
|
|
AbsoluteTolerance<float> tolerance_fp32_abs(0.0003f); /**< Absolute Tolerance for floating point tests */
|
|
constexpr float tolerance_num = 0.07f; /**< Tolerance number */
|
|
constexpr AbsoluteTolerance<uint8_t> tolerance_qasymm8(1); /**< Tolerance for quantized tests */
|
|
|
|
const auto data_strides = combine(framework::dataset::make("StrideX", 1, 3), framework::dataset::make("StrideY", 1, 3));
|
|
const auto data_strides_small = combine(framework::dataset::make("StrideX", 1), framework::dataset::make("StrideY", 1));
|
|
const auto data_ksize_one = combine(framework::dataset::make("PadX", 0, 1), combine(framework::dataset::make("PadY", 0, 1), framework::dataset::make("KernelSize", 1)));
|
|
const auto data_ksize_one_small = combine(framework::dataset::make("PadX", 0), combine(framework::dataset::make("PadY", 0), framework::dataset::make("KernelSize", 1)));
|
|
const auto data_ksize_three = combine(framework::dataset::make("PadX", 0, 2), combine(framework::dataset::make("PadY", 0, 2), framework::dataset::make("KernelSize", 3)));
|
|
const auto data_ksize_five = combine(framework::dataset::make("PadX", 0, 3), combine(framework::dataset::make("PadY", 0, 3), framework::dataset::make("KernelSize", 5)));
|
|
const auto data_ksize_nine = combine(framework::dataset::make("PadX", 0, 3), combine(framework::dataset::make("PadY", 0, 3), framework::dataset::make("KernelSize", 9)));
|
|
const auto data_ksize_nine_small = combine(framework::dataset::make("PadX", 0, 1), combine(framework::dataset::make("PadY", 0, 1), framework::dataset::make("KernelSize", 9)));
|
|
|
|
const auto data_all_kernels = concat(concat(data_ksize_one, data_ksize_three), data_ksize_five);
|
|
|
|
const auto data = combine(datasets::SmallDirectConvolutionShapes(), combine(data_strides, data_all_kernels));
|
|
const auto data9x9 = combine(datasets::SmallDirectConvolutionShapes(), combine(data_strides, data_ksize_nine));
|
|
const auto data_small = combine(datasets::SmallDirectConvolutionShapes(), combine(data_strides_small, data_ksize_one_small));
|
|
const auto data_small9x9 = combine(datasets::SmallDirectConvolutionShapes(), combine(data_strides_small, data_ksize_nine_small));
|
|
|
|
/** Direct convolution nightly data set. */
|
|
const auto data_nightly = combine(data, framework::dataset::make("NumKernels", { 1, 4 }));
|
|
const auto data_nightly_9x9 = combine(data9x9, framework::dataset::make("NumKernels", { 1, 4 }));
|
|
const auto data_nightly_usecase = combine(framework::dataset::make("InputShape", { TensorShape{ 3U, 800U, 800U } }),
|
|
combine(framework::dataset::make("StrideX", { 1 }),
|
|
combine(framework::dataset::make("StrideY", { 1 }),
|
|
combine(framework::dataset::make("PadX", { 4 }),
|
|
combine(framework::dataset::make("PadY", { 4 }),
|
|
combine(framework::dataset::make("KernelSize", 9),
|
|
framework::dataset::make("NumKernels", { 16 })))))));
|
|
|
|
/** Direct convolution precommit data set. */
|
|
const auto data_precommit = combine(data_small, framework::dataset::make("NumKernels", { 1 }));
|
|
const auto data_precommit_9x9 = combine(data_small9x9, framework::dataset::make("NumKernels", { 1 }));
|
|
|
|
/** Activation function Dataset*/
|
|
const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
|
|
{ ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 0.5f) });
|
|
} // namespace
|
|
|
|
TEST_SUITE(CL)
|
|
TEST_SUITE(DirectConvolutionLayer)
|
|
|
|
// *INDENT-OFF*
|
|
// clang-format off
|
|
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(
|
|
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Mismatching data type input/weights
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Mismatching input feature maps
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Unsupported kernel width
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Non-rectangular weights dimensions
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid weights dimensions
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid stride
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid biases size
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid biases dimensions
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Invalid output size
|
|
TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), // Window shrink
|
|
TensorInfo(TensorShape(32U, 16U, 2U), 1, DataType::F32),
|
|
}),
|
|
framework::dataset::make("WeightsInfo",{ TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F16),
|
|
TensorInfo(TensorShape(3U, 3U, 3U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(11U, 11U, 2U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(5U, 3U, 2U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(3U, 3U, 2U, 4U, 3U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(3U, 3U, 2U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(1U, 1U, 2U, 4U), 1, DataType::F32),
|
|
})),
|
|
framework::dataset::make("BiasesInfo",{ TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(3U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U, 2U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(4U), 1, DataType::F32),
|
|
})),
|
|
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(26U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 11U, 4U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(32U, 16U, 4U), 1, DataType::F32),
|
|
})),
|
|
framework::dataset::make("ConvInfo", { PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(3, 3, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
PadStrideInfo(1, 1, 0, 0),
|
|
})),
|
|
framework::dataset::make("ActivationInfo",
|
|
{
|
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)
|
|
})),
|
|
framework::dataset::make("Expected", { false, false, false, false, false, false, false, false, false, false, true })),
|
|
input_info, weights_info, biases_info, output_info, conv_info, act_info, expected)
|
|
{
|
|
bool is_valid = bool(CLDirectConvolutionLayer::validate(&input_info.clone()->set_is_resizable(false), &weights_info.clone()->set_is_resizable(false), &biases_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), conv_info, act_info));
|
|
ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
|
|
}
|
|
// clang-format on
|
|
// *INDENT-ON*
|
|
|
|
template <typename T>
|
|
using CLDirectConvolutionLayerFixture = DirectConvolutionValidationFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;
|
|
template <typename T>
|
|
using CLDirectConvolutionValidationWithTensorShapesFixture = DirectConvolutionValidationWithTensorShapesFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;
|
|
|
|
TEST_SUITE(Float)
|
|
TEST_SUITE(FP16)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, CLDirectConvolutionLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data_precommit, framework::dataset::make("DataType", DataType::F16)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", DataLayout::NCHW)))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_fp16, tolerance_num);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge, CLDirectConvolutionLayerFixture<half>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data_nightly, framework::dataset::make("DataType", DataType::F16)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", DataLayout::NCHW)))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_fp16, tolerance_num);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge9x9, CLDirectConvolutionLayerFixture<half>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data_nightly_9x9, framework::dataset::make("DataType",
|
|
DataType::F16)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NHWC })))
|
|
{
|
|
validate(CLAccessor(_target), _reference, tolerance_fp16, tolerance_num);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunSmall9x9, CLDirectConvolutionLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data_precommit_9x9, framework::dataset::make("DataType",
|
|
DataType::F16)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NHWC })))
|
|
{
|
|
validate(CLAccessor(_target), _reference, tolerance_fp16, tolerance_num);
|
|
}
|
|
TEST_SUITE_END() // FP16
|
|
|
|
TEST_SUITE(FP32)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, CLDirectConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data_precommit, framework::dataset::make("DataType",
|
|
DataType::F32)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
validate(CLAccessor(_target), _reference, tolerance_fp32);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge, CLDirectConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data_nightly, framework::dataset::make("DataType", DataType::F32)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
validate(CLAccessor(_target), _reference, tolerance_fp32);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge9x9, CLDirectConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data_nightly_9x9, framework::dataset::make("DataType",
|
|
DataType::F32)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NHWC })))
|
|
{
|
|
validate(CLAccessor(_target), _reference, tolerance_fp32);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunSmall9x9, CLDirectConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(data_precommit_9x9, framework::dataset::make("DataType",
|
|
DataType::F32)),
|
|
ActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NHWC })))
|
|
{
|
|
validate(CLAccessor(_target), _reference, tolerance_fp32);
|
|
}
|
|
|
|
FIXTURE_DATA_TEST_CASE(RunLargeUsecase, CLDirectConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(combine(data_nightly_usecase, framework::dataset::make("DataType",
|
|
DataType::F32)),
|
|
framework::dataset::make("ActivationInfo", { ActivationLayerInfo() })),
|
|
framework::dataset::make("DataLayout", { DataLayout::NHWC })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_fp32, 0.f, tolerance_fp32_abs);
|
|
}
|
|
TEST_SUITE_END() // FP32
|
|
|
|
TEST_SUITE(FP32_CustomDataset)
|
|
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionValidationWithTensorShapesFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::DirectConvolutionLayerDataset(),
|
|
framework::dataset::make("DataType", DataType::F32)),
|
|
ActivationFunctionsDataset))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_fp32);
|
|
}
|
|
TEST_SUITE_END() // FP32_CustomDataset
|
|
TEST_SUITE_END() // Float
|
|
|
|
template <typename T>
|
|
using CLDirectConvolutionLayerQuantizedFixture = DirectConvolutionValidationQuantizedFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;
|
|
template <typename T>
|
|
using CLDirectConvolutionValidationWithTensorShapesQuantizedFixture = DirectConvolutionValidationWithTensorShapesQuantizedFixture<CLTensor, CLAccessor, CLDirectConvolutionLayer, T>;
|
|
|
|
const auto QuantizedActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
|
|
{
|
|
ActivationLayerInfo(),
|
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
|
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)
|
|
});
|
|
TEST_SUITE(Quantized)
|
|
TEST_SUITE(QASYMM8)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, CLDirectConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(data_precommit,
|
|
framework::dataset::make("DataType",
|
|
DataType::QASYMM8)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 10), QuantizationInfo(1.1f, 10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunSmall9x9, CLDirectConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(data_precommit_9x9,
|
|
framework::dataset::make("DataType",
|
|
DataType::QASYMM8)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(3.f / 255, 10), QuantizationInfo(1.1f, 10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge, CLDirectConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(data_nightly, framework::dataset::make("DataType",
|
|
DataType::QASYMM8)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 10), QuantizationInfo(1.1f, 10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge9x9, CLDirectConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(combine(data_nightly_9x9,
|
|
framework::dataset::make("DataType",
|
|
DataType::QASYMM8)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(3.f / 255, 10), QuantizationInfo(1.1f, 10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
|
|
TEST_SUITE_END() // QASYMM8
|
|
|
|
TEST_SUITE(QASYMM8_CustomDataset)
|
|
FIXTURE_DATA_TEST_CASE(Run, CLDirectConvolutionValidationWithTensorShapesQuantizedFixture<uint8_t>, framework::DatasetMode::NIGHTLY,
|
|
combine(combine(combine(combine(datasets::DirectConvolutionLayerDataset(),
|
|
framework::dataset::make("DataType", DataType::QASYMM8)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 127), QuantizationInfo(1.1f, 10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
TEST_SUITE_END() // QASYMM8_CustomDataset
|
|
|
|
TEST_SUITE(QASYMM8_SIGNED)
|
|
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, CLDirectConvolutionLayerQuantizedFixture<int8_t>, framework::DatasetMode::ALL, combine(combine(combine(combine(data_precommit, framework::dataset::make("DataType",
|
|
DataType::QASYMM8_SIGNED)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 10), QuantizationInfo(1.1f, -10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
|
|
FIXTURE_DATA_TEST_CASE(RunSmall9x9, CLDirectConvolutionLayerQuantizedFixture<int8_t>, framework::DatasetMode::ALL, combine(combine(combine(combine(data_precommit_9x9,
|
|
framework::dataset::make("DataType",
|
|
DataType::QASYMM8_SIGNED)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 10), QuantizationInfo(1.1f, 10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
|
|
FIXTURE_DATA_TEST_CASE(RunCustomDataset, CLDirectConvolutionValidationWithTensorShapesQuantizedFixture<int8_t>, framework::DatasetMode::NIGHTLY,
|
|
combine(combine(combine(combine(datasets::DirectConvolutionLayerDataset(),
|
|
framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
|
|
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255, 127), QuantizationInfo(1.1f, 10) })),
|
|
QuantizedActivationFunctionsDataset),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
|
|
{
|
|
// Validate output
|
|
validate(CLAccessor(_target), _reference, tolerance_qasymm8);
|
|
}
|
|
|
|
TEST_SUITE_END() // QASYMM8_SIGNED
|
|
|
|
TEST_SUITE_END() // Quantized
|
|
|
|
TEST_SUITE_END() // DirectConvolutionLayer
|
|
TEST_SUITE_END() // Float
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|