173 lines
7.3 KiB
C++
173 lines
7.3 KiB
C++
/*
|
|
* Copyright (c) 2018-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "Im2Col.h"
|
|
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/Utils.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace reference
|
|
{
|
|
template <typename T>
|
|
void im2col_nchw(const SimpleTensor<T> &src, SimpleTensor<T> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(src.data_layout() != DataLayout::NCHW);
|
|
const int stride_x = conv_info.stride().first;
|
|
const int stride_y = conv_info.stride().second;
|
|
const int kernel_width = kernel_dims.width;
|
|
const int kernel_height = kernel_dims.height;
|
|
const int pad_x = conv_info.pad().first;
|
|
const int pad_y = conv_info.pad().second;
|
|
const int src_width = src.shape().x();
|
|
const int src_height = src.shape().y();
|
|
const int src_channels = src.shape().z();
|
|
const int batches = src.shape().total_size_upper(3);
|
|
const int dst_height = dst.shape().y();
|
|
const int pad_val = is_data_type_quantized_asymmetric(src.data_type()) ? src.quantization_info().uniform().offset : 0;
|
|
int dst_idx = 0;
|
|
|
|
// Compute width and height of the convolved tensors
|
|
std::pair<unsigned int, unsigned int> convolved_dims = scaled_dimensions(src_width, src_height, kernel_dims.width, kernel_dims.height, conv_info);
|
|
|
|
for(int b = 0; b < batches; ++b)
|
|
{
|
|
for(int g = 0; g < static_cast<int>(num_groups); ++g)
|
|
{
|
|
const int first_group_ch = g * (src_channels / num_groups);
|
|
const int last_group_ch = (g + 1) * (src_channels / num_groups);
|
|
|
|
for(int yo = 0; yo < dst_height; ++yo)
|
|
{
|
|
// Compute input spatial coordinates
|
|
const int xi = (yo % convolved_dims.first) * stride_x;
|
|
const int yi = (yo / convolved_dims.first) * stride_y;
|
|
|
|
for(int ci = first_group_ch; ci < last_group_ch; ++ci)
|
|
{
|
|
for(int yk = 0; yk < kernel_height; ++yk)
|
|
{
|
|
for(int xk = 0; xk < kernel_width; ++xk)
|
|
{
|
|
dst[dst_idx++] = tensor_elem_at(src, Coordinates(xi + xk - pad_x, yi + yk - pad_y, ci, b), BorderMode::CONSTANT, static_cast<T>(pad_val));
|
|
}
|
|
}
|
|
}
|
|
|
|
if(has_bias)
|
|
{
|
|
dst[dst_idx++] = static_cast<T>(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void im2col_nhwc(const SimpleTensor<T> &src, SimpleTensor<T> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(src.data_layout() != DataLayout::NHWC);
|
|
const int stride_x = conv_info.stride().first;
|
|
const int stride_y = conv_info.stride().second;
|
|
const int kernel_width = kernel_dims.width;
|
|
const int kernel_height = kernel_dims.height;
|
|
const int pad_x = conv_info.pad().first;
|
|
const int pad_y = conv_info.pad().second;
|
|
const int src_width = src.shape().y();
|
|
const int src_height = src.shape().z();
|
|
const int src_channels = src.shape().x();
|
|
const int batches = src.shape().total_size_upper(3);
|
|
const int dst_width = has_bias ? dst.shape().x() - 1 : dst.shape().x();
|
|
const int dst_height = dst.shape().y();
|
|
const int pad_val = is_data_type_quantized_asymmetric(src.data_type()) ? src.quantization_info().uniform().offset : 0;
|
|
|
|
// Compute width and height of the convolved tensors
|
|
std::pair<unsigned int, unsigned int> convolved_dims = scaled_dimensions(src_width, src_height, kernel_dims.width, kernel_dims.height, conv_info);
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for schedule(dynamic, 1) collapse(2)
|
|
#endif /* _OPENMP */
|
|
for(int b = 0; b < batches; ++b)
|
|
{
|
|
for(int yo = 0; yo < dst_height; ++yo)
|
|
{
|
|
// Compute input spatial coordinates
|
|
const int xi = (yo % convolved_dims.first) * stride_x;
|
|
const int yi = (yo / convolved_dims.first) * stride_y;
|
|
|
|
for(int ci = 0; ci < src_channels; ++ci)
|
|
{
|
|
for(int yk = 0; yk < kernel_height; ++yk)
|
|
{
|
|
for(int xk = 0; xk < kernel_width; ++xk)
|
|
{
|
|
dst[ci + (xk + yk * kernel_width) * src_channels + yo * dst.shape().x() + b * dst.shape().x() * dst.shape().y()] = tensor_elem_at(src, Coordinates(ci, xi + xk - pad_x, yi + yk - pad_y, b),
|
|
BorderMode::CONSTANT, static_cast<T>(pad_val));
|
|
}
|
|
}
|
|
}
|
|
|
|
if(has_bias)
|
|
{
|
|
dst[dst_width + yo * dst.shape().x() + b * dst.shape().x() * dst.shape().y()] = static_cast<T>(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void im2col(const SimpleTensor<T> &src, SimpleTensor<T> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups)
|
|
{
|
|
switch(src.data_layout())
|
|
{
|
|
case DataLayout::NCHW:
|
|
{
|
|
im2col_nchw(src, dst, kernel_dims, conv_info, has_bias, num_groups);
|
|
break;
|
|
}
|
|
case DataLayout::NHWC:
|
|
{
|
|
im2col_nhwc(src, dst, kernel_dims, conv_info, has_bias);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
ARM_COMPUTE_ERROR("Not supported.");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template void im2col(const SimpleTensor<uint8_t> &src, SimpleTensor<uint8_t> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups);
|
|
template void im2col(const SimpleTensor<half> &src, SimpleTensor<half> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups);
|
|
template void im2col(const SimpleTensor<float> &src, SimpleTensor<float> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups);
|
|
} // namespace reference
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|