452 lines
20 KiB
C++
452 lines
20 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "reference_processor.h"
|
|
|
|
#include "art_field-inl.h"
|
|
#include "base/mutex.h"
|
|
#include "base/time_utils.h"
|
|
#include "base/utils.h"
|
|
#include "base/systrace.h"
|
|
#include "class_root-inl.h"
|
|
#include "collector/garbage_collector.h"
|
|
#include "jni/java_vm_ext.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "mirror/object-inl.h"
|
|
#include "mirror/reference-inl.h"
|
|
#include "nativehelper/scoped_local_ref.h"
|
|
#include "object_callbacks.h"
|
|
#include "reflection.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "task_processor.h"
|
|
#include "thread-inl.h"
|
|
#include "thread_pool.h"
|
|
#include "well_known_classes.h"
|
|
|
|
namespace art {
|
|
namespace gc {
|
|
|
|
static constexpr bool kAsyncReferenceQueueAdd = false;
|
|
|
|
ReferenceProcessor::ReferenceProcessor()
|
|
: collector_(nullptr),
|
|
condition_("reference processor condition", *Locks::reference_processor_lock_) ,
|
|
soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
|
|
weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
|
|
finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
|
|
phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
|
|
cleared_references_(Locks::reference_queue_cleared_references_lock_) {
|
|
}
|
|
|
|
static inline MemberOffset GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(reference_class == GetClassRoot<mirror::Reference>());
|
|
// Second static field
|
|
ArtField* field = reference_class->GetStaticField(1);
|
|
DCHECK_STREQ(field->GetName(), "slowPathEnabled");
|
|
return field->GetOffset();
|
|
}
|
|
|
|
static inline void SetSlowPathFlag(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
|
|
MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
|
|
reference_class->SetFieldBoolean</* kTransactionActive= */ false, /* kCheckTransaction= */ false>(
|
|
slow_path_offset, enabled ? 1 : 0);
|
|
}
|
|
|
|
void ReferenceProcessor::EnableSlowPath() {
|
|
SetSlowPathFlag(/* enabled= */ true);
|
|
}
|
|
|
|
void ReferenceProcessor::DisableSlowPath(Thread* self) {
|
|
SetSlowPathFlag(/* enabled= */ false);
|
|
condition_.Broadcast(self);
|
|
}
|
|
|
|
bool ReferenceProcessor::SlowPathEnabled() {
|
|
ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
|
|
MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
|
|
return reference_class->GetFieldBoolean(slow_path_offset);
|
|
}
|
|
|
|
void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
condition_.Broadcast(self);
|
|
}
|
|
|
|
ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
|
|
ObjPtr<mirror::Reference> reference) {
|
|
auto slow_path_required = [this, self]() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return kUseReadBarrier ? !self->GetWeakRefAccessEnabled() : SlowPathEnabled();
|
|
};
|
|
if (!slow_path_required()) {
|
|
return reference->GetReferent();
|
|
}
|
|
// If the referent is null then it is already cleared, we can just return null since there is no
|
|
// scenario where it becomes non-null during the reference processing phase.
|
|
// A read barrier may be unsafe here, and we use the result only when it's null or marked.
|
|
ObjPtr<mirror::Object> referent = reference->template GetReferent<kWithoutReadBarrier>();
|
|
if (referent.IsNull()) {
|
|
return referent;
|
|
}
|
|
|
|
bool started_trace = false;
|
|
uint64_t start_millis;
|
|
auto finish_trace = [](uint64_t start_millis) {
|
|
ATraceEnd();
|
|
uint64_t millis = MilliTime() - start_millis;
|
|
static constexpr uint64_t kReportMillis = 10; // Long enough to risk dropped frames.
|
|
if (millis > kReportMillis) {
|
|
LOG(WARNING) << "Weak pointer dereference blocked for " << millis << " milliseconds.";
|
|
}
|
|
};
|
|
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
// Keeping reference_processor_lock_ blocks the broadcast when we try to reenable the fast path.
|
|
while (slow_path_required()) {
|
|
DCHECK(collector_ != nullptr);
|
|
constexpr bool kOtherReadBarrier = kUseReadBarrier && !kUseBakerReadBarrier;
|
|
if (UNLIKELY(reference->IsFinalizerReferenceInstance()
|
|
|| rp_state_ == RpState::kStarting /* too early to determine mark state */
|
|
|| (kOtherReadBarrier && reference->IsPhantomReferenceInstance()))) {
|
|
// Odd cases in which it doesn't hurt to just wait, or the wait is likely to be very brief.
|
|
|
|
// Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
|
|
// presence of threads blocking for weak ref access.
|
|
self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
|
|
if (!started_trace) {
|
|
ATraceBegin("GetReferent blocked");
|
|
started_trace = true;
|
|
start_millis = MilliTime();
|
|
}
|
|
condition_.WaitHoldingLocks(self);
|
|
continue;
|
|
}
|
|
DCHECK(!reference->IsPhantomReferenceInstance());
|
|
|
|
if (rp_state_ == RpState::kInitClearingDone) {
|
|
// Reachable references have their final referent values.
|
|
break;
|
|
}
|
|
// Although reference processing is not done, we can always predict the correct return value
|
|
// based on the current mark state. No additional marking from finalizers has been done, since
|
|
// we hold reference_processor_lock_, which is required to advance to kInitClearingDone.
|
|
DCHECK(rp_state_ == RpState::kInitMarkingDone);
|
|
// Re-load and re-check referent, since the current one may have been read before we acquired
|
|
// reference_lock. In particular a Reference.clear() call may have intervened. (b/33569625)
|
|
referent = reference->GetReferent<kWithoutReadBarrier>();
|
|
ObjPtr<mirror::Object> forwarded_ref =
|
|
referent.IsNull() ? nullptr : collector_->IsMarked(referent.Ptr());
|
|
// Either the referent was marked, and forwarded_ref is the correct return value, or it
|
|
// was not, and forwarded_ref == null, which is again the correct return value.
|
|
if (started_trace) {
|
|
finish_trace(start_millis);
|
|
}
|
|
return forwarded_ref;
|
|
}
|
|
if (started_trace) {
|
|
finish_trace(start_millis);
|
|
}
|
|
return reference->GetReferent();
|
|
}
|
|
|
|
// Forward SoftReferences. Can be done before we disable Reference access. Only
|
|
// invoked if we are not clearing SoftReferences.
|
|
uint32_t ReferenceProcessor::ForwardSoftReferences(TimingLogger* timings) {
|
|
TimingLogger::ScopedTiming split(
|
|
concurrent_ ? "ForwardSoftReferences" : "(Paused)ForwardSoftReferences", timings);
|
|
// We used to argue that we should be smarter about doing this conditionally, but it's unclear
|
|
// that's actually better than the more predictable strategy of basically only clearing
|
|
// SoftReferences just before we would otherwise run out of memory.
|
|
uint32_t non_null_refs = soft_reference_queue_.ForwardSoftReferences(collector_);
|
|
if (ATraceEnabled()) {
|
|
static constexpr size_t kBufSize = 80;
|
|
char buf[kBufSize];
|
|
snprintf(buf, kBufSize, "Marking for %" PRIu32 " SoftReferences", non_null_refs);
|
|
ATraceBegin(buf);
|
|
collector_->ProcessMarkStack();
|
|
ATraceEnd();
|
|
} else {
|
|
collector_->ProcessMarkStack();
|
|
}
|
|
return non_null_refs;
|
|
}
|
|
|
|
void ReferenceProcessor::Setup(Thread* self,
|
|
collector::GarbageCollector* collector,
|
|
bool concurrent,
|
|
bool clear_soft_references) {
|
|
DCHECK(collector != nullptr);
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
collector_ = collector;
|
|
rp_state_ = RpState::kStarting;
|
|
concurrent_ = concurrent;
|
|
clear_soft_references_ = clear_soft_references;
|
|
}
|
|
|
|
// Process reference class instances and schedule finalizations.
|
|
// We advance rp_state_ to signal partial completion for the benefit of GetReferent.
|
|
void ReferenceProcessor::ProcessReferences(Thread* self, TimingLogger* timings) {
|
|
TimingLogger::ScopedTiming t(concurrent_ ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
|
|
if (!clear_soft_references_) {
|
|
// Forward any additional SoftReferences we discovered late, now that reference access has been
|
|
// inhibited.
|
|
while (!soft_reference_queue_.IsEmpty()) {
|
|
ForwardSoftReferences(timings);
|
|
}
|
|
}
|
|
{
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
if (!kUseReadBarrier) {
|
|
CHECK_EQ(SlowPathEnabled(), concurrent_) << "Slow path must be enabled iff concurrent";
|
|
} else {
|
|
// Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent_ == false).
|
|
CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent_);
|
|
}
|
|
DCHECK(rp_state_ == RpState::kStarting);
|
|
rp_state_ = RpState::kInitMarkingDone;
|
|
condition_.Broadcast(self);
|
|
}
|
|
if (kIsDebugBuild && collector_->IsTransactionActive()) {
|
|
// In transaction mode, we shouldn't enqueue any Reference to the queues.
|
|
// See DelayReferenceReferent().
|
|
DCHECK(soft_reference_queue_.IsEmpty());
|
|
DCHECK(weak_reference_queue_.IsEmpty());
|
|
DCHECK(finalizer_reference_queue_.IsEmpty());
|
|
DCHECK(phantom_reference_queue_.IsEmpty());
|
|
}
|
|
// Clear all remaining soft and weak references with white referents.
|
|
// This misses references only reachable through finalizers.
|
|
soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
|
|
weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
|
|
// Defer PhantomReference processing until we've finished marking through finalizers.
|
|
{
|
|
// TODO: Capture mark state of some system weaks here. If the referent was marked here,
|
|
// then it is now safe to return, since it can only refer to marked objects. If it becomes
|
|
// marked below, that is no longer guaranteed.
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
rp_state_ = RpState::kInitClearingDone;
|
|
// At this point, all mutator-accessible data is marked (black). Objects enqueued for
|
|
// finalization will only be made available to the mutator via CollectClearedReferences after
|
|
// we're fully done marking. Soft and WeakReferences accessible to the mutator have been
|
|
// processed and refer only to black objects. Thus there is no danger of the mutator getting
|
|
// access to non-black objects. Weak reference processing is still nominally suspended,
|
|
// But many kinds of references, including all java.lang.ref ones, are handled normally from
|
|
// here on. See GetReferent().
|
|
}
|
|
{
|
|
TimingLogger::ScopedTiming t2(
|
|
concurrent_ ? "EnqueueFinalizerReferences" : "(Paused)EnqueueFinalizerReferences", timings);
|
|
// Preserve all white objects with finalize methods and schedule them for finalization.
|
|
FinalizerStats finalizer_stats =
|
|
finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector_);
|
|
if (ATraceEnabled()) {
|
|
static constexpr size_t kBufSize = 80;
|
|
char buf[kBufSize];
|
|
snprintf(buf, kBufSize, "Marking from %" PRIu32 " / %" PRIu32 " finalizers",
|
|
finalizer_stats.num_enqueued_, finalizer_stats.num_refs_);
|
|
ATraceBegin(buf);
|
|
collector_->ProcessMarkStack();
|
|
ATraceEnd();
|
|
} else {
|
|
collector_->ProcessMarkStack();
|
|
}
|
|
}
|
|
|
|
// Process all soft and weak references with white referents, where the references are reachable
|
|
// only from finalizers. It is unclear that there is any way to do this without slightly
|
|
// violating some language spec. We choose to apply normal Reference processing rules for these.
|
|
// This exposes the following issues:
|
|
// 1) In the case of an unmarked referent, we may end up enqueuing an "unreachable" reference.
|
|
// This appears unavoidable, since we need to clear the reference for safety, unless we
|
|
// mark the referent and undo finalization decisions for objects we encounter during marking.
|
|
// (Some versions of the RI seem to do something along these lines.)
|
|
// Or we could clear the reference without enqueuing it, which also seems strange and
|
|
// unhelpful.
|
|
// 2) In the case of a marked referent, we will preserve a reference to objects that may have
|
|
// been enqueued for finalization. Again fixing this would seem to involve at least undoing
|
|
// previous finalization / reference clearing decisions. (This would also mean than an object
|
|
// containing both a strong and a WeakReference to the same referent could see the
|
|
// WeakReference cleared.)
|
|
// The treatment in (2) is potentially quite dangerous, since Reference.get() can e.g. return a
|
|
// finalized object containing pointers to native objects that have already been deallocated.
|
|
// But it can be argued that this is just an instance of the broader rule that it is not safe
|
|
// for finalizers to access otherwise inaccessible finalizable objects.
|
|
soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_,
|
|
/*report_cleared=*/ true);
|
|
weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_,
|
|
/*report_cleared=*/ true);
|
|
|
|
// Clear all phantom references with white referents. It's fine to do this just once here.
|
|
phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
|
|
|
|
// At this point all reference queues other than the cleared references should be empty.
|
|
DCHECK(soft_reference_queue_.IsEmpty());
|
|
DCHECK(weak_reference_queue_.IsEmpty());
|
|
DCHECK(finalizer_reference_queue_.IsEmpty());
|
|
DCHECK(phantom_reference_queue_.IsEmpty());
|
|
|
|
{
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
// Need to always do this since the next GC may be concurrent. Doing this for only concurrent
|
|
// could result in a stale is_marked_callback_ being called before the reference processing
|
|
// starts since there is a small window of time where slow_path_enabled_ is enabled but the
|
|
// callback isn't yet set.
|
|
if (!kUseReadBarrier && concurrent_) {
|
|
// Done processing, disable the slow path and broadcast to the waiters.
|
|
DisableSlowPath(self);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
|
|
// marked, put it on the appropriate list in the heap for later processing.
|
|
void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
|
|
ObjPtr<mirror::Reference> ref,
|
|
collector::GarbageCollector* collector) {
|
|
// klass can be the class of the old object if the visitor already updated the class of ref.
|
|
DCHECK(klass != nullptr);
|
|
DCHECK(klass->IsTypeOfReferenceClass());
|
|
mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
|
|
// do_atomic_update needs to be true because this happens outside of the reference processing
|
|
// phase.
|
|
if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update=*/true)) {
|
|
if (UNLIKELY(collector->IsTransactionActive())) {
|
|
// In transaction mode, keep the referent alive and avoid any reference processing to avoid the
|
|
// issue of rolling back reference processing. do_atomic_update needs to be true because this
|
|
// happens outside of the reference processing phase.
|
|
if (!referent->IsNull()) {
|
|
collector->MarkHeapReference(referent, /*do_atomic_update=*/ true);
|
|
}
|
|
return;
|
|
}
|
|
Thread* self = Thread::Current();
|
|
// TODO: Remove these locks, and use atomic stacks for storing references?
|
|
// We need to check that the references haven't already been enqueued since we can end up
|
|
// scanning the same reference multiple times due to dirty cards.
|
|
if (klass->IsSoftReferenceClass()) {
|
|
soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
|
|
} else if (klass->IsWeakReferenceClass()) {
|
|
weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
|
|
} else if (klass->IsFinalizerReferenceClass()) {
|
|
finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
|
|
} else if (klass->IsPhantomReferenceClass()) {
|
|
phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
|
|
} else {
|
|
LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
|
|
<< klass->GetAccessFlags();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
|
|
cleared_references_.UpdateRoots(visitor);
|
|
}
|
|
|
|
class ClearedReferenceTask : public HeapTask {
|
|
public:
|
|
explicit ClearedReferenceTask(jobject cleared_references)
|
|
: HeapTask(NanoTime()), cleared_references_(cleared_references) {
|
|
}
|
|
void Run(Thread* thread) override {
|
|
ScopedObjectAccess soa(thread);
|
|
jvalue args[1];
|
|
args[0].l = cleared_references_;
|
|
InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
|
|
soa.Env()->DeleteGlobalRef(cleared_references_);
|
|
}
|
|
|
|
private:
|
|
const jobject cleared_references_;
|
|
};
|
|
|
|
SelfDeletingTask* ReferenceProcessor::CollectClearedReferences(Thread* self) {
|
|
Locks::mutator_lock_->AssertNotHeld(self);
|
|
// By default we don't actually need to do anything. Just return this no-op task to avoid having
|
|
// to put in ifs.
|
|
std::unique_ptr<SelfDeletingTask> result(new FunctionTask([](Thread*) {}));
|
|
// When a runtime isn't started there are no reference queues to care about so ignore.
|
|
if (!cleared_references_.IsEmpty()) {
|
|
if (LIKELY(Runtime::Current()->IsStarted())) {
|
|
jobject cleared_references;
|
|
{
|
|
ReaderMutexLock mu(self, *Locks::mutator_lock_);
|
|
cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef(
|
|
self, cleared_references_.GetList());
|
|
}
|
|
if (kAsyncReferenceQueueAdd) {
|
|
// TODO: This can cause RunFinalization to terminate before newly freed objects are
|
|
// finalized since they may not be enqueued by the time RunFinalization starts.
|
|
Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
|
|
self, new ClearedReferenceTask(cleared_references));
|
|
} else {
|
|
result.reset(new ClearedReferenceTask(cleared_references));
|
|
}
|
|
}
|
|
cleared_references_.Clear();
|
|
}
|
|
return result.release();
|
|
}
|
|
|
|
void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
|
|
Thread* self = Thread::Current();
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
// Need to wait until reference processing is done since IsMarkedHeapReference does not have a
|
|
// CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
|
|
// This also handles the race where the referent gets cleared after a null check but before
|
|
// IsMarkedHeapReference is called.
|
|
WaitUntilDoneProcessingReferences(self);
|
|
if (Runtime::Current()->IsActiveTransaction()) {
|
|
ref->ClearReferent<true>();
|
|
} else {
|
|
ref->ClearReferent<false>();
|
|
}
|
|
}
|
|
|
|
void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
|
|
// Wait until we are done processing reference.
|
|
while ((!kUseReadBarrier && SlowPathEnabled()) ||
|
|
(kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
|
|
// Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
|
|
// presence of threads blocking for weak ref access.
|
|
self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
|
|
condition_.WaitHoldingLocks(self);
|
|
}
|
|
}
|
|
|
|
bool ReferenceProcessor::MakeCircularListIfUnenqueued(
|
|
ObjPtr<mirror::FinalizerReference> reference) {
|
|
Thread* self = Thread::Current();
|
|
MutexLock mu(self, *Locks::reference_processor_lock_);
|
|
WaitUntilDoneProcessingReferences(self);
|
|
// At this point, since the sentinel of the reference is live, it is guaranteed to not be
|
|
// enqueued if we just finished processing references. Otherwise, we may be doing the main GC
|
|
// phase. Since we are holding the reference processor lock, it guarantees that reference
|
|
// processing can't begin. The GC could have just enqueued the reference one one of the internal
|
|
// GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
|
|
// race.
|
|
MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
|
|
if (reference->IsUnprocessed()) {
|
|
CHECK(reference->IsFinalizerReferenceInstance());
|
|
reference->SetPendingNext(reference);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace gc
|
|
} // namespace art
|