490 lines
22 KiB
C++
490 lines
22 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_THREAD_INL_H_
|
|
#define ART_RUNTIME_THREAD_INL_H_
|
|
|
|
#include "thread.h"
|
|
|
|
#include "arch/instruction_set.h"
|
|
#include "base/aborting.h"
|
|
#include "base/casts.h"
|
|
#include "base/mutex-inl.h"
|
|
#include "base/time_utils.h"
|
|
#include "jni/jni_env_ext.h"
|
|
#include "managed_stack-inl.h"
|
|
#include "obj_ptr.h"
|
|
#include "suspend_reason.h"
|
|
#include "thread-current-inl.h"
|
|
#include "thread_pool.h"
|
|
|
|
namespace art {
|
|
|
|
// Quickly access the current thread from a JNIEnv.
|
|
static inline Thread* ThreadForEnv(JNIEnv* env) {
|
|
JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
|
|
return full_env->GetSelf();
|
|
}
|
|
|
|
inline void Thread::AllowThreadSuspension() {
|
|
CheckSuspend();
|
|
// Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
|
|
// to missing handles.
|
|
PoisonObjectPointers();
|
|
}
|
|
|
|
inline void Thread::CheckSuspend(bool implicit) {
|
|
DCHECK_EQ(Thread::Current(), this);
|
|
while (true) {
|
|
StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
if (LIKELY(!state_and_flags.IsAnyOfFlagsSet(SuspendOrCheckpointRequestFlags()))) {
|
|
break;
|
|
} else if (state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest)) {
|
|
RunCheckpointFunction();
|
|
} else if (state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
|
|
FullSuspendCheck(implicit);
|
|
implicit = false; // We do not need to `MadviseAwayAlternateSignalStack()` anymore.
|
|
} else {
|
|
DCHECK(state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest));
|
|
RunEmptyCheckpoint();
|
|
}
|
|
}
|
|
if (implicit) {
|
|
// For implicit suspend check we want to `madvise()` away
|
|
// the alternate signal stack to avoid wasting memory.
|
|
MadviseAwayAlternateSignalStack();
|
|
}
|
|
}
|
|
|
|
inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
|
|
Thread* self = Thread::Current();
|
|
DCHECK_EQ(self, this);
|
|
for (;;) {
|
|
if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
|
|
RunEmptyCheckpoint();
|
|
// Check we hold only an expected mutex when accessing weak ref.
|
|
if (kIsDebugBuild) {
|
|
for (int i = kLockLevelCount - 1; i >= 0; --i) {
|
|
BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
|
|
if (held_mutex != nullptr &&
|
|
held_mutex != GetMutatorLock() &&
|
|
held_mutex != cond_var_mutex) {
|
|
CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
|
|
<< "Holding unexpected mutex " << held_mutex->GetName()
|
|
<< " when accessing weak ref";
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void Thread::CheckEmptyCheckpointFromMutex() {
|
|
DCHECK_EQ(Thread::Current(), this);
|
|
for (;;) {
|
|
if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
|
|
RunEmptyCheckpoint();
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline ThreadState Thread::SetState(ThreadState new_state) {
|
|
// Should only be used to change between suspended states.
|
|
// Cannot use this code to change into or from Runnable as changing to Runnable should
|
|
// fail if the `ThreadFlag::kSuspendRequest` is set and changing from Runnable might
|
|
// miss passing an active suspend barrier.
|
|
DCHECK_NE(new_state, ThreadState::kRunnable);
|
|
if (kIsDebugBuild && this != Thread::Current()) {
|
|
std::string name;
|
|
GetThreadName(name);
|
|
LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
|
|
<< Thread::Current() << ") changing state to " << new_state;
|
|
}
|
|
|
|
while (true) {
|
|
StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
CHECK_NE(old_state_and_flags.GetState(), ThreadState::kRunnable)
|
|
<< new_state << " " << *this << " " << *Thread::Current();
|
|
StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
|
|
bool done =
|
|
tls32_.state_and_flags.CompareAndSetWeakRelaxed(old_state_and_flags.GetValue(),
|
|
new_state_and_flags.GetValue());
|
|
if (done) {
|
|
return static_cast<ThreadState>(old_state_and_flags.GetState());
|
|
}
|
|
}
|
|
}
|
|
|
|
inline bool Thread::IsThreadSuspensionAllowable() const {
|
|
if (tls32_.no_thread_suspension != 0) {
|
|
return false;
|
|
}
|
|
for (int i = kLockLevelCount - 1; i >= 0; --i) {
|
|
if (i != kMutatorLock &&
|
|
i != kUserCodeSuspensionLock &&
|
|
GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
|
|
return false;
|
|
}
|
|
}
|
|
// Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
|
|
// have the mutex meaning we need to do this hack.
|
|
auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
|
|
return tls32_.user_code_suspend_count != 0;
|
|
};
|
|
if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
|
|
if (kIsDebugBuild) {
|
|
if (gAborting == 0) {
|
|
CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
|
|
}
|
|
if (check_locks) {
|
|
bool bad_mutexes_held = false;
|
|
for (int i = kLockLevelCount - 1; i >= 0; --i) {
|
|
// We expect no locks except the mutator lock. User code suspension lock is OK as long as
|
|
// we aren't going to be held suspended due to SuspendReason::kForUserCode.
|
|
if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
|
|
BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
|
|
if (held_mutex != nullptr) {
|
|
LOG(ERROR) << "holding \"" << held_mutex->GetName()
|
|
<< "\" at point where thread suspension is expected";
|
|
bad_mutexes_held = true;
|
|
}
|
|
}
|
|
}
|
|
// Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
|
|
// user_code_suspend_count which would prevent the thread from ever waking up. Thread
|
|
// autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
|
|
// have the mutex meaning we need to do this hack.
|
|
auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
|
|
return tls32_.user_code_suspend_count != 0;
|
|
};
|
|
if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
|
|
LOG(ERROR) << "suspending due to user-code while holding \""
|
|
<< Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
|
|
<< "wake up.";
|
|
bad_mutexes_held = true;
|
|
}
|
|
if (gAborting == 0) {
|
|
CHECK(!bad_mutexes_held);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
|
|
DCHECK_NE(new_state, ThreadState::kRunnable);
|
|
while (true) {
|
|
StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
|
|
if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest))) {
|
|
RunCheckpointFunction();
|
|
continue;
|
|
}
|
|
if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
|
|
RunEmptyCheckpoint();
|
|
continue;
|
|
}
|
|
// Change the state but keep the current flags (kCheckpointRequest is clear).
|
|
DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest));
|
|
DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest));
|
|
StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
|
|
|
|
// CAS the value, ensuring that prior memory operations are visible to any thread
|
|
// that observes that we are suspended.
|
|
bool done =
|
|
tls32_.state_and_flags.CompareAndSetWeakRelease(old_state_and_flags.GetValue(),
|
|
new_state_and_flags.GetValue());
|
|
if (LIKELY(done)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void Thread::PassActiveSuspendBarriers() {
|
|
while (true) {
|
|
StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
if (LIKELY(!state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) &&
|
|
!state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest) &&
|
|
!state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier))) {
|
|
break;
|
|
} else if (state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
|
|
PassActiveSuspendBarriers(this);
|
|
} else {
|
|
// Impossible
|
|
LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
|
|
// Note: JNI stubs inline a fast path of this method that transitions to suspended if
|
|
// there are no flags set and then clears the `held_mutexes[kMutatorLock]` (this comes
|
|
// from a specialized `BaseMutex::RegisterAsLockedImpl(., kMutatorLock)` inlined from
|
|
// the `GetMutatorLock()->TransitionFromRunnableToSuspended(this)` below).
|
|
// Therefore any code added here (other than debug build assertions) should be gated
|
|
// on some flag being set, so that the JNI stub can take the slow path to get here.
|
|
AssertThreadSuspensionIsAllowable();
|
|
PoisonObjectPointersIfDebug();
|
|
DCHECK_EQ(this, Thread::Current());
|
|
// Change to non-runnable state, thereby appearing suspended to the system.
|
|
TransitionToSuspendedAndRunCheckpoints(new_state);
|
|
// Mark the release of the share of the mutator lock.
|
|
GetMutatorLock()->TransitionFromRunnableToSuspended(this);
|
|
// Once suspended - check the active suspend barrier flag
|
|
PassActiveSuspendBarriers();
|
|
}
|
|
|
|
inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
|
|
// Note: JNI stubs inline a fast path of this method that transitions to Runnable if
|
|
// there are no flags set and then stores the mutator lock to `held_mutexes[kMutatorLock]`
|
|
// (this comes from a specialized `BaseMutex::RegisterAsUnlockedImpl(., kMutatorLock)`
|
|
// inlined from the `GetMutatorLock()->TransitionFromSuspendedToRunnable(this)` below).
|
|
// Therefore any code added here (other than debug build assertions) should be gated
|
|
// on some flag being set, so that the JNI stub can take the slow path to get here.
|
|
StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
ThreadState old_state = old_state_and_flags.GetState();
|
|
DCHECK_NE(old_state, ThreadState::kRunnable);
|
|
while (true) {
|
|
GetMutatorLock()->AssertNotHeld(this); // Otherwise we starve GC.
|
|
// Optimize for the return from native code case - this is the fast path.
|
|
// Atomically change from suspended to runnable if no suspend request pending.
|
|
constexpr uint32_t kCheckedFlags =
|
|
SuspendOrCheckpointRequestFlags() |
|
|
enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier) |
|
|
FlipFunctionFlags();
|
|
if (LIKELY(!old_state_and_flags.IsAnyOfFlagsSet(kCheckedFlags))) {
|
|
// CAS the value with a memory barrier.
|
|
StateAndFlags new_state_and_flags = old_state_and_flags.WithState(ThreadState::kRunnable);
|
|
if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
|
|
new_state_and_flags.GetValue()))) {
|
|
// Mark the acquisition of a share of the mutator lock.
|
|
GetMutatorLock()->TransitionFromSuspendedToRunnable(this);
|
|
break;
|
|
}
|
|
} else if (old_state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
|
|
PassActiveSuspendBarriers(this);
|
|
} else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) ||
|
|
old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
|
|
// Checkpoint flags should not be set while in suspended state.
|
|
static_assert(static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
|
|
LOG(FATAL) << "Transitioning to Runnable with checkpoint flag,"
|
|
// Note: Keeping unused flags. If they are set, it points to memory corruption.
|
|
<< " flags=" << old_state_and_flags.WithState(ThreadState::kRunnable).GetValue()
|
|
<< " state=" << old_state_and_flags.GetState();
|
|
} else if (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
|
|
// Wait while our suspend count is non-zero.
|
|
|
|
// We pass null to the MutexLock as we may be in a situation where the
|
|
// runtime is shutting down. Guarding ourselves from that situation
|
|
// requires to take the shutdown lock, which is undesirable here.
|
|
Thread* thread_to_pass = nullptr;
|
|
if (kIsDebugBuild && !IsDaemon()) {
|
|
// We know we can make our debug locking checks on non-daemon threads,
|
|
// so re-enable them on debug builds.
|
|
thread_to_pass = this;
|
|
}
|
|
MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
|
|
ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
|
|
// Reload state and flags after locking the mutex.
|
|
old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
DCHECK_EQ(old_state, old_state_and_flags.GetState());
|
|
while (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
|
|
// Re-check when Thread::resume_cond_ is notified.
|
|
Thread::resume_cond_->Wait(thread_to_pass);
|
|
// Reload state and flags after waiting.
|
|
old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
DCHECK_EQ(old_state, old_state_and_flags.GetState());
|
|
}
|
|
DCHECK_EQ(GetSuspendCount(), 0);
|
|
} else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) ||
|
|
UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kWaitingForFlipFunction))) {
|
|
// The thread should be suspended while another thread is running the flip function.
|
|
static_assert(static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
|
|
LOG(FATAL) << "Transitioning to Runnable while another thread is running the flip function,"
|
|
// Note: Keeping unused flags. If they are set, it points to memory corruption.
|
|
<< " flags=" << old_state_and_flags.WithState(ThreadState::kRunnable).GetValue()
|
|
<< " state=" << old_state_and_flags.GetState();
|
|
} else {
|
|
DCHECK(old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
|
|
// CAS the value with a memory barrier.
|
|
// Do not set `ThreadFlag::kRunningFlipFunction` as no other thread can run
|
|
// the flip function for a thread that is not suspended.
|
|
StateAndFlags new_state_and_flags = old_state_and_flags.WithState(ThreadState::kRunnable)
|
|
.WithoutFlag(ThreadFlag::kPendingFlipFunction);
|
|
if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
|
|
new_state_and_flags.GetValue()))) {
|
|
// Mark the acquisition of a share of the mutator lock.
|
|
GetMutatorLock()->TransitionFromSuspendedToRunnable(this);
|
|
// Run the flip function.
|
|
RunFlipFunction(this, /*notify=*/ false);
|
|
break;
|
|
}
|
|
}
|
|
// Reload state and flags.
|
|
old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
|
|
DCHECK_EQ(old_state, old_state_and_flags.GetState());
|
|
}
|
|
return static_cast<ThreadState>(old_state);
|
|
}
|
|
|
|
inline mirror::Object* Thread::AllocTlab(size_t bytes) {
|
|
DCHECK_GE(TlabSize(), bytes);
|
|
++tlsPtr_.thread_local_objects;
|
|
mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
|
|
tlsPtr_.thread_local_pos += bytes;
|
|
return ret;
|
|
}
|
|
|
|
inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
|
|
DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
|
|
if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
|
|
// There's room.
|
|
DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
|
|
sizeof(StackReference<mirror::Object>),
|
|
reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
|
|
DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
|
|
tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
|
|
++tlsPtr_.thread_local_alloc_stack_top;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool Thread::GetWeakRefAccessEnabled() const {
|
|
CHECK(kUseReadBarrier);
|
|
DCHECK(this == Thread::Current());
|
|
WeakRefAccessState s = tls32_.weak_ref_access_enabled.load(std::memory_order_relaxed);
|
|
if (LIKELY(s == WeakRefAccessState::kVisiblyEnabled)) {
|
|
return true;
|
|
}
|
|
s = tls32_.weak_ref_access_enabled.load(std::memory_order_acquire);
|
|
if (s == WeakRefAccessState::kVisiblyEnabled) {
|
|
return true;
|
|
} else if (s == WeakRefAccessState::kDisabled) {
|
|
return false;
|
|
}
|
|
DCHECK(s == WeakRefAccessState::kEnabled)
|
|
<< "state = " << static_cast<std::underlying_type_t<WeakRefAccessState>>(s);
|
|
// The state is only changed back to DISABLED during a checkpoint. Thus no other thread can
|
|
// change the value concurrently here. No other thread reads the value we store here, so there
|
|
// is no need for a release store.
|
|
tls32_.weak_ref_access_enabled.store(WeakRefAccessState::kVisiblyEnabled,
|
|
std::memory_order_relaxed);
|
|
return true;
|
|
}
|
|
|
|
inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
|
|
StackReference<mirror::Object>* end) {
|
|
DCHECK(Thread::Current() == this) << "Should be called by self";
|
|
DCHECK(start != nullptr);
|
|
DCHECK(end != nullptr);
|
|
DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
|
|
DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
|
|
DCHECK_LT(start, end);
|
|
tlsPtr_.thread_local_alloc_stack_end = end;
|
|
tlsPtr_.thread_local_alloc_stack_top = start;
|
|
}
|
|
|
|
inline void Thread::RevokeThreadLocalAllocationStack() {
|
|
if (kIsDebugBuild) {
|
|
// Note: self is not necessarily equal to this thread since thread may be suspended.
|
|
Thread* self = Thread::Current();
|
|
DCHECK(this == self || IsSuspended() || GetState() == ThreadState::kWaitingPerformingGc)
|
|
<< GetState() << " thread " << this << " self " << self;
|
|
}
|
|
tlsPtr_.thread_local_alloc_stack_end = nullptr;
|
|
tlsPtr_.thread_local_alloc_stack_top = nullptr;
|
|
}
|
|
|
|
inline void Thread::PoisonObjectPointersIfDebug() {
|
|
if (kObjPtrPoisoning) {
|
|
Thread::Current()->PoisonObjectPointers();
|
|
}
|
|
}
|
|
|
|
inline bool Thread::ModifySuspendCount(Thread* self,
|
|
int delta,
|
|
AtomicInteger* suspend_barrier,
|
|
SuspendReason reason) {
|
|
if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
|
|
// When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
|
|
// active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
|
|
while (true) {
|
|
if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) {
|
|
return true;
|
|
} else {
|
|
// Failure means the list of active_suspend_barriers is full or we are in the middle of a
|
|
// thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
|
|
// wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
|
|
// flip function. Note that we could not simply wait for the thread to change to a suspended
|
|
// state, because it might need to run checkpoint function before the state change or
|
|
// resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
|
|
//
|
|
// The list of active_suspend_barriers is very unlikely to be full since more than
|
|
// kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
|
|
// target thread stays in kRunnable in the mean time.
|
|
Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
|
|
NanoSleep(100000);
|
|
Locks::thread_suspend_count_lock_->ExclusiveLock(self);
|
|
}
|
|
}
|
|
} else {
|
|
return ModifySuspendCountInternal(self, delta, suspend_barrier, reason);
|
|
}
|
|
}
|
|
|
|
inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
|
|
new_top_frame->CheckConsistentVRegs();
|
|
return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
|
|
}
|
|
|
|
inline ShadowFrame* Thread::PopShadowFrame() {
|
|
return tlsPtr_.managed_stack.PopShadowFrame();
|
|
}
|
|
|
|
inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
|
|
uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check
|
|
? GetStackOverflowReservedBytes(kRuntimeISA)
|
|
: 0);
|
|
if (kIsDebugBuild) {
|
|
// In a debuggable build, but especially under ASAN, the access-checks interpreter has a
|
|
// potentially humongous stack size. We don't want to take too much of the stack regularly,
|
|
// so do not increase the regular reserved size (for compiled code etc) and only report the
|
|
// virtually smaller stack to the interpreter here.
|
|
end += GetStackOverflowReservedBytes(kRuntimeISA);
|
|
}
|
|
return end;
|
|
}
|
|
|
|
inline void Thread::ResetDefaultStackEnd() {
|
|
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
|
|
// to throw a StackOverflowError.
|
|
tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
|
|
}
|
|
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_THREAD_INL_H_
|