167 lines
6.7 KiB
C++
167 lines
6.7 KiB
C++
/*
|
|
* Copyright (c) 2016-2018 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "arm_compute/runtime/NEON/NEFunctions.h"
|
|
|
|
#include "arm_compute/core/Types.h"
|
|
#include "utils/Utils.h"
|
|
|
|
#include <cstring>
|
|
#include <iostream>
|
|
|
|
using namespace arm_compute;
|
|
using namespace utils;
|
|
|
|
class NEONCopyObjectsExample : public Example
|
|
{
|
|
public:
|
|
bool do_setup(int argc, char **argv) override
|
|
{
|
|
ARM_COMPUTE_UNUSED(argc);
|
|
ARM_COMPUTE_UNUSED(argv);
|
|
|
|
/** [Copy objects example] */
|
|
constexpr unsigned int width = 4;
|
|
constexpr unsigned int height = 3;
|
|
constexpr unsigned int batch = 2;
|
|
|
|
src_data = new float[width * height * batch];
|
|
dst_data = new float[width * height * batch];
|
|
|
|
// Fill src_data with dummy values:
|
|
for(unsigned int b = 0; b < batch; b++)
|
|
{
|
|
for(unsigned int h = 0; h < height; h++)
|
|
{
|
|
for(unsigned int w = 0; w < width; w++)
|
|
{
|
|
src_data[b * (width * height) + h * width + w] = static_cast<float>(100 * b + 10 * h + w);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize the tensors dimensions and type:
|
|
const TensorShape shape(width, height, batch);
|
|
input.allocator()->init(TensorInfo(shape, 1, DataType::F32));
|
|
output.allocator()->init(TensorInfo(shape, 1, DataType::F32));
|
|
|
|
// Configure softmax:
|
|
softmax.configure(&input, &output);
|
|
|
|
// Allocate the input / output tensors:
|
|
input.allocator()->allocate();
|
|
output.allocator()->allocate();
|
|
|
|
// Fill the input tensor:
|
|
// Simplest way: create an iterator to iterate through each element of the input tensor:
|
|
Window input_window;
|
|
input_window.use_tensor_dimensions(input.info()->tensor_shape());
|
|
std::cout << " Dimensions of the input's iterator:\n";
|
|
std::cout << " X = [start=" << input_window.x().start() << ", end=" << input_window.x().end() << ", step=" << input_window.x().step() << "]\n";
|
|
std::cout << " Y = [start=" << input_window.y().start() << ", end=" << input_window.y().end() << ", step=" << input_window.y().step() << "]\n";
|
|
std::cout << " Z = [start=" << input_window.z().start() << ", end=" << input_window.z().end() << ", step=" << input_window.z().step() << "]\n";
|
|
|
|
// Create an iterator:
|
|
Iterator input_it(&input, input_window);
|
|
|
|
// Iterate through the elements of src_data and copy them one by one to the input tensor:
|
|
// This is equivalent to:
|
|
// for( unsigned int z = 0; z < batch; ++z)
|
|
// {
|
|
// for( unsigned int y = 0; y < height; ++y)
|
|
// {
|
|
// for( unsigned int x = 0; x < width; ++x)
|
|
// {
|
|
// *reinterpret_cast<float*>( input.buffer() + input.info()->offset_element_in_bytes(Coordinates(x,y,z))) = src_data[ z * (width*height) + y * width + x];
|
|
// }
|
|
// }
|
|
// }
|
|
// Except it works for an arbitrary number of dimensions
|
|
execute_window_loop(input_window, [&](const Coordinates & id)
|
|
{
|
|
std::cout << "Setting item [" << id.x() << "," << id.y() << "," << id.z() << "]\n";
|
|
*reinterpret_cast<float *>(input_it.ptr()) = src_data[id.z() * (width * height) + id.y() * width + id.x()];
|
|
},
|
|
input_it);
|
|
|
|
// More efficient way: create an iterator to iterate through each row (instead of each element) of the output tensor:
|
|
Window output_window;
|
|
output_window.use_tensor_dimensions(output.info()->tensor_shape(), /* first_dimension =*/Window::DimY); // Iterate through the rows (not each element)
|
|
std::cout << " Dimensions of the output's iterator:\n";
|
|
std::cout << " X = [start=" << output_window.x().start() << ", end=" << output_window.x().end() << ", step=" << output_window.x().step() << "]\n";
|
|
std::cout << " Y = [start=" << output_window.y().start() << ", end=" << output_window.y().end() << ", step=" << output_window.y().step() << "]\n";
|
|
std::cout << " Z = [start=" << output_window.z().start() << ", end=" << output_window.z().end() << ", step=" << output_window.z().step() << "]\n";
|
|
|
|
// Create an iterator:
|
|
Iterator output_it(&output, output_window);
|
|
|
|
// Iterate through the rows of the output tensor and copy them to dst_data:
|
|
// This is equivalent to:
|
|
// for( unsigned int z = 0; z < batch; ++z)
|
|
// {
|
|
// for( unsigned int y = 0; y < height; ++y)
|
|
// {
|
|
// memcpy( dst_data + z * (width*height) + y * width, input.buffer() + input.info()->offset_element_in_bytes(Coordinates(0,y,z)), width * sizeof(float));
|
|
// }
|
|
// }
|
|
// Except it works for an arbitrary number of dimensions
|
|
execute_window_loop(output_window, [&](const Coordinates & id)
|
|
{
|
|
std::cout << "Copying one row starting from [" << id.x() << "," << id.y() << "," << id.z() << "]\n";
|
|
// Copy one whole row:
|
|
memcpy(dst_data + id.z() * (width * height) + id.y() * width, output_it.ptr(), width * sizeof(float));
|
|
},
|
|
output_it);
|
|
|
|
/** [Copy objects example] */
|
|
|
|
return true;
|
|
}
|
|
void do_run() override
|
|
{
|
|
// Run NEON softmax:
|
|
softmax.run();
|
|
}
|
|
void do_teardown() override
|
|
{
|
|
delete[] src_data;
|
|
delete[] dst_data;
|
|
}
|
|
|
|
private:
|
|
Tensor input{}, output{};
|
|
float *src_data{};
|
|
float *dst_data{};
|
|
NESoftmaxLayer softmax{};
|
|
};
|
|
/** Main program for the copy objects test
|
|
*
|
|
* @param[in] argc Number of arguments
|
|
* @param[in] argv Arguments
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
return utils::run_example<NEONCopyObjectsExample>(argc, argv);
|
|
}
|