279 lines
11 KiB
C++
279 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/runtime/TensorAllocator.h"
|
|
|
|
#include "arm_compute/core/utils/misc/MMappedFile.h"
|
|
#include "arm_compute/core/utils/misc/Utility.h"
|
|
#include "arm_compute/runtime/MemoryGroup.h"
|
|
#include "arm_compute/runtime/MemoryRegion.h"
|
|
#include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
|
|
|
|
#include "support/MemorySupport.h"
|
|
|
|
#include "tests/Globals.h"
|
|
#include "tests/Utils.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Macros.h"
|
|
#include "tests/validation/Validation.h"
|
|
#include "tests/validation/reference/ActivationLayer.h"
|
|
|
|
#include <memory>
|
|
#include <random>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
TEST_SUITE(NEON)
|
|
TEST_SUITE(UNIT)
|
|
TEST_SUITE(TensorAllocator)
|
|
|
|
TEST_CASE(ImportMemory, framework::DatasetMode::ALL)
|
|
{
|
|
// Init tensor info
|
|
TensorInfo info(TensorShape(24U, 16U, 3U), 1, DataType::F32);
|
|
|
|
// Allocate memory buffer
|
|
const size_t total_size = info.total_size();
|
|
auto data = support::cpp14::make_unique<uint8_t[]>(total_size);
|
|
|
|
// Negative case : Import nullptr
|
|
Tensor t1;
|
|
t1.allocator()->init(info);
|
|
ARM_COMPUTE_EXPECT(!bool(t1.allocator()->import_memory(nullptr)), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(t1.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Negative case : Import misaligned pointer
|
|
Tensor t2;
|
|
const size_t required_alignment = 339;
|
|
t2.allocator()->init(info, required_alignment);
|
|
ARM_COMPUTE_EXPECT(!bool(t2.allocator()->import_memory(data.get())), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(t2.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Negative case : Import memory to a tensor that is memory managed
|
|
Tensor t3;
|
|
MemoryGroup mg;
|
|
t3.allocator()->set_associated_memory_group(&mg);
|
|
ARM_COMPUTE_EXPECT(!bool(t3.allocator()->import_memory(data.get())), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(t3.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Positive case : Set raw pointer
|
|
Tensor t4;
|
|
t4.allocator()->init(info);
|
|
ARM_COMPUTE_EXPECT(bool(t4.allocator()->import_memory(data.get())), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!t4.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(t4.buffer() == reinterpret_cast<uint8_t *>(data.get()), framework::LogLevel::ERRORS);
|
|
t4.allocator()->free();
|
|
ARM_COMPUTE_EXPECT(t4.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(t4.buffer() == nullptr, framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
TEST_CASE(ImportMemoryMalloc, framework::DatasetMode::ALL)
|
|
{
|
|
const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
|
|
const TensorShape shape = TensorShape(24U, 16U, 3U);
|
|
const DataType data_type = DataType::F32;
|
|
|
|
// Create tensor
|
|
const TensorInfo info(shape, 1, data_type);
|
|
const size_t required_alignment = 64;
|
|
Tensor tensor;
|
|
tensor.allocator()->init(info, required_alignment);
|
|
|
|
// Create and configure activation function
|
|
NEActivationLayer act_func;
|
|
act_func.configure(&tensor, nullptr, act_info);
|
|
|
|
// Allocate and import tensor
|
|
const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
|
|
const size_t total_size_in_bytes = tensor.info()->total_size();
|
|
size_t space = total_size_in_bytes + required_alignment;
|
|
auto raw_data = support::cpp14::make_unique<uint8_t[]>(space);
|
|
|
|
void *aligned_ptr = raw_data.get();
|
|
support::cpp11::align(required_alignment, total_size_in_bytes, aligned_ptr, space);
|
|
|
|
ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(aligned_ptr)), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
std::uniform_real_distribution<float> distribution(-5.f, 5.f);
|
|
std::mt19937 gen(library->seed());
|
|
auto *typed_ptr = reinterpret_cast<float *>(aligned_ptr);
|
|
for(unsigned int i = 0; i < total_size_in_elems; ++i)
|
|
{
|
|
typed_ptr[i] = distribution(gen);
|
|
}
|
|
|
|
// Execute function and sync
|
|
act_func.run();
|
|
|
|
// Validate result by checking that the input has no negative values
|
|
for(unsigned int i = 0; i < total_size_in_elems; ++i)
|
|
{
|
|
ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
// Release resources
|
|
tensor.allocator()->free();
|
|
ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
TEST_CASE(ImportMemoryMallocPadded, framework::DatasetMode::ALL)
|
|
{
|
|
// Create tensor
|
|
Tensor tensor;
|
|
tensor.allocator()->init(TensorInfo(TensorShape(24U, 16U, 3U), 1, DataType::F32));
|
|
|
|
// Enforce tensor padding and validate that meta-data were updated
|
|
// Note: Padding might be updated after the function configuration in case of increased padding requirements
|
|
const PaddingSize enforced_padding(3U, 5U, 2U, 4U);
|
|
tensor.info()->extend_padding(enforced_padding);
|
|
validate(tensor.info()->padding(), enforced_padding);
|
|
|
|
// Create and configure activation function
|
|
NEActivationLayer act_func;
|
|
act_func.configure(&tensor, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
|
|
|
|
// Allocate and import tensor
|
|
const size_t total_size_in_bytes = tensor.info()->total_size();
|
|
auto raw_data = support::cpp14::make_unique<uint8_t[]>(total_size_in_bytes);
|
|
|
|
ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(raw_data.get())), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor while accounting padding
|
|
std::uniform_real_distribution<float> distribution(-5.f, 5.f);
|
|
std::mt19937 gen(library->seed());
|
|
|
|
Window tensor_window;
|
|
tensor_window.use_tensor_dimensions(tensor.info()->tensor_shape());
|
|
Iterator tensor_it(&tensor, tensor_window);
|
|
|
|
execute_window_loop(tensor_window, [&](const Coordinates &)
|
|
{
|
|
*reinterpret_cast<float *>(tensor_it.ptr()) = distribution(gen);
|
|
},
|
|
tensor_it);
|
|
|
|
// Execute function and sync
|
|
act_func.run();
|
|
|
|
// Validate result by checking that the input has no negative values
|
|
execute_window_loop(tensor_window, [&](const Coordinates &)
|
|
{
|
|
const float val = *reinterpret_cast<float *>(tensor_it.ptr());
|
|
ARM_COMPUTE_EXPECT(val >= 0, framework::LogLevel::ERRORS);
|
|
},
|
|
tensor_it);
|
|
|
|
// Release resources
|
|
tensor.allocator()->free();
|
|
ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
#if !defined(BARE_METAL)
|
|
TEST_CASE(ImportMemoryMappedFile, framework::DatasetMode::ALL)
|
|
{
|
|
const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
|
|
const TensorShape shape = TensorShape(24U, 16U, 3U);
|
|
const DataType data_type = DataType::F32;
|
|
|
|
// Create tensor
|
|
const TensorInfo info(shape, 1, data_type);
|
|
Tensor tensor;
|
|
tensor.allocator()->init(info);
|
|
|
|
// Create and configure activation function
|
|
NEActivationLayer act_func;
|
|
act_func.configure(&tensor, nullptr, act_info);
|
|
|
|
// Get number of elements
|
|
const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
|
|
const size_t total_size_in_bytes = tensor.info()->total_size();
|
|
|
|
// Create file
|
|
std::ofstream output_file("test_mmap_import.bin", std::ios::binary | std::ios::out);
|
|
output_file.seekp(total_size_in_bytes - 1);
|
|
output_file.write("", 1);
|
|
output_file.close();
|
|
|
|
// Map file
|
|
utils::mmap_io::MMappedFile mmapped_file("test_mmap_import.bin", 0 /** Whole file */, 0);
|
|
ARM_COMPUTE_EXPECT(mmapped_file.is_mapped(), framework::LogLevel::ERRORS);
|
|
unsigned char *data = mmapped_file.data();
|
|
|
|
// Import memory mapped memory
|
|
ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(data)), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensor
|
|
std::uniform_real_distribution<float> distribution(-5.f, 5.f);
|
|
std::mt19937 gen(library->seed());
|
|
auto *typed_ptr = reinterpret_cast<float *>(data);
|
|
for(unsigned int i = 0; i < total_size_in_elems; ++i)
|
|
{
|
|
typed_ptr[i] = distribution(gen);
|
|
}
|
|
|
|
// Execute function and sync
|
|
act_func.run();
|
|
|
|
// Validate result by checking that the input has no negative values
|
|
for(unsigned int i = 0; i < total_size_in_elems; ++i)
|
|
{
|
|
ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
// Release resources
|
|
tensor.allocator()->free();
|
|
ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
}
|
|
#endif // !defined(BARE_METAL)
|
|
|
|
TEST_CASE(AlignedAlloc, framework::DatasetMode::ALL)
|
|
{
|
|
// Init tensor info
|
|
TensorInfo info(TensorShape(24U, 16U, 3U), 1, DataType::F32);
|
|
const size_t requested_alignment = 1024;
|
|
|
|
Tensor t;
|
|
t.allocator()->init(info, requested_alignment);
|
|
t.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(t.buffer() != nullptr, framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(t.allocator()->alignment() == requested_alignment, framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(arm_compute::utility::check_aligned(reinterpret_cast<void *>(t.buffer()), requested_alignment),
|
|
framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
TEST_SUITE_END()
|
|
TEST_SUITE_END()
|
|
TEST_SUITE_END()
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|