310 lines
15 KiB
C++
310 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
|
|
#define ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/NEON/NEScheduler.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/ActivationLayer.h"
|
|
#include "tests/validation/reference/ConvolutionLayer.h"
|
|
#include "tests/validation/reference/Permute.h"
|
|
#include "tests/validation/reference/Utils.h"
|
|
|
|
#include <random>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace detail
|
|
{
|
|
template <typename ConvolutionFunction, typename TensorType>
|
|
void configure_conv_function(ConvolutionFunction &func,
|
|
TensorType *src, const TensorType *weights, const TensorType *bias, TensorType *dst,
|
|
const PadStrideInfo &info, const WeightsInfo &weights_info,
|
|
const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
|
|
{
|
|
func.configure(src, weights, bias, dst, info, weights_info, dilation, act_info, num_groups);
|
|
}
|
|
} // namespace detail
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
|
|
class ConvolutionValidationGenericFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
using TBias = typename std::conditional < std::is_same<typename std::decay<T>::type, uint8_t>::value
|
|
|| std::is_same<typename std::decay<T>::type, int8_t>::value,
|
|
int32_t, T >::type;
|
|
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights,
|
|
DataType data_type, DataType weights_data_type, DataLayout data_layout, QuantizationInfo quantization_info, QuantizationInfo weight_quantization_info, ActivationLayerInfo act_info)
|
|
{
|
|
_data_type = data_type;
|
|
_weights_data_type = weights_data_type;
|
|
_is_quantized = is_data_type_quantized_asymmetric(data_type);
|
|
_is_bfloat16 = data_type == DataType::BFLOAT16;
|
|
_bias_data_type = _is_quantized ? DataType::S32 : (_is_bfloat16 ? DataType::F32 : data_type);
|
|
_output_data_type = _is_bfloat16 ? DataType::F32 : data_type;
|
|
_quantization_info = quantization_info;
|
|
_weight_quantization_info = weight_quantization_info;
|
|
_data_layout = data_layout;
|
|
|
|
_target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, dilation, act_info);
|
|
_reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, dilation, act_info);
|
|
}
|
|
|
|
protected:
|
|
void regularize_values(void *values, size_t size)
|
|
{
|
|
float *fvalues = static_cast<float *>(values);
|
|
for(size_t i = 0; i < size; ++i)
|
|
{
|
|
fvalues[i] = float(bfloat16(fvalues[i]));
|
|
}
|
|
}
|
|
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
switch(tensor.data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
{
|
|
std::pair<int, int> bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
|
|
std::uniform_int_distribution<uint8_t> distribution(bounds.first, bounds.second);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
case DataType::QASYMM8_SIGNED:
|
|
{
|
|
std::pair<int, int> bounds = get_quantized_qasymm8_signed_bounds(tensor.quantization_info(), -1.0f, 1.0f);
|
|
std::uniform_int_distribution<int8_t> distribution(bounds.first, bounds.second);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
case DataType::QSYMM8_PER_CHANNEL:
|
|
{
|
|
int min_bound = 128;
|
|
int max_bound = -127;
|
|
for(size_t i = 0; i < _weight_quantization_info.scale().size(); i++)
|
|
{
|
|
std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
|
|
if(bounds.first < min_bound)
|
|
{
|
|
min_bound = bounds.first;
|
|
}
|
|
if(bounds.second > max_bound)
|
|
{
|
|
max_bound = bounds.second;
|
|
}
|
|
}
|
|
std::uniform_int_distribution<int8_t> distribution(min_bound, max_bound);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
case DataType::S32:
|
|
{
|
|
std::uniform_int_distribution<int32_t> distribution(-100, 100);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
case DataType::BFLOAT16:
|
|
case DataType::F16:
|
|
case DataType::F32:
|
|
{
|
|
std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
|
|
library->fill(tensor, distribution, i);
|
|
break;
|
|
}
|
|
default:
|
|
library->fill_tensor_uniform(tensor, i);
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
|
|
bool reshape_weights, const Size2D &dilation, const ActivationLayerInfo act_info)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);
|
|
|
|
const unsigned int num_groups = input_shape[2] / weights_shape[2];
|
|
|
|
if(_data_layout == DataLayout::NHWC)
|
|
{
|
|
permute(input_shape, PermutationVector(2U, 0U, 1U));
|
|
permute(weights_shape, PermutationVector(2U, 0U, 1U));
|
|
permute(output_shape, PermutationVector(2U, 0U, 1U));
|
|
}
|
|
|
|
const int idx_width = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
|
|
const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
|
|
|
|
WeightsInfo weights_info(!reshape_weights, weights_shape[idx_width], weights_shape[idx_height], weights_shape[3]);
|
|
TensorShape reshaped_weights_shape(weights_shape);
|
|
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(input_shape, _data_type, 1, _quantization_info, _data_layout);
|
|
TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, _weights_data_type, 1, _weight_quantization_info, _data_layout);
|
|
TensorType bias = create_tensor<TensorType>(bias_shape, _bias_data_type, 1, _quantization_info, _data_layout);
|
|
TensorType dst = create_tensor<TensorType>(output_shape, _output_data_type, 1, _quantization_info, _data_layout);
|
|
|
|
// Create and configure function
|
|
FunctionType conv;
|
|
detail::configure_conv_function(conv, &src, &weights, &bias, &dst, info, weights_info, dilation, act_info, num_groups);
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
weights.allocator()->allocate();
|
|
bias.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src), 0);
|
|
fill(AccessorType(weights), 1);
|
|
fill(AccessorType(bias), 2);
|
|
|
|
// Compute NEConvolutionLayer function
|
|
conv.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
|
|
const Size2D &dilation, const ActivationLayerInfo act_info)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);
|
|
|
|
const unsigned int num_groups = input_shape[2] / weights_shape[2];
|
|
|
|
// Setup reference data types
|
|
const DataType src_dt = _is_bfloat16 ? DataType::F32 : _data_type;
|
|
const DataType weights_dt = _is_bfloat16 ? DataType::F32 : _weights_data_type;
|
|
const DataType bias_dt = _is_bfloat16 ? DataType::F32 : _bias_data_type;
|
|
|
|
// Create reference
|
|
SimpleTensor<T> src{ input_shape, src_dt, 1, _quantization_info };
|
|
SimpleTensor<TW> weights{ weights_shape, weights_dt, 1, _weight_quantization_info };
|
|
SimpleTensor<TBias> bias{ bias_shape, bias_dt, 1, _quantization_info };
|
|
|
|
fill(src, 0);
|
|
fill(weights, 1);
|
|
fill(bias, 2);
|
|
|
|
// Fill with bfloat16 to perform the conversion and reduce the mismatches in the output
|
|
if(_is_bfloat16)
|
|
{
|
|
regularize_values(static_cast<void *>(src.data()), src.num_elements());
|
|
regularize_values(static_cast<void *>(weights.data()), weights.num_elements());
|
|
}
|
|
|
|
return (act_info.enabled()) ? reference::activation_layer<T>(reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups),
|
|
act_info) :
|
|
reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
DataType _data_type{};
|
|
DataType _weights_data_type{};
|
|
DataType _bias_data_type{};
|
|
DataType _output_data_type{};
|
|
DataLayout _data_layout{};
|
|
QuantizationInfo _quantization_info{};
|
|
QuantizationInfo _weight_quantization_info{};
|
|
bool _is_quantized = false;
|
|
bool _is_bfloat16 = false;
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class ConvolutionValidationFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
|
|
DataLayout data_layout, ActivationLayerInfo act_info)
|
|
{
|
|
ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
|
|
data_type, data_type, data_layout,
|
|
QuantizationInfo(), QuantizationInfo(), act_info);
|
|
}
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class ConvolutionValidationQuantizedFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
|
|
DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info)
|
|
{
|
|
ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
|
|
data_type, data_type, data_layout, quantization_info, quantization_info, act_info);
|
|
}
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
|
|
class ConvolutionValidationQuantizedPerChannelFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
|
|
DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataType weights_data_type)
|
|
{
|
|
std::vector<float> weights_scales{};
|
|
std::mt19937 gen(library->seed());
|
|
std::uniform_real_distribution<> dis(0.01f, 1);
|
|
for(size_t i = 0; i < output_shape[2]; ++i)
|
|
{
|
|
weights_scales.push_back(dis(gen));
|
|
}
|
|
ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation,
|
|
reshape_weights, data_type, weights_data_type, data_layout,
|
|
quantization_info, QuantizationInfo(weights_scales), act_info);
|
|
}
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_CONVOLUTION_LAYER_FIXTURE */
|