136 lines
5.2 KiB
C++
136 lines
5.2 KiB
C++
/*
|
|
* Copyright (c) 2017-2018 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_HOG_DESCRIPTOR_FIXTURE
|
|
#define ARM_COMPUTE_TEST_HOG_DESCRIPTOR_FIXTURE
|
|
|
|
#include "arm_compute/core/HOGInfo.h"
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/reference/HOGDescriptor.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename HOGType, typename AccessorType, typename FunctionType, typename T, typename U>
|
|
class HOGDescriptorValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(std::string image, HOGInfo hog_info, Format format, BorderMode border_mode)
|
|
{
|
|
// Only defined borders supported
|
|
ARM_COMPUTE_ERROR_ON(border_mode == BorderMode::UNDEFINED);
|
|
|
|
// Generate a random constant value
|
|
std::mt19937 gen(library->seed());
|
|
std::uniform_int_distribution<T> int_dist(0, 255);
|
|
const T constant_border_value = int_dist(gen);
|
|
|
|
_target = compute_target(image, format, border_mode, constant_border_value, hog_info);
|
|
_reference = compute_reference(image, format, border_mode, constant_border_value, hog_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename V>
|
|
void fill(V &&tensor, const std::string image, Format format)
|
|
{
|
|
library->fill(tensor, image, format);
|
|
}
|
|
|
|
template <typename V, typename D>
|
|
void fill(V &&tensor, int i, D max)
|
|
{
|
|
library->fill_tensor_uniform(tensor, i, static_cast<D>(0), max);
|
|
}
|
|
|
|
TensorType compute_target(const std::string image, Format &format, BorderMode &border_mode, T constant_border_value, const HOGInfo &hog_info)
|
|
{
|
|
// Get image shape for src tensor
|
|
TensorShape shape = library->get_image_shape(image);
|
|
|
|
// Create tensor info for HOG descriptor
|
|
TensorInfo tensor_info_hog_descriptor(hog_info, shape.x(), shape.y());
|
|
|
|
// Create HOG
|
|
HOGType hog = create_HOG<HOGType>(hog_info);
|
|
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(shape, data_type_from_format(format));
|
|
TensorType dst = create_tensor<TensorType>(tensor_info_hog_descriptor.tensor_shape(), DataType::F32, tensor_info_hog_descriptor.num_channels());
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Create and configure function
|
|
FunctionType hog_descriptor;
|
|
hog_descriptor.configure(&src, &dst, &hog, border_mode, constant_border_value);
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
const T max = std::numeric_limits<T>::max();
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src), image, format);
|
|
fill(AccessorType(dst), 1, static_cast<U>(max));
|
|
|
|
// Compute function
|
|
hog_descriptor.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<U> compute_reference(const std::string image, Format format, BorderMode border_mode, T constant_border_value, const HOGInfo &hog_info)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> src{ library->get_image_shape(image), data_type_from_format(format) };
|
|
|
|
// Fill reference
|
|
fill(src, image, format);
|
|
|
|
return reference::hog_descriptor<U>(src, border_mode, constant_border_value, hog_info);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<U> _reference{};
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_HOG_DESCRIPTOR_FIXTURE */
|