166 lines
7.0 KiB
C++
166 lines
7.0 KiB
C++
/*
|
|
* Copyright (c) 2017-2019 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_NORMALIZE_PLANAR_YUV_LAYER_FIXTURE
|
|
#define ARM_COMPUTE_TEST_NORMALIZE_PLANAR_YUV_LAYER_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/NormalizePlanarYUVLayer.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class NormalizePlanarYUVLayerValidationGenericFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape0, TensorShape shape1, DataType dt, DataLayout data_layout, QuantizationInfo quantization_info)
|
|
{
|
|
_data_type = dt;
|
|
_target = compute_target(shape0, shape1, dt, data_layout, quantization_info);
|
|
_reference = compute_reference(shape0, shape1, dt, quantization_info);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&src_tensor, U &&mean_tensor, U &&std_tensor)
|
|
{
|
|
if(is_data_type_float(_data_type))
|
|
{
|
|
const float min_bound = -1.f;
|
|
const float max_bound = 1.f;
|
|
std::uniform_real_distribution<> distribution(min_bound, max_bound);
|
|
std::uniform_real_distribution<> distribution_std(0.1, max_bound);
|
|
library->fill(src_tensor, distribution, 0);
|
|
library->fill(mean_tensor, distribution, 1);
|
|
library->fill(std_tensor, distribution_std, 2);
|
|
}
|
|
else if(is_data_type_quantized_asymmetric(_data_type))
|
|
{
|
|
const QuantizationInfo quant_info = src_tensor.quantization_info();
|
|
std::pair<int, int> bounds = get_quantized_bounds(quant_info, -1.f, 1.0f);
|
|
std::uniform_int_distribution<> distribution(bounds.first, bounds.second);
|
|
std::uniform_int_distribution<> distribution_std(quantize_qasymm8(0.1f, quant_info.uniform()), bounds.second);
|
|
library->fill(src_tensor, distribution, 0);
|
|
library->fill(mean_tensor, distribution, 1);
|
|
library->fill(std_tensor, distribution_std, 2);
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(TensorShape shape0, const TensorShape &shape1, DataType dt, DataLayout data_layout, QuantizationInfo quantization_info)
|
|
{
|
|
if(data_layout == DataLayout::NHWC)
|
|
{
|
|
permute(shape0, PermutationVector(2U, 0U, 1U));
|
|
}
|
|
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(shape0, dt, 1, quantization_info, data_layout);
|
|
TensorType mean = create_tensor<TensorType>(shape1, dt, 1, quantization_info);
|
|
TensorType std = create_tensor<TensorType>(shape1, dt, 1, quantization_info);
|
|
TensorType dst;
|
|
|
|
// Create and configure function
|
|
FunctionType norm;
|
|
norm.configure(&src, &dst, &mean, &std);
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(mean.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(std.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
mean.allocator()->allocate();
|
|
std.allocator()->allocate();
|
|
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!mean.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(!std.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src), AccessorType(mean), AccessorType(std));
|
|
|
|
// Compute function
|
|
norm.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &shape0, const TensorShape &shape1, DataType dt, QuantizationInfo quantization_info)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> ref_src{ shape0, dt, 1, quantization_info };
|
|
SimpleTensor<T> ref_mean{ shape1, dt, 1, quantization_info };
|
|
SimpleTensor<T> ref_std{ shape1, dt, 1, quantization_info };
|
|
|
|
// Fill reference
|
|
fill(ref_src, ref_mean, ref_std);
|
|
|
|
return reference::normalize_planar_yuv_layer(ref_src, ref_mean, ref_std);
|
|
}
|
|
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
DataType _data_type{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class NormalizePlanarYUVLayerValidationFixture : public NormalizePlanarYUVLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape0, TensorShape shape1, DataType dt, DataLayout data_layout)
|
|
{
|
|
NormalizePlanarYUVLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape0, shape1, dt, data_layout, QuantizationInfo());
|
|
}
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class NormalizePlanarYUVLayerValidationQuantizedFixture : public NormalizePlanarYUVLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape0, TensorShape shape1, DataType dt, DataLayout data_layout, QuantizationInfo quantization_info)
|
|
{
|
|
NormalizePlanarYUVLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape0, shape1, dt, data_layout, quantization_info);
|
|
}
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_NORMALIZE_PLANAR_YUV_LAYER_FIXTURE */
|