151 lines
5.5 KiB
C++
151 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2017-2018 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_UNIT_WEIGHTS_RETENTION
|
|
#define ARM_COMPUTE_TEST_UNIT_WEIGHTS_RETENTION
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/FullyConnectedLayer.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
/** Test case to run a fully connected layer with weights retention, reconfigure
|
|
* with different shapes and rerun making sure the weights are retained.
|
|
*
|
|
* Runs a fully connected layer stimulating is_interleaved_transpose CLGEMM,
|
|
* then reconfigures with different batch size and reruns.
|
|
*/
|
|
template <typename TensorType, typename AccessorType, typename FullyConnectedFunction>
|
|
class WeightsRetentionReconfigureTestCaseFixture : public framework::Fixture
|
|
{
|
|
using T = float;
|
|
|
|
public:
|
|
void setup()
|
|
{
|
|
_max_batches = 8;
|
|
_cur_batches = 6;
|
|
_target = compute_target();
|
|
_reference = compute_reference();
|
|
};
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
std::uniform_real_distribution<> distribution(0.5f, 1.f);
|
|
library->fill(tensor, distribution, i);
|
|
}
|
|
|
|
TensorType compute_target()
|
|
{
|
|
// Create tensors
|
|
TensorType w1 = create_tensor<TensorType>(TensorShape(180000U, 150U), DataType::F32, 1);
|
|
TensorType b1 = create_tensor<TensorType>(TensorShape(150U), DataType::F32, 1);
|
|
TensorType src = create_tensor<TensorType>(TensorShape(1U, 150U, 1200U, _max_batches), DataType::F32, 1);
|
|
TensorType dst = create_tensor<TensorType>(TensorShape(150U, _max_batches), DataType::F32, 1);
|
|
|
|
// Create and configure function
|
|
FullyConnectedFunction fc_layer_1;
|
|
fc_layer_1.configure(&src, &w1, &b1, &dst);
|
|
|
|
// Allocate persistent tensors
|
|
w1.allocator()->allocate();
|
|
b1.allocator()->allocate();
|
|
|
|
// Allocate tensors (1st iteration)
|
|
src.allocator()->allocate();
|
|
dst.allocator()->allocate();
|
|
|
|
// Fill tensors (1st iteration)
|
|
fill(AccessorType(src), 0);
|
|
fill(AccessorType(w1), 1);
|
|
fill(AccessorType(b1), 2);
|
|
|
|
// Compute functions (1st iteration)
|
|
fc_layer_1.run();
|
|
|
|
// Update tensor shapes (2nd iteration)
|
|
auto src_padding = src.allocator()->info().padding();
|
|
auto dst_padding = dst.allocator()->info().padding();
|
|
int diff = _max_batches - _cur_batches;
|
|
auto new_src_padding = PaddingSize(src_padding.top, src_padding.right, src_padding.bottom + diff, src_padding.left);
|
|
auto new_dst_padding = PaddingSize(dst_padding.top, dst_padding.right, dst_padding.bottom + diff, dst_padding.left);
|
|
src.allocator()->info().set_tensor_shape(TensorShape(1U, 150U, 1200U, _cur_batches)).set_is_resizable(true).extend_padding(new_src_padding);
|
|
src.allocator()->info().set_is_resizable(false);
|
|
dst.allocator()->info().set_tensor_shape(TensorShape(150U, _cur_batches)).set_is_resizable(true).extend_padding(new_dst_padding);
|
|
dst.allocator()->info().set_is_resizable(false);
|
|
|
|
// Configure FC info
|
|
FullyConnectedLayerInfo fc_info;
|
|
fc_info.retain_internal_weights = true;
|
|
|
|
// Configure functions (2nd iteration)
|
|
fc_layer_1.configure(&src, &w1, &b1, &dst, fc_info);
|
|
|
|
// Fill tensors (2nd iteration)
|
|
fill(AccessorType(src), 5);
|
|
|
|
// Compute functions (2nd iteration)
|
|
fc_layer_1.run();
|
|
|
|
return dst;
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference()
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> w1{ TensorShape(180000U, 150U), DataType::F32 };
|
|
SimpleTensor<T> b1{ TensorShape(150U), DataType::F32 };
|
|
SimpleTensor<T> src{ TensorShape(1U, 150U, 1200U, _cur_batches), DataType::F32 };
|
|
|
|
// Fill reference
|
|
fill(src, 5);
|
|
fill(w1, 1);
|
|
fill(b1, 2);
|
|
|
|
return reference::fully_connected_layer(src, w1, b1, TensorShape(150U, _cur_batches));
|
|
}
|
|
|
|
protected:
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
unsigned int _max_batches{};
|
|
unsigned int _cur_batches{};
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_UNIT_WEIGHTS_RETENTION */
|