143 lines
5.8 KiB
C++
143 lines
5.8 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "DepthConcatenateLayer.h"
|
|
|
|
#include "tests/validation/Helpers.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace reference
|
|
{
|
|
template <typename T>
|
|
SimpleTensor<T> depthconcatenate_layer(const std::vector<SimpleTensor<T>> &srcs, SimpleTensor<T> &dst)
|
|
{
|
|
// Create reference
|
|
std::vector<TensorShape> shapes;
|
|
shapes.reserve(srcs.size());
|
|
for(const auto &src : srcs)
|
|
{
|
|
shapes.emplace_back(src.shape());
|
|
}
|
|
|
|
// Compute reference
|
|
int depth_offset = 0;
|
|
const int width_out = dst.shape().x();
|
|
const int height_out = dst.shape().y();
|
|
const int depth_out = dst.shape().z();
|
|
const int out_stride_z = width_out * height_out;
|
|
const int batches = dst.shape().total_size_upper(3);
|
|
auto have_different_quantization_info = [&](const SimpleTensor<T> &tensor)
|
|
{
|
|
return tensor.quantization_info() != dst.quantization_info();
|
|
};
|
|
|
|
if(srcs[0].data_type() == DataType::QASYMM8 && std::any_of(srcs.cbegin(), srcs.cend(), have_different_quantization_info))
|
|
{
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for
|
|
#endif /* _OPENMP */
|
|
for(int b = 0; b < batches; ++b)
|
|
{
|
|
// input tensors can have smaller width and height than the output, so for each output's slice we need to requantize 0 (as this is the value
|
|
// used in NEFillBorderKernel by NEDepthConcatenateLayer) using the corresponding quantization info for that particular slice/input tensor.
|
|
int slice = 0;
|
|
for(const auto &src : srcs)
|
|
{
|
|
auto ptr_slice = static_cast<T *>(dst(Coordinates(0, 0, slice, b)));
|
|
const auto num_elems_in_slice((dst.num_elements() / depth_out) * src.shape().z());
|
|
const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
|
|
const UniformQuantizationInfo oq_info = dst.quantization_info().uniform();
|
|
|
|
std::transform(ptr_slice, ptr_slice + num_elems_in_slice, ptr_slice, [&](T)
|
|
{
|
|
return quantize_qasymm8(dequantize_qasymm8(0, iq_info), oq_info);
|
|
});
|
|
slice += src.shape().z();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
std::fill_n(dst.data(), dst.num_elements(), 0);
|
|
}
|
|
|
|
for(const auto &src : srcs)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(depth_offset >= depth_out);
|
|
ARM_COMPUTE_ERROR_ON(batches != static_cast<int>(src.shape().total_size_upper(3)));
|
|
|
|
const int width = src.shape().x();
|
|
const int height = src.shape().y();
|
|
const int depth = src.shape().z();
|
|
const int x_diff = (width_out - width) / 2;
|
|
const int y_diff = (height_out - height) / 2;
|
|
|
|
const T *src_ptr = src.data();
|
|
|
|
for(int b = 0; b < batches; ++b)
|
|
{
|
|
const size_t offset_to_first_element = b * out_stride_z * depth_out + depth_offset * out_stride_z + y_diff * width_out + x_diff;
|
|
|
|
for(int d = 0; d < depth; ++d)
|
|
{
|
|
for(int r = 0; r < height; ++r)
|
|
{
|
|
if(src.data_type() == DataType::QASYMM8 && src.quantization_info() != dst.quantization_info())
|
|
{
|
|
const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
|
|
const UniformQuantizationInfo oq_info = dst.quantization_info().uniform();
|
|
std::transform(src_ptr, src_ptr + width, dst.data() + offset_to_first_element + d * out_stride_z + r * width_out, [&](T t)
|
|
{
|
|
const float dequantized_input = dequantize_qasymm8(t, iq_info);
|
|
return quantize_qasymm8(dequantized_input, oq_info);
|
|
});
|
|
src_ptr += width;
|
|
}
|
|
else
|
|
{
|
|
std::copy(src_ptr, src_ptr + width, dst.data() + offset_to_first_element + d * out_stride_z + r * width_out);
|
|
src_ptr += width;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
depth_offset += depth;
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
template SimpleTensor<uint8_t> depthconcatenate_layer(const std::vector<SimpleTensor<uint8_t>> &srcs, SimpleTensor<uint8_t> &dst);
|
|
template SimpleTensor<float> depthconcatenate_layer(const std::vector<SimpleTensor<float>> &srcs, SimpleTensor<float> &dst);
|
|
template SimpleTensor<half> depthconcatenate_layer(const std::vector<SimpleTensor<half>> &srcs, SimpleTensor<half> &dst);
|
|
} // namespace reference
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|