645 lines
21 KiB
C++
645 lines
21 KiB
C++
//
|
|
// Copyright (c) 2017 The Khronos Group Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
#include "harness/compat.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
|
|
|
|
#include "procs.h"
|
|
|
|
static const char *image_to_image_kernel_integer_coord_code =
|
|
"\n"
|
|
"__kernel void image_to_image_copy(read_only image2d_t srcimg, write_only image2d_t dstimg, sampler_t sampler)\n"
|
|
"{\n"
|
|
" int tid_x = get_global_id(0);\n"
|
|
" int tid_y = get_global_id(1);\n"
|
|
" float4 color;\n"
|
|
"\n"
|
|
" color = read_imagef(srcimg, sampler, (int2)(tid_x, tid_y));\n"
|
|
" write_imagef(dstimg, (int2)(tid_x, tid_y), color);\n"
|
|
"\n"
|
|
"}\n";
|
|
|
|
static const char *image_to_image_kernel_float_coord_code =
|
|
"\n"
|
|
"__kernel void image_to_image_copy(read_only image2d_t srcimg, write_only image2d_t dstimg, sampler_t sampler)\n"
|
|
"{\n"
|
|
" int tid_x = get_global_id(0);\n"
|
|
" int tid_y = get_global_id(1);\n"
|
|
" float4 color;\n"
|
|
"\n"
|
|
" color = read_imagef(srcimg, sampler, (float2)((float)tid_x, (float)tid_y));\n"
|
|
" write_imagef(dstimg, (int2)(tid_x, tid_y), color);\n"
|
|
"\n"
|
|
"}\n";
|
|
|
|
|
|
static const char *image_sum_kernel_integer_coord_code =
|
|
"\n"
|
|
"__kernel void image_sum(read_only image2d_t srcimg0, read_only image2d_t srcimg1, write_only image2d_t dstimg, sampler_t sampler)\n"
|
|
"{\n"
|
|
" int tid_x = get_global_id(0);\n"
|
|
" int tid_y = get_global_id(1);\n"
|
|
" float4 color0;\n"
|
|
" float4 color1;\n"
|
|
"\n"
|
|
" color0 = read_imagef(srcimg0, sampler, (int2)(tid_x, tid_y));\n"
|
|
" color1 = read_imagef(srcimg1, sampler, (int2)(tid_x, tid_y));\n"
|
|
" write_imagef(dstimg, (int2)(tid_x, tid_y), color0 + color1);\n"
|
|
"\n"
|
|
"}\n";
|
|
|
|
|
|
static const char *image_sum_kernel_float_coord_code =
|
|
"\n"
|
|
"__kernel void image_sum(read_only image2d_t srcimg0, read_only image2d_t srcimg1, write_only image2d_t dstimg, sampler_t sampler)\n"
|
|
"{\n"
|
|
" int tid_x = get_global_id(0);\n"
|
|
" int tid_y = get_global_id(1);\n"
|
|
" float4 color0;\n"
|
|
" float4 color1;\n"
|
|
"\n"
|
|
" color0 = read_imagef(srcimg0, sampler, (float2)((float)tid_x, (float)tid_y));\n"
|
|
" color1 = read_imagef(srcimg1, sampler, (float2)((float)tid_x, (float)tid_y));\n"
|
|
" write_imagef(dstimg,(int2)(tid_x, tid_y), color0 + color1);\n"
|
|
"\n"
|
|
"}\n";
|
|
|
|
|
|
static unsigned char *
|
|
generate_initial_byte_image(int w, int h, int num_elements, unsigned char value)
|
|
{
|
|
unsigned char *ptr = (unsigned char*)malloc(w * h * num_elements);
|
|
int i;
|
|
|
|
for (i = 0; i < w*h*num_elements; i++)
|
|
ptr[i] = value;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static unsigned char *
|
|
generate_expected_byte_image(unsigned char **input_data, int num_inputs, int w, int h, int num_elements)
|
|
{
|
|
unsigned char *ptr = (unsigned char*)malloc(w * h * num_elements);
|
|
int i;
|
|
|
|
for (i = 0; i < w*h*num_elements; i++)
|
|
{
|
|
int j;
|
|
ptr[i] = 0;
|
|
for (j = 0; j < num_inputs; j++)
|
|
{
|
|
unsigned char *input = *(input_data + j);
|
|
ptr[i] += input[i];
|
|
}
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
|
|
static unsigned char *
|
|
generate_byte_image(int w, int h, int num_elements, MTdata d)
|
|
{
|
|
unsigned char *ptr = (unsigned char*)malloc(w * h * num_elements);
|
|
int i;
|
|
|
|
for (i = 0; i < w*h*num_elements; i++)
|
|
ptr[i] = (unsigned char)genrand_int32(d) & 31;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static int
|
|
verify_byte_image(unsigned char *image, unsigned char *outptr, int w, int h, int num_elements)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < w*h*num_elements; i++)
|
|
{
|
|
if (outptr[i] != image[i])
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
test_image_multipass_integer_coord(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
|
|
{
|
|
int img_width = 512;
|
|
int img_height = 512;
|
|
cl_image_format img_format;
|
|
|
|
int num_input_streams = 8;
|
|
cl_mem *input_streams;
|
|
cl_mem accum_streams[2];
|
|
unsigned char *expected_output;
|
|
unsigned char *output_ptr;
|
|
cl_kernel kernel[2];
|
|
int err;
|
|
|
|
PASSIVE_REQUIRE_IMAGE_SUPPORT( device )
|
|
|
|
img_format.image_channel_order = CL_RGBA;
|
|
img_format.image_channel_data_type = CL_UNORM_INT8;
|
|
|
|
expected_output = (unsigned char*)malloc(sizeof(unsigned char) * 4 * img_width * img_height);
|
|
output_ptr = (unsigned char*)malloc(sizeof(unsigned char) * 4 * img_width * img_height);
|
|
|
|
// Create the accum images with initial data.
|
|
{
|
|
unsigned char *initial_data;
|
|
cl_mem_flags flags;
|
|
|
|
initial_data = generate_initial_byte_image(img_width, img_height, 4, 0xF0);
|
|
flags = CL_MEM_READ_WRITE;
|
|
|
|
accum_streams[0] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL);
|
|
if (!accum_streams[0])
|
|
{
|
|
log_error("create_image_2d failed\n");
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
return -1;
|
|
}
|
|
|
|
size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1};
|
|
err = clEnqueueWriteImage(queue, accum_streams[0], CL_TRUE,
|
|
origin, region, 0, 0,
|
|
initial_data, 0, NULL, NULL);
|
|
if (err)
|
|
{
|
|
log_error("clWriteImage failed: %d\n", err);
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
return -1;
|
|
}
|
|
|
|
accum_streams[1] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL);
|
|
if (!accum_streams[1])
|
|
{
|
|
log_error("create_image_2d failed\n");
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
return -1;
|
|
}
|
|
err = clEnqueueWriteImage(queue, accum_streams[1], CL_TRUE,
|
|
origin, region, 0, 0,
|
|
initial_data, 0, NULL, NULL);
|
|
if (err)
|
|
{
|
|
log_error("clWriteImage failed: %d\n", err);
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
return -1;
|
|
}
|
|
|
|
free(initial_data);
|
|
}
|
|
|
|
// Set up the input data.
|
|
{
|
|
cl_mem_flags flags;
|
|
unsigned char **input_data = (unsigned char **)malloc(sizeof(unsigned char*) * num_input_streams);
|
|
MTdata d;
|
|
|
|
input_streams = (cl_mem*)malloc(sizeof(cl_mem) * num_input_streams);
|
|
flags = CL_MEM_READ_WRITE;
|
|
|
|
int i;
|
|
d = init_genrand( gRandomSeed );
|
|
for ( i = 0; i < num_input_streams; i++)
|
|
{
|
|
input_data[i] = generate_byte_image(img_width, img_height, 4, d);
|
|
input_streams[i] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL);
|
|
if (!input_streams[i])
|
|
{
|
|
log_error("create_image_2d failed\n");
|
|
free_mtdata(d);
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
return -1;
|
|
}
|
|
|
|
size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1};
|
|
err = clEnqueueWriteImage(queue, input_streams[i], CL_TRUE,
|
|
origin, region, 0, 0,
|
|
input_data[i], 0, NULL, NULL);
|
|
if (err)
|
|
{
|
|
log_error("clWriteImage failed: %d\n", err);
|
|
free_mtdata(d);
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
free(input_streams);
|
|
return -1;
|
|
}
|
|
|
|
|
|
}
|
|
free_mtdata(d); d = NULL;
|
|
expected_output = generate_expected_byte_image(input_data, num_input_streams, img_width, img_height, 4);
|
|
for ( i = 0; i < num_input_streams; i++)
|
|
{
|
|
free(input_data[i]);
|
|
}
|
|
free( input_data );
|
|
}
|
|
|
|
// Set up the kernels.
|
|
{
|
|
cl_program program[4];
|
|
|
|
err = create_single_kernel_helper(context, &program[0], &kernel[0], 1, &image_to_image_kernel_integer_coord_code, "image_to_image_copy");
|
|
if (err)
|
|
{
|
|
log_error("Failed to create kernel 0: %d\n", err);
|
|
return -1;
|
|
}
|
|
err = create_single_kernel_helper(context, &program[1], &kernel[1], 1, &image_sum_kernel_integer_coord_code, "image_sum");
|
|
if (err)
|
|
{
|
|
log_error("Failed to create kernel 1: %d\n", err);
|
|
return -1;
|
|
}
|
|
clReleaseProgram(program[0]);
|
|
clReleaseProgram(program[1]);
|
|
}
|
|
|
|
cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err);
|
|
test_error(err, "clCreateSampler failed");
|
|
|
|
{
|
|
size_t threads[3] = {0, 0, 0};
|
|
threads[0] = (size_t)img_width;
|
|
threads[1] = (size_t)img_height;
|
|
int i;
|
|
|
|
{
|
|
cl_mem accum_input;
|
|
cl_mem accum_output;
|
|
|
|
err = clSetKernelArg(kernel[0], 0, sizeof input_streams[0], &input_streams[0]);
|
|
err |= clSetKernelArg(kernel[0], 1, sizeof accum_streams[0], &accum_streams[0]);
|
|
err |= clSetKernelArg(kernel[0], 2, sizeof sampler, &sampler);
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clSetKernelArgs failed\n");
|
|
return -1;
|
|
}
|
|
err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL );
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clEnqueueNDRangeKernel failed\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 1; i < num_input_streams; i++)
|
|
{
|
|
accum_input = accum_streams[(i-1)%2];
|
|
accum_output = accum_streams[i%2];
|
|
|
|
err = clSetKernelArg(kernel[1], 0, sizeof accum_input, &accum_input);
|
|
err |= clSetKernelArg(kernel[1], 1, sizeof input_streams[i], &input_streams[i]);
|
|
err |= clSetKernelArg(kernel[1], 2, sizeof accum_output, &accum_output);
|
|
err |= clSetKernelArg(kernel[1], 3, sizeof sampler, &sampler);
|
|
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clSetKernelArgs failed\n");
|
|
return -1;
|
|
}
|
|
err = clEnqueueNDRangeKernel( queue, kernel[1], 2, NULL, threads, NULL, 0, NULL, NULL );
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clEnqueueNDRangeKernel failed\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Copy the last accum into the other one.
|
|
accum_input = accum_streams[(i-1)%2];
|
|
accum_output = accum_streams[i%2];
|
|
err = clSetKernelArg(kernel[0], 0, sizeof accum_input, &accum_input);
|
|
err |= clSetKernelArg(kernel[0], 1, sizeof accum_output, &accum_output);
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clSetKernelArgs failed\n");
|
|
return -1;
|
|
}
|
|
err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL );
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clEnqueueNDRangeKernel failed\n");
|
|
return -1;
|
|
}
|
|
|
|
size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1};
|
|
err = clEnqueueReadImage(queue, accum_output, CL_TRUE,
|
|
origin, region, 0, 0,
|
|
(void *)output_ptr, 0, NULL, NULL);
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clReadImage failed\n");
|
|
return -1;
|
|
}
|
|
err = verify_byte_image(expected_output, output_ptr, img_width, img_height, 4);
|
|
if (err)
|
|
{
|
|
log_error("IMAGE_MULTIPASS test failed.\n");
|
|
}
|
|
else
|
|
{
|
|
log_info("IMAGE_MULTIPASS test passed\n");
|
|
}
|
|
}
|
|
|
|
clReleaseSampler(sampler);
|
|
}
|
|
|
|
|
|
// cleanup
|
|
clReleaseMemObject(accum_streams[0]);
|
|
clReleaseMemObject(accum_streams[1]);
|
|
{
|
|
int i;
|
|
for (i = 0; i < num_input_streams; i++)
|
|
{
|
|
clReleaseMemObject(input_streams[i]);
|
|
}
|
|
}
|
|
free(input_streams);
|
|
clReleaseKernel(kernel[0]);
|
|
clReleaseKernel(kernel[1]);
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
test_image_multipass_float_coord(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
|
|
{
|
|
int img_width = 512;
|
|
int img_height = 512;
|
|
cl_image_format img_format;
|
|
|
|
int num_input_streams = 8;
|
|
cl_mem *input_streams;
|
|
cl_mem accum_streams[2];
|
|
unsigned char *expected_output;
|
|
unsigned char *output_ptr;
|
|
cl_kernel kernel[2];
|
|
int err;
|
|
|
|
PASSIVE_REQUIRE_IMAGE_SUPPORT( device )
|
|
|
|
img_format.image_channel_order = CL_RGBA;
|
|
img_format.image_channel_data_type = CL_UNORM_INT8;
|
|
|
|
output_ptr = (unsigned char*)malloc(sizeof(unsigned char) * 4 * img_width * img_height);
|
|
|
|
// Create the accum images with initial data.
|
|
{
|
|
unsigned char *initial_data;
|
|
cl_mem_flags flags;
|
|
|
|
initial_data = generate_initial_byte_image(img_width, img_height, 4, 0xF0);
|
|
flags = CL_MEM_READ_WRITE;
|
|
|
|
accum_streams[0] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL);
|
|
if (!accum_streams[0])
|
|
{
|
|
log_error("create_image_2d failed\n");
|
|
return -1;
|
|
}
|
|
|
|
size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1};
|
|
err = clEnqueueWriteImage(queue, accum_streams[0], CL_TRUE,
|
|
origin, region, 0, 0,
|
|
initial_data, 0, NULL, NULL);
|
|
if (err)
|
|
{
|
|
log_error("clWriteImage failed: %d\n", err);
|
|
return -1;
|
|
}
|
|
|
|
accum_streams[1] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL);
|
|
if (!accum_streams[1])
|
|
{
|
|
log_error("create_image_2d failed\n");
|
|
return -1;
|
|
}
|
|
err = clEnqueueWriteImage(queue, accum_streams[1], CL_TRUE,
|
|
origin, region, 0, 0,
|
|
initial_data, 0, NULL, NULL);
|
|
if (err)
|
|
{
|
|
log_error("clWriteImage failed: %d\n", err);
|
|
return -1;
|
|
}
|
|
|
|
free(initial_data);
|
|
}
|
|
|
|
// Set up the input data.
|
|
{
|
|
cl_mem_flags flags;
|
|
unsigned char **input_data = (unsigned char **)malloc(sizeof(unsigned char*) * num_input_streams);
|
|
MTdata d;
|
|
|
|
input_streams = (cl_mem*)malloc(sizeof(cl_mem) * num_input_streams);
|
|
flags = CL_MEM_READ_WRITE;
|
|
|
|
int i;
|
|
d = init_genrand( gRandomSeed );
|
|
for ( i = 0; i < num_input_streams; i++)
|
|
{
|
|
input_data[i] = generate_byte_image(img_width, img_height, 4, d);
|
|
input_streams[i] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL);
|
|
if (!input_streams[i])
|
|
{
|
|
log_error("create_image_2d failed\n");
|
|
free(input_data);
|
|
free(input_streams);
|
|
return -1;
|
|
}
|
|
|
|
size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1};
|
|
err = clEnqueueWriteImage(queue, input_streams[i], CL_TRUE,
|
|
origin, region, 0, 0,
|
|
input_data[i], 0, NULL, NULL);
|
|
if (err)
|
|
{
|
|
log_error("clWriteImage failed: %d\n", err);
|
|
free(input_data);
|
|
free(input_streams);
|
|
return -1;
|
|
}
|
|
}
|
|
free_mtdata(d); d = NULL;
|
|
expected_output = generate_expected_byte_image(input_data, num_input_streams, img_width, img_height, 4);
|
|
for ( i = 0; i < num_input_streams; i++)
|
|
{
|
|
free(input_data[i]);
|
|
}
|
|
free(input_data);
|
|
}
|
|
|
|
// Set up the kernels.
|
|
{
|
|
cl_program program[2];
|
|
|
|
err = create_single_kernel_helper(context, &program[0], &kernel[0], 1, &image_to_image_kernel_float_coord_code, "image_to_image_copy");
|
|
if (err)
|
|
{
|
|
log_error("Failed to create kernel 2: %d\n", err);
|
|
return -1;
|
|
}
|
|
err = create_single_kernel_helper(context, &program[1], &kernel[1], 1, &image_sum_kernel_float_coord_code, "image_sum");
|
|
if (err)
|
|
{
|
|
log_error("Failed to create kernel 3: %d\n", err);
|
|
return -1;
|
|
}
|
|
|
|
clReleaseProgram(program[0]);
|
|
clReleaseProgram(program[1]);
|
|
}
|
|
|
|
cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err);
|
|
test_error(err, "clCreateSampler failed");
|
|
|
|
{
|
|
size_t threads[3] = {0, 0, 0};
|
|
threads[0] = (size_t)img_width;
|
|
threads[1] = (size_t)img_height;
|
|
int i;
|
|
|
|
{
|
|
cl_mem accum_input;
|
|
cl_mem accum_output;
|
|
|
|
err = clSetKernelArg(kernel[0], 0, sizeof input_streams[0], &input_streams[0]);
|
|
err |= clSetKernelArg(kernel[0], 1, sizeof accum_streams[0], &accum_streams[0]);
|
|
err |= clSetKernelArg(kernel[0], 2, sizeof sampler, &sampler);
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clSetKernelArgs failed\n");
|
|
return -1;
|
|
}
|
|
err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL );
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clEnqueueNDRangeKernel failed\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 1; i < num_input_streams; i++)
|
|
{
|
|
accum_input = accum_streams[(i-1)%2];
|
|
accum_output = accum_streams[i%2];
|
|
|
|
err = clSetKernelArg(kernel[1], 0, sizeof accum_input, &accum_input);
|
|
err |= clSetKernelArg(kernel[1], 1, sizeof input_streams[i], &input_streams[i]);
|
|
err |= clSetKernelArg(kernel[1], 2, sizeof accum_output, &accum_output);
|
|
err |= clSetKernelArg(kernel[1], 3, sizeof sampler, &sampler);
|
|
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clSetKernelArgs failed\n");
|
|
return -1;
|
|
}
|
|
err = clEnqueueNDRangeKernel( queue, kernel[1], 2, NULL, threads, NULL, 0, NULL, NULL );
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clEnqueueNDRangeKernel failed\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Copy the last accum into the other one.
|
|
accum_input = accum_streams[(i-1)%2];
|
|
accum_output = accum_streams[i%2];
|
|
err = clSetKernelArg(kernel[0], 0, sizeof accum_input, &accum_input);
|
|
err |= clSetKernelArg(kernel[0], 1, sizeof accum_output, &accum_output);
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clSetKernelArgs failed\n");
|
|
return -1;
|
|
}
|
|
err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL );
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clEnqueueNDRangeKernel failed\n");
|
|
return -1;
|
|
}
|
|
|
|
size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1};
|
|
err = clEnqueueReadImage(queue, accum_output, CL_TRUE,
|
|
origin, region, 0, 0,
|
|
(void *)output_ptr, 0, NULL, NULL);
|
|
if (err != CL_SUCCESS)
|
|
{
|
|
log_error("clReadImage failed\n");
|
|
return -1;
|
|
}
|
|
err = verify_byte_image(expected_output, output_ptr, img_width, img_height, 4);
|
|
if (err)
|
|
{
|
|
log_error("IMAGE_MULTIPASS test failed.\n");
|
|
}
|
|
else
|
|
{
|
|
log_info("IMAGE_MULTIPASS test passed\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// cleanup
|
|
clReleaseSampler(sampler);
|
|
clReleaseMemObject(accum_streams[0]);
|
|
clReleaseMemObject(accum_streams[1]);
|
|
{
|
|
int i;
|
|
for (i = 0; i < num_input_streams; i++)
|
|
{
|
|
clReleaseMemObject(input_streams[i]);
|
|
}
|
|
}
|
|
clReleaseKernel(kernel[0]);
|
|
clReleaseKernel(kernel[1]);
|
|
free(expected_output);
|
|
free(output_ptr);
|
|
free(input_streams);
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
|
|
|
|
|