202 lines
6.8 KiB
C++
202 lines
6.8 KiB
C++
// Copyright 2021 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack.h>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
#include "bench/utils.h"
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE
|
|
#include "flatbuffers/include/flatbuffers/flatbuffers.h"
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/model.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
#include "tensorflow/lite/version.h"
|
|
#endif // BENCHMARK_TENSORFLOW_LITE
|
|
|
|
|
|
static void xnnpack_negate_f32(benchmark::State& state) {
|
|
const size_t batch_size = state.range(0);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
|
|
|
|
std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> output(batch_size);
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), std::nanf(""));
|
|
|
|
xnn_status status = xnn_initialize(nullptr /* allocator */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to initialize XNNPACK");
|
|
return;
|
|
}
|
|
|
|
xnn_operator_t negate_op = nullptr;
|
|
status = xnn_create_negate_nc_f32(
|
|
1 /* channels */, 1 /* input stride */, 1 /* output stride */,
|
|
0 /* flags */, &negate_op);
|
|
if (status != xnn_status_success || negate_op == nullptr) {
|
|
state.SkipWithError("failed to create Negate operator");
|
|
return;
|
|
}
|
|
|
|
status = xnn_setup_negate_nc_f32(
|
|
negate_op, batch_size,
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to setup Negate operator");
|
|
return;
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
status = xnn_run_operator(negate_op, nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to run Negate operator");
|
|
return;
|
|
}
|
|
}
|
|
|
|
status = xnn_delete_operator(negate_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to delete Negate operator");
|
|
return;
|
|
}
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["elements"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
|
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(float);
|
|
state.counters["bytes"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE
|
|
static void tflite_negate_f32(benchmark::State& state) {
|
|
const size_t batch_size = state.range(0);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
|
|
|
|
flatbuffers::FlatBufferBuilder builder;
|
|
const flatbuffers::Offset<tflite::OperatorCode> operator_code =
|
|
CreateOperatorCode(builder, tflite::BuiltinOperator_NEG);
|
|
|
|
const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
|
|
tflite::CreateBuffer(builder, builder.CreateVector({})),
|
|
}};
|
|
|
|
const std::array<int32_t, 1> shape{{
|
|
static_cast<int32_t>(batch_size)
|
|
}};
|
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
|
|
tflite::CreateTensor(builder,
|
|
builder.CreateVector<int32_t>(shape.data(), shape.size()),
|
|
tflite::TensorType_FLOAT32),
|
|
tflite::CreateTensor(builder,
|
|
builder.CreateVector<int32_t>(shape.data(), shape.size()),
|
|
tflite::TensorType_FLOAT32),
|
|
}};
|
|
|
|
const std::array<int32_t, 1> op_inputs{{ 0 }};
|
|
const std::array<int32_t, 1> op_outputs{{ 1 }};
|
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
|
|
builder,
|
|
0 /* opcode_index */,
|
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
|
|
|
|
const std::array<int32_t, 1> graph_inputs{{ 0 }};
|
|
const std::array<int32_t, 1> graph_outputs{{ 1 }};
|
|
const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
|
|
builder,
|
|
builder.CreateVector(tensors.data(), tensors.size()),
|
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
|
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
|
|
builder.CreateVector(&op, 1));
|
|
|
|
const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
builder.CreateVector(&operator_code, 1),
|
|
builder.CreateVector(&subgraph, 1),
|
|
builder.CreateString("Negate model"),
|
|
builder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
builder.Finish(model_buffer);
|
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
|
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
|
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver);
|
|
std::unique_ptr<tflite::Interpreter> interpreter;
|
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
|
|
state.SkipWithError("failed to create TFLite interpreter");
|
|
return;
|
|
}
|
|
interpreter->SetNumThreads(1);
|
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) {
|
|
state.SkipWithError("failed to allocate tensors");
|
|
return;
|
|
}
|
|
|
|
std::generate(
|
|
interpreter->typed_tensor<float>(0),
|
|
interpreter->typed_tensor<float>(0) + batch_size,
|
|
std::ref(f32rng));
|
|
|
|
for (auto _ : state) {
|
|
if (interpreter->Invoke() != kTfLiteOk) {
|
|
state.SkipWithError("failed to invoke TFLite interpreter");
|
|
return;
|
|
}
|
|
}
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["elements"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
|
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(float);
|
|
state.counters["bytes"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
|
|
|
|
interpreter.reset();
|
|
}
|
|
#endif // BENCHMARK_TENSORFLOW_LITE
|
|
|
|
BENCHMARK(xnnpack_negate_f32)
|
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
|
|
->UseRealTime();
|
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE
|
|
BENCHMARK(tflite_negate_f32)
|
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
|
|
->UseRealTime();
|
|
#endif // BENCHMARK_TENSORFLOW_LITE
|
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN
|
|
BENCHMARK_MAIN();
|
|
#endif
|