android13/external/bcc/examples/cpp/pyperf/PyPerfBPFProgram.cc

497 lines
15 KiB
C++

/*
* Copyright (c) Facebook, Inc.
* Licensed under the Apache License, Version 2.0 (the "License")
*/
#include <string>
namespace ebpf {
namespace pyperf {
extern const std::string PYPERF_BPF_PROGRAM = R"(
#include <linux/sched.h>
#include <uapi/linux/ptrace.h>
#define PYTHON_STACK_FRAMES_PER_PROG 25
#define PYTHON_STACK_PROG_CNT 3
#define STACK_MAX_LEN (PYTHON_STACK_FRAMES_PER_PROG * PYTHON_STACK_PROG_CNT)
#define CLASS_NAME_LEN 32
#define FUNCTION_NAME_LEN 64
#define FILE_NAME_LEN 128
#define TASK_COMM_LEN 16
enum {
STACK_STATUS_COMPLETE = 0,
STACK_STATUS_ERROR = 1,
STACK_STATUS_TRUNCATED = 2,
};
enum {
GIL_STATE_NO_INFO = 0,
GIL_STATE_ERROR = 1,
GIL_STATE_UNINITIALIZED = 2,
GIL_STATE_NOT_LOCKED = 3,
GIL_STATE_THIS_THREAD = 4,
GIL_STATE_GLOBAL_CURRENT_THREAD = 5,
GIL_STATE_OTHER_THREAD = 6,
GIL_STATE_NULL = 7,
};
enum {
THREAD_STATE_UNKNOWN = 0,
THREAD_STATE_MATCH = 1,
THREAD_STATE_MISMATCH = 2,
THREAD_STATE_THIS_THREAD_NULL = 3,
THREAD_STATE_GLOBAL_CURRENT_THREAD_NULL = 4,
THREAD_STATE_BOTH_NULL = 5,
};
enum {
PTHREAD_ID_UNKNOWN = 0,
PTHREAD_ID_MATCH = 1,
PTHREAD_ID_MISMATCH = 2,
PTHREAD_ID_THREAD_STATE_NULL = 3,
PTHREAD_ID_NULL = 4,
PTHREAD_ID_ERROR = 5,
};
typedef struct {
int64_t PyObject_type;
int64_t PyTypeObject_name;
int64_t PyThreadState_frame;
int64_t PyThreadState_thread;
int64_t PyFrameObject_back;
int64_t PyFrameObject_code;
int64_t PyFrameObject_lineno;
int64_t PyFrameObject_localsplus;
int64_t PyCodeObject_filename;
int64_t PyCodeObject_name;
int64_t PyCodeObject_varnames;
int64_t PyTupleObject_item;
int64_t String_data;
int64_t String_size;
} OffsetConfig;
typedef struct {
uintptr_t current_state_addr; // virtual address of _PyThreadState_Current
uintptr_t tls_key_addr; // virtual address of autoTLSkey for pthreads TLS
uintptr_t gil_locked_addr; // virtual address of gil_locked
uintptr_t gil_last_holder_addr; // virtual address of gil_last_holder
OffsetConfig offsets;
} PidData;
typedef struct {
char classname[CLASS_NAME_LEN];
char name[FUNCTION_NAME_LEN];
char file[FILE_NAME_LEN];
// NOTE: PyFrameObject also has line number but it is typically just the
// first line of that function and PyCode_Addr2Line needs to be called
// to get the actual line
} Symbol;
typedef struct {
uint32_t pid;
uint32_t tid;
char comm[TASK_COMM_LEN];
uint8_t thread_state_match;
uint8_t gil_state;
uint8_t pthread_id_match;
uint8_t stack_status;
// instead of storing symbol name here directly, we add it to another
// hashmap with Symbols and only store the ids here
int64_t stack_len;
int32_t stack[STACK_MAX_LEN];
} Event;
#define _STR_CONCAT(str1, str2) str1##str2
#define STR_CONCAT(str1, str2) _STR_CONCAT(str1, str2)
#define FAIL_COMPILATION_IF(condition) \
typedef struct { \
char _condition_check[1 - 2 * !!(condition)]; \
} STR_CONCAT(compile_time_condition_check, __COUNTER__);
// See comments in get_frame_data
FAIL_COMPILATION_IF(sizeof(Symbol) == sizeof(struct bpf_perf_event_value))
typedef struct {
OffsetConfig offsets;
uint64_t cur_cpu;
int64_t symbol_counter;
void* frame_ptr;
int64_t python_stack_prog_call_cnt;
Event event;
} sample_state_t;
BPF_PERCPU_ARRAY(state_heap, sample_state_t, 1);
BPF_HASH(symbols, Symbol, int32_t, __SYMBOLS_SIZE__);
BPF_HASH(pid_config, pid_t, PidData);
BPF_PROG_ARRAY(progs, 1);
BPF_PERF_OUTPUT(events);
static inline __attribute__((__always_inline__)) void* get_thread_state(
void* tls_base,
PidData* pid_data) {
// Python sets the thread_state using pthread_setspecific with the key
// stored in a global variable autoTLSkey.
// We read the value of the key from the global variable and then read
// the value in the thread-local storage. This relies on pthread implementation.
// This is basically the same as running the following in GDB:
// p *(PyThreadState*)((struct pthread*)pthread_self())->
// specific_1stblock[autoTLSkey]->data
int key;
bpf_probe_read_user(&key, sizeof(key), (void*)pid_data->tls_key_addr);
// This assumes autoTLSkey < 32, which means that the TLS is stored in
// pthread->specific_1stblock[autoTLSkey]
// 0x310 is offsetof(struct pthread, specific_1stblock),
// 0x10 is sizeof(pthread_key_data)
// 0x8 is offsetof(struct pthread_key_data, data)
// 'struct pthread' is not in the public API so we have to hardcode
// the offsets here
void* thread_state;
bpf_probe_read_user(
&thread_state,
sizeof(thread_state),
tls_base + 0x310 + key * 0x10 + 0x08);
return thread_state;
}
static inline __attribute__((__always_inline__)) int submit_sample(
struct pt_regs* ctx,
sample_state_t* state) {
events.perf_submit(ctx, &state->event, sizeof(Event));
return 0;
}
// this function is trivial, but we need to do map lookup in separate function,
// because BCC doesn't allow direct map calls (including lookups) from inside
// a macro (which we want to do in GET_STATE() macro below)
static inline __attribute__((__always_inline__)) sample_state_t* get_state() {
int zero = 0;
return state_heap.lookup(&zero);
}
#define GET_STATE() \
sample_state_t* state = get_state(); \
if (!state) { \
return 0; /* should never happen */ \
}
static inline __attribute__((__always_inline__)) int get_thread_state_match(
void* this_thread_state,
void* global_thread_state) {
if (this_thread_state == 0 && global_thread_state == 0) {
return THREAD_STATE_BOTH_NULL;
}
if (this_thread_state == 0) {
return THREAD_STATE_THIS_THREAD_NULL;
}
if (global_thread_state == 0) {
return THREAD_STATE_GLOBAL_CURRENT_THREAD_NULL;
}
if (this_thread_state == global_thread_state) {
return THREAD_STATE_MATCH;
} else {
return THREAD_STATE_MISMATCH;
}
}
static inline __attribute__((__always_inline__)) int get_gil_state(
void* this_thread_state,
void* global_thread_state,
PidData* pid_data) {
// Get information of GIL state
if (pid_data->gil_locked_addr == 0 || pid_data->gil_last_holder_addr == 0) {
return GIL_STATE_NO_INFO;
}
int gil_locked = 0;
void* gil_thread_state = 0;
if (bpf_probe_read_user(
&gil_locked, sizeof(gil_locked), (void*)pid_data->gil_locked_addr)) {
return GIL_STATE_ERROR;
}
switch (gil_locked) {
case -1:
return GIL_STATE_UNINITIALIZED;
case 0:
return GIL_STATE_NOT_LOCKED;
case 1:
// GIL is held by some Thread
bpf_probe_read_user(
&gil_thread_state,
sizeof(void*),
(void*)pid_data->gil_last_holder_addr);
if (gil_thread_state == this_thread_state) {
return GIL_STATE_THIS_THREAD;
} else if (gil_thread_state == global_thread_state) {
return GIL_STATE_GLOBAL_CURRENT_THREAD;
} else if (gil_thread_state == 0) {
return GIL_STATE_NULL;
} else {
return GIL_STATE_OTHER_THREAD;
}
default:
return GIL_STATE_ERROR;
}
}
static inline __attribute__((__always_inline__)) int
get_pthread_id_match(void* thread_state, void* tls_base, PidData* pid_data) {
if (thread_state == 0) {
return PTHREAD_ID_THREAD_STATE_NULL;
}
uint64_t pthread_self, pthread_created;
bpf_probe_read_user(
&pthread_created,
sizeof(pthread_created),
thread_state + pid_data->offsets.PyThreadState_thread);
if (pthread_created == 0) {
return PTHREAD_ID_NULL;
}
// 0x10 = offsetof(struct pthread, header.self)
bpf_probe_read_user(&pthread_self, sizeof(pthread_self), tls_base + 0x10);
if (pthread_self == 0) {
return PTHREAD_ID_ERROR;
}
if (pthread_self == pthread_created) {
return PTHREAD_ID_MATCH;
} else {
return PTHREAD_ID_MISMATCH;
}
}
int on_event(struct pt_regs* ctx) {
uint64_t pid_tgid = bpf_get_current_pid_tgid();
pid_t pid = (pid_t)(pid_tgid >> 32);
PidData* pid_data = pid_config.lookup(&pid);
if (!pid_data) {
return 0;
}
GET_STATE();
state->offsets = pid_data->offsets;
state->cur_cpu = bpf_get_smp_processor_id();
state->python_stack_prog_call_cnt = 0;
Event* event = &state->event;
event->pid = pid;
event->tid = (pid_t)pid_tgid;
bpf_get_current_comm(&event->comm, sizeof(event->comm));
// Get pointer of global PyThreadState, which should belong to the Thread
// currently holds the GIL
void* global_current_thread = (void*)0;
bpf_probe_read_user(
&global_current_thread,
sizeof(global_current_thread),
(void*)pid_data->current_state_addr);
struct task_struct* task = (struct task_struct*)bpf_get_current_task();
#if __x86_64__
// thread_struct->fs was renamed to fsbase in
// https://github.com/torvalds/linux/commit/296f781a4b7801ad9c1c0219f9e87b6c25e196fe
// so depending on kernel version, we need to account for that
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 7, 0)
void* tls_base = (void*)task->thread.fs;
#else
void* tls_base = (void*)task->thread.fsbase;
#endif
#elif __aarch64__
void* tls_base = (void*)task->thread.tp_value;
#else
#error "Unsupported platform"
#endif
// Read PyThreadState of this Thread from TLS
void* thread_state = get_thread_state(tls_base, pid_data);
// Check for matching between TLS PyThreadState and
// the global _PyThreadState_Current
event->thread_state_match =
get_thread_state_match(thread_state, global_current_thread);
// Read GIL state
event->gil_state =
get_gil_state(thread_state, global_current_thread, pid_data);
// Check for matching between pthread ID created current PyThreadState and
// pthread of actual current pthread
event->pthread_id_match =
get_pthread_id_match(thread_state, tls_base, pid_data);
// pre-initialize event struct in case any subprogram below fails
event->stack_status = STACK_STATUS_COMPLETE;
event->stack_len = 0;
if (thread_state != 0) {
// Get pointer to top frame from PyThreadState
bpf_probe_read_user(
&state->frame_ptr,
sizeof(void*),
thread_state + pid_data->offsets.PyThreadState_frame);
// jump to reading first set of Python frames
progs.call(ctx, PYTHON_STACK_PROG_IDX);
// we won't ever get here
}
return submit_sample(ctx, state);
}
static inline __attribute__((__always_inline__)) void get_names(
void* cur_frame,
void* code_ptr,
OffsetConfig* offsets,
Symbol* symbol,
void* ctx) {
// Figure out if we want to parse class name, basically checking the name of
// the first argument,
// ((PyTupleObject*)$frame->f_code->co_varnames)->ob_item[0]
// If it's 'self', we get the type and it's name, if it's cls, we just get
// the name. This is not perfect but there is no better way to figure this
// out from the code object.
void* args_ptr;
bpf_probe_read_user(
&args_ptr, sizeof(void*), code_ptr + offsets->PyCodeObject_varnames);
bpf_probe_read_user(
&args_ptr, sizeof(void*), args_ptr + offsets->PyTupleObject_item);
bpf_probe_read_user_str(
&symbol->name, sizeof(symbol->name), args_ptr + offsets->String_data);
// compare strings as ints to save instructions
char self_str[4] = {'s', 'e', 'l', 'f'};
char cls_str[4] = {'c', 'l', 's', '\0'};
bool first_self = *(int32_t*)symbol->name == *(int32_t*)self_str;
bool first_cls = *(int32_t*)symbol->name == *(int32_t*)cls_str;
// We re-use the same Symbol instance across loop iterations, which means
// we will have left-over data in the struct. Although this won't affect
// correctness of the result because we have '\0' at end of the strings read,
// it would affect effectiveness of the deduplication.
// Helper bpf_perf_prog_read_value clears the buffer on error, so here we
// (ab)use this behavior to clear the memory. It requires the size of Symbol
// to be different from struct bpf_perf_event_value, which we check at
// compilation time using the FAIL_COMPILATION_IF macro.
bpf_perf_prog_read_value(ctx, symbol, sizeof(Symbol));
// Read class name from $frame->f_localsplus[0]->ob_type->tp_name.
if (first_self || first_cls) {
void* ptr;
bpf_probe_read_user(
&ptr, sizeof(void*), cur_frame + offsets->PyFrameObject_localsplus);
if (first_self) {
// we are working with an instance, first we need to get type
bpf_probe_read_user(&ptr, sizeof(void*), ptr + offsets->PyObject_type);
}
bpf_probe_read_user(&ptr, sizeof(void*), ptr + offsets->PyTypeObject_name);
bpf_probe_read_user_str(&symbol->classname, sizeof(symbol->classname), ptr);
}
void* pystr_ptr;
// read PyCodeObject's filename into symbol
bpf_probe_read_user(
&pystr_ptr, sizeof(void*), code_ptr + offsets->PyCodeObject_filename);
bpf_probe_read_user_str(
&symbol->file, sizeof(symbol->file), pystr_ptr + offsets->String_data);
// read PyCodeObject's name into symbol
bpf_probe_read_user(
&pystr_ptr, sizeof(void*), code_ptr + offsets->PyCodeObject_name);
bpf_probe_read_user_str(
&symbol->name, sizeof(symbol->name), pystr_ptr + offsets->String_data);
}
// get_frame_data reads current PyFrameObject filename/name and updates
// stack_info->frame_ptr with pointer to next PyFrameObject
static inline __attribute__((__always_inline__)) bool get_frame_data(
void** frame_ptr,
OffsetConfig* offsets,
Symbol* symbol,
// ctx is only used to call helper to clear symbol, see documentation below
void* ctx) {
void* cur_frame = *frame_ptr;
if (!cur_frame) {
return false;
}
void* code_ptr;
// read PyCodeObject first, if that fails, then no point reading next frame
bpf_probe_read_user(
&code_ptr, sizeof(void*), cur_frame + offsets->PyFrameObject_code);
if (!code_ptr) {
return false;
}
get_names(cur_frame, code_ptr, offsets, symbol, ctx);
// read next PyFrameObject pointer, update in place
bpf_probe_read_user(
frame_ptr, sizeof(void*), cur_frame + offsets->PyFrameObject_back);
return true;
}
// To avoid duplicate ids, every CPU needs to use different ids when inserting
// into the hashmap. NUM_CPUS is defined at PyPerf backend side and passed
// through CFlag.
static inline __attribute__((__always_inline__)) int64_t get_symbol_id(
sample_state_t* state,
Symbol* sym) {
int32_t* symbol_id_ptr = symbols.lookup(sym);
if (symbol_id_ptr) {
return *symbol_id_ptr;
}
// the symbol is new, bump the counter
int32_t symbol_id = state->symbol_counter * NUM_CPUS + state->cur_cpu;
state->symbol_counter++;
symbols.update(sym, &symbol_id);
return symbol_id;
}
int read_python_stack(struct pt_regs* ctx) {
GET_STATE();
state->python_stack_prog_call_cnt++;
Event* sample = &state->event;
Symbol sym = {};
bool last_res = false;
#pragma unroll
for (int i = 0; i < PYTHON_STACK_FRAMES_PER_PROG; i++) {
last_res = get_frame_data(&state->frame_ptr, &state->offsets, &sym, ctx);
if (last_res) {
uint32_t symbol_id = get_symbol_id(state, &sym);
int64_t cur_len = sample->stack_len;
if (cur_len >= 0 && cur_len < STACK_MAX_LEN) {
sample->stack[cur_len] = symbol_id;
sample->stack_len++;
}
}
}
if (!state->frame_ptr) {
sample->stack_status = STACK_STATUS_COMPLETE;
} else {
if (!last_res) {
sample->stack_status = STACK_STATUS_ERROR;
} else {
sample->stack_status = STACK_STATUS_TRUNCATED;
}
}
if (sample->stack_status == STACK_STATUS_TRUNCATED &&
state->python_stack_prog_call_cnt < PYTHON_STACK_PROG_CNT) {
// read next batch of frames
progs.call(ctx, PYTHON_STACK_PROG_IDX);
}
return submit_sample(ctx, state);
}
)";
}
} // namespace ebpf