1745 lines
48 KiB
C
1745 lines
48 KiB
C
#include <ctype.h>
|
|
#include <netlink/attr.h>
|
|
#include <errno.h>
|
|
#include <stdbool.h>
|
|
#include "iw.h"
|
|
#include "nl80211.h"
|
|
|
|
void mac_addr_n2a(char *mac_addr, const unsigned char *arg)
|
|
{
|
|
int i, l;
|
|
|
|
l = 0;
|
|
for (i = 0; i < ETH_ALEN ; i++) {
|
|
if (i == 0) {
|
|
sprintf(mac_addr+l, "%02x", arg[i]);
|
|
l += 2;
|
|
} else {
|
|
sprintf(mac_addr+l, ":%02x", arg[i]);
|
|
l += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
int mac_addr_a2n(unsigned char *mac_addr, char *arg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ETH_ALEN ; i++) {
|
|
int temp;
|
|
char *cp = strchr(arg, ':');
|
|
if (cp) {
|
|
*cp = 0;
|
|
cp++;
|
|
}
|
|
if (sscanf(arg, "%x", &temp) != 1)
|
|
return -1;
|
|
if (temp < 0 || temp > 255)
|
|
return -1;
|
|
|
|
mac_addr[i] = temp;
|
|
if (!cp)
|
|
break;
|
|
arg = cp;
|
|
}
|
|
if (i < ETH_ALEN - 1)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int parse_hex_mask(char *hexmask, unsigned char **result, size_t *result_len,
|
|
unsigned char **mask)
|
|
{
|
|
size_t len = strlen(hexmask) / 2;
|
|
unsigned char *result_val;
|
|
unsigned char *result_mask = NULL;
|
|
|
|
int pos = 0;
|
|
|
|
*result_len = 0;
|
|
|
|
result_val = calloc(len + 2, 1);
|
|
if (!result_val)
|
|
goto error;
|
|
*result = result_val;
|
|
if (mask) {
|
|
result_mask = calloc(DIV_ROUND_UP(len, 8) + 2, 1);
|
|
if (!result_mask)
|
|
goto error;
|
|
*mask = result_mask;
|
|
}
|
|
|
|
while (1) {
|
|
char *cp = strchr(hexmask, ':');
|
|
if (cp) {
|
|
*cp = 0;
|
|
cp++;
|
|
}
|
|
|
|
if (result_mask && (strcmp(hexmask, "-") == 0 ||
|
|
strcmp(hexmask, "xx") == 0 ||
|
|
strcmp(hexmask, "--") == 0)) {
|
|
/* skip this byte and leave mask bit unset */
|
|
} else {
|
|
int temp, mask_pos;
|
|
char *end;
|
|
|
|
temp = strtoul(hexmask, &end, 16);
|
|
if (*end)
|
|
goto error;
|
|
if (temp < 0 || temp > 255)
|
|
goto error;
|
|
result_val[pos] = temp;
|
|
|
|
mask_pos = pos / 8;
|
|
if (result_mask)
|
|
result_mask[mask_pos] |= 1 << (pos % 8);
|
|
}
|
|
|
|
(*result_len)++;
|
|
pos++;
|
|
|
|
if (!cp)
|
|
break;
|
|
hexmask = cp;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
free(result_val);
|
|
free(result_mask);
|
|
return -1;
|
|
}
|
|
|
|
unsigned char *parse_hex(char *hex, size_t *outlen)
|
|
{
|
|
unsigned char *result;
|
|
|
|
if (parse_hex_mask(hex, &result, outlen, NULL))
|
|
return NULL;
|
|
return result;
|
|
}
|
|
|
|
static const char *ifmodes[NL80211_IFTYPE_MAX + 1] = {
|
|
"unspecified",
|
|
"IBSS",
|
|
"managed",
|
|
"AP",
|
|
"AP/VLAN",
|
|
"WDS",
|
|
"monitor",
|
|
"mesh point",
|
|
"P2P-client",
|
|
"P2P-GO",
|
|
"P2P-device",
|
|
"outside context of a BSS",
|
|
"NAN",
|
|
};
|
|
|
|
static char modebuf[100];
|
|
|
|
const char *iftype_name(enum nl80211_iftype iftype)
|
|
{
|
|
if (iftype <= NL80211_IFTYPE_MAX && ifmodes[iftype])
|
|
return ifmodes[iftype];
|
|
sprintf(modebuf, "Unknown mode (%d)", iftype);
|
|
return modebuf;
|
|
}
|
|
|
|
static const char *commands[NL80211_CMD_MAX + 1] = {
|
|
/*
|
|
* sed 's/^\tNL80211_CMD_//;t n;d;:n s%^\([^=]*\),.*%\t[NL80211_CMD_\1] = \"\L\1\",%;t;d' nl80211.h
|
|
*/
|
|
[NL80211_CMD_UNSPEC] = "unspec",
|
|
[NL80211_CMD_GET_WIPHY] = "get_wiphy",
|
|
[NL80211_CMD_SET_WIPHY] = "set_wiphy",
|
|
[NL80211_CMD_NEW_WIPHY] = "new_wiphy",
|
|
[NL80211_CMD_DEL_WIPHY] = "del_wiphy",
|
|
[NL80211_CMD_GET_INTERFACE] = "get_interface",
|
|
[NL80211_CMD_SET_INTERFACE] = "set_interface",
|
|
[NL80211_CMD_NEW_INTERFACE] = "new_interface",
|
|
[NL80211_CMD_DEL_INTERFACE] = "del_interface",
|
|
[NL80211_CMD_GET_KEY] = "get_key",
|
|
[NL80211_CMD_SET_KEY] = "set_key",
|
|
[NL80211_CMD_NEW_KEY] = "new_key",
|
|
[NL80211_CMD_DEL_KEY] = "del_key",
|
|
[NL80211_CMD_GET_BEACON] = "get_beacon",
|
|
[NL80211_CMD_SET_BEACON] = "set_beacon",
|
|
[NL80211_CMD_START_AP] = "start_ap",
|
|
[NL80211_CMD_STOP_AP] = "stop_ap",
|
|
[NL80211_CMD_GET_STATION] = "get_station",
|
|
[NL80211_CMD_SET_STATION] = "set_station",
|
|
[NL80211_CMD_NEW_STATION] = "new_station",
|
|
[NL80211_CMD_DEL_STATION] = "del_station",
|
|
[NL80211_CMD_GET_MPATH] = "get_mpath",
|
|
[NL80211_CMD_SET_MPATH] = "set_mpath",
|
|
[NL80211_CMD_NEW_MPATH] = "new_mpath",
|
|
[NL80211_CMD_DEL_MPATH] = "del_mpath",
|
|
[NL80211_CMD_SET_BSS] = "set_bss",
|
|
[NL80211_CMD_SET_REG] = "set_reg",
|
|
[NL80211_CMD_REQ_SET_REG] = "req_set_reg",
|
|
[NL80211_CMD_GET_MESH_CONFIG] = "get_mesh_config",
|
|
[NL80211_CMD_SET_MESH_CONFIG] = "set_mesh_config",
|
|
[NL80211_CMD_SET_MGMT_EXTRA_IE /* reserved; not used */] = "set_mgmt_extra_ie /* reserved; not used */",
|
|
[NL80211_CMD_GET_REG] = "get_reg",
|
|
[NL80211_CMD_GET_SCAN] = "get_scan",
|
|
[NL80211_CMD_TRIGGER_SCAN] = "trigger_scan",
|
|
[NL80211_CMD_NEW_SCAN_RESULTS] = "new_scan_results",
|
|
[NL80211_CMD_SCAN_ABORTED] = "scan_aborted",
|
|
[NL80211_CMD_REG_CHANGE] = "reg_change",
|
|
[NL80211_CMD_AUTHENTICATE] = "authenticate",
|
|
[NL80211_CMD_ASSOCIATE] = "associate",
|
|
[NL80211_CMD_DEAUTHENTICATE] = "deauthenticate",
|
|
[NL80211_CMD_DISASSOCIATE] = "disassociate",
|
|
[NL80211_CMD_MICHAEL_MIC_FAILURE] = "michael_mic_failure",
|
|
[NL80211_CMD_REG_BEACON_HINT] = "reg_beacon_hint",
|
|
[NL80211_CMD_JOIN_IBSS] = "join_ibss",
|
|
[NL80211_CMD_LEAVE_IBSS] = "leave_ibss",
|
|
[NL80211_CMD_TESTMODE] = "testmode",
|
|
[NL80211_CMD_CONNECT] = "connect",
|
|
[NL80211_CMD_ROAM] = "roam",
|
|
[NL80211_CMD_DISCONNECT] = "disconnect",
|
|
[NL80211_CMD_SET_WIPHY_NETNS] = "set_wiphy_netns",
|
|
[NL80211_CMD_GET_SURVEY] = "get_survey",
|
|
[NL80211_CMD_NEW_SURVEY_RESULTS] = "new_survey_results",
|
|
[NL80211_CMD_SET_PMKSA] = "set_pmksa",
|
|
[NL80211_CMD_DEL_PMKSA] = "del_pmksa",
|
|
[NL80211_CMD_FLUSH_PMKSA] = "flush_pmksa",
|
|
[NL80211_CMD_REMAIN_ON_CHANNEL] = "remain_on_channel",
|
|
[NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL] = "cancel_remain_on_channel",
|
|
[NL80211_CMD_SET_TX_BITRATE_MASK] = "set_tx_bitrate_mask",
|
|
[NL80211_CMD_REGISTER_FRAME] = "register_frame",
|
|
[NL80211_CMD_FRAME] = "frame",
|
|
[NL80211_CMD_FRAME_TX_STATUS] = "frame_tx_status",
|
|
[NL80211_CMD_SET_POWER_SAVE] = "set_power_save",
|
|
[NL80211_CMD_GET_POWER_SAVE] = "get_power_save",
|
|
[NL80211_CMD_SET_CQM] = "set_cqm",
|
|
[NL80211_CMD_NOTIFY_CQM] = "notify_cqm",
|
|
[NL80211_CMD_SET_CHANNEL] = "set_channel",
|
|
[NL80211_CMD_SET_WDS_PEER] = "set_wds_peer",
|
|
[NL80211_CMD_FRAME_WAIT_CANCEL] = "frame_wait_cancel",
|
|
[NL80211_CMD_JOIN_MESH] = "join_mesh",
|
|
[NL80211_CMD_LEAVE_MESH] = "leave_mesh",
|
|
[NL80211_CMD_UNPROT_DEAUTHENTICATE] = "unprot_deauthenticate",
|
|
[NL80211_CMD_UNPROT_DISASSOCIATE] = "unprot_disassociate",
|
|
[NL80211_CMD_NEW_PEER_CANDIDATE] = "new_peer_candidate",
|
|
[NL80211_CMD_GET_WOWLAN] = "get_wowlan",
|
|
[NL80211_CMD_SET_WOWLAN] = "set_wowlan",
|
|
[NL80211_CMD_START_SCHED_SCAN] = "start_sched_scan",
|
|
[NL80211_CMD_STOP_SCHED_SCAN] = "stop_sched_scan",
|
|
[NL80211_CMD_SCHED_SCAN_RESULTS] = "sched_scan_results",
|
|
[NL80211_CMD_SCHED_SCAN_STOPPED] = "sched_scan_stopped",
|
|
[NL80211_CMD_SET_REKEY_OFFLOAD] = "set_rekey_offload",
|
|
[NL80211_CMD_PMKSA_CANDIDATE] = "pmksa_candidate",
|
|
[NL80211_CMD_TDLS_OPER] = "tdls_oper",
|
|
[NL80211_CMD_TDLS_MGMT] = "tdls_mgmt",
|
|
[NL80211_CMD_UNEXPECTED_FRAME] = "unexpected_frame",
|
|
[NL80211_CMD_PROBE_CLIENT] = "probe_client",
|
|
[NL80211_CMD_REGISTER_BEACONS] = "register_beacons",
|
|
[NL80211_CMD_UNEXPECTED_4ADDR_FRAME] = "unexpected_4addr_frame",
|
|
[NL80211_CMD_SET_NOACK_MAP] = "set_noack_map",
|
|
[NL80211_CMD_CH_SWITCH_NOTIFY] = "ch_switch_notify",
|
|
[NL80211_CMD_START_P2P_DEVICE] = "start_p2p_device",
|
|
[NL80211_CMD_STOP_P2P_DEVICE] = "stop_p2p_device",
|
|
[NL80211_CMD_CONN_FAILED] = "conn_failed",
|
|
[NL80211_CMD_SET_MCAST_RATE] = "set_mcast_rate",
|
|
[NL80211_CMD_SET_MAC_ACL] = "set_mac_acl",
|
|
[NL80211_CMD_RADAR_DETECT] = "radar_detect",
|
|
[NL80211_CMD_GET_PROTOCOL_FEATURES] = "get_protocol_features",
|
|
[NL80211_CMD_UPDATE_FT_IES] = "update_ft_ies",
|
|
[NL80211_CMD_FT_EVENT] = "ft_event",
|
|
[NL80211_CMD_CRIT_PROTOCOL_START] = "crit_protocol_start",
|
|
[NL80211_CMD_CRIT_PROTOCOL_STOP] = "crit_protocol_stop",
|
|
[NL80211_CMD_GET_COALESCE] = "get_coalesce",
|
|
[NL80211_CMD_SET_COALESCE] = "set_coalesce",
|
|
[NL80211_CMD_CHANNEL_SWITCH] = "channel_switch",
|
|
[NL80211_CMD_VENDOR] = "vendor",
|
|
[NL80211_CMD_SET_QOS_MAP] = "set_qos_map",
|
|
[NL80211_CMD_ADD_TX_TS] = "add_tx_ts",
|
|
[NL80211_CMD_DEL_TX_TS] = "del_tx_ts",
|
|
[NL80211_CMD_GET_MPP] = "get_mpp",
|
|
[NL80211_CMD_JOIN_OCB] = "join_ocb",
|
|
[NL80211_CMD_LEAVE_OCB] = "leave_ocb",
|
|
[NL80211_CMD_CH_SWITCH_STARTED_NOTIFY] = "ch_switch_started_notify",
|
|
[NL80211_CMD_TDLS_CHANNEL_SWITCH] = "tdls_channel_switch",
|
|
[NL80211_CMD_TDLS_CANCEL_CHANNEL_SWITCH] = "tdls_cancel_channel_switch",
|
|
[NL80211_CMD_WIPHY_REG_CHANGE] = "wiphy_reg_change",
|
|
[NL80211_CMD_ABORT_SCAN] = "abort_scan",
|
|
[NL80211_CMD_START_NAN] = "start_nan",
|
|
[NL80211_CMD_STOP_NAN] = "stop_nan",
|
|
[NL80211_CMD_ADD_NAN_FUNCTION] = "add_nan_function",
|
|
[NL80211_CMD_DEL_NAN_FUNCTION] = "del_nan_function",
|
|
[NL80211_CMD_CHANGE_NAN_CONFIG] = "change_nan_config",
|
|
[NL80211_CMD_NAN_MATCH] = "nan_match",
|
|
[NL80211_CMD_SET_MULTICAST_TO_UNICAST] = "set_multicast_to_unicast",
|
|
[NL80211_CMD_UPDATE_CONNECT_PARAMS] = "update_connect_params",
|
|
[NL80211_CMD_SET_PMK] = "set_pmk",
|
|
[NL80211_CMD_DEL_PMK] = "del_pmk",
|
|
[NL80211_CMD_PORT_AUTHORIZED] = "port_authorized",
|
|
[NL80211_CMD_RELOAD_REGDB] = "reload_regdb",
|
|
[NL80211_CMD_EXTERNAL_AUTH] = "external_auth",
|
|
[NL80211_CMD_STA_OPMODE_CHANGED] = "sta_opmode_changed",
|
|
[NL80211_CMD_CONTROL_PORT_FRAME] = "control_port_frame",
|
|
[NL80211_CMD_GET_FTM_RESPONDER_STATS] = "get_ftm_responder_stats",
|
|
[NL80211_CMD_PEER_MEASUREMENT_START] = "peer_measurement_start",
|
|
[NL80211_CMD_PEER_MEASUREMENT_RESULT] = "peer_measurement_result",
|
|
[NL80211_CMD_PEER_MEASUREMENT_COMPLETE] = "peer_measurement_complete",
|
|
[NL80211_CMD_NOTIFY_RADAR] = "notify_radar",
|
|
[NL80211_CMD_UPDATE_OWE_INFO] = "update_owe_info",
|
|
[NL80211_CMD_PROBE_MESH_LINK] = "probe_mesh_link",
|
|
[NL80211_CMD_SET_TID_CONFIG] = "set_tid_config",
|
|
[NL80211_CMD_UNPROT_BEACON] = "unprot_beacon",
|
|
[NL80211_CMD_CONTROL_PORT_FRAME_TX_STATUS] = "control_port_frame_tx_status",
|
|
[NL80211_CMD_SET_SAR_SPECS] = "set_sar_specs",
|
|
[NL80211_CMD_OBSS_COLOR_COLLISION] = "obss_color_collision",
|
|
[NL80211_CMD_COLOR_CHANGE_REQUEST] = "color_change_request",
|
|
[NL80211_CMD_COLOR_CHANGE_STARTED] = "color_change_started",
|
|
[NL80211_CMD_COLOR_CHANGE_ABORTED] = "color_change_aborted",
|
|
[NL80211_CMD_COLOR_CHANGE_COMPLETED] = "color_change_completed",
|
|
[NL80211_CMD_SET_FILS_AAD] = "set_fils_aad",
|
|
[NL80211_CMD_ASSOC_COMEBACK] = "assoc_comeback",
|
|
};
|
|
|
|
static char cmdbuf[100];
|
|
|
|
const char *command_name(enum nl80211_commands cmd)
|
|
{
|
|
if (cmd <= NL80211_CMD_MAX && commands[cmd])
|
|
return commands[cmd];
|
|
sprintf(cmdbuf, "Unknown command (%d)", cmd);
|
|
return cmdbuf;
|
|
}
|
|
|
|
int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
|
|
{
|
|
/* see 802.11 17.3.8.3.2 and Annex J
|
|
* there are overlapping channel numbers in 5GHz and 2GHz bands */
|
|
if (chan <= 0)
|
|
return 0; /* not supported */
|
|
switch (band) {
|
|
case NL80211_BAND_2GHZ:
|
|
if (chan == 14)
|
|
return 2484;
|
|
else if (chan < 14)
|
|
return 2407 + chan * 5;
|
|
break;
|
|
case NL80211_BAND_5GHZ:
|
|
if (chan >= 182 && chan <= 196)
|
|
return 4000 + chan * 5;
|
|
else
|
|
return 5000 + chan * 5;
|
|
break;
|
|
case NL80211_BAND_6GHZ:
|
|
/* see 802.11ax D6.1 27.3.23.2 */
|
|
if (chan == 2)
|
|
return 5935;
|
|
if (chan <= 253)
|
|
return 5950 + chan * 5;
|
|
break;
|
|
case NL80211_BAND_60GHZ:
|
|
if (chan < 7)
|
|
return 56160 + chan * 2160;
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
return 0; /* not supported */
|
|
}
|
|
|
|
int ieee80211_frequency_to_channel(int freq)
|
|
{
|
|
/* see 802.11-2007 17.3.8.3.2 and Annex J */
|
|
if (freq == 2484)
|
|
return 14;
|
|
/* see 802.11ax D6.1 27.3.23.2 and Annex E */
|
|
else if (freq == 5935)
|
|
return 2;
|
|
else if (freq < 2484)
|
|
return (freq - 2407) / 5;
|
|
else if (freq >= 4910 && freq <= 4980)
|
|
return (freq - 4000) / 5;
|
|
else if (freq < 5950)
|
|
return (freq - 5000) / 5;
|
|
else if (freq <= 45000) /* DMG band lower limit */
|
|
/* see 802.11ax D6.1 27.3.23.2 */
|
|
return (freq - 5950) / 5;
|
|
else if (freq >= 58320 && freq <= 70200)
|
|
return (freq - 56160) / 2160;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void print_ssid_escaped(const uint8_t len, const uint8_t *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (isprint(data[i]) && data[i] != ' ' && data[i] != '\\')
|
|
printf("%c", data[i]);
|
|
else if (data[i] == ' ' &&
|
|
(i != 0 && i != len -1))
|
|
printf(" ");
|
|
else
|
|
printf("\\x%.2x", data[i]);
|
|
}
|
|
}
|
|
|
|
static int hex2num(char digit)
|
|
{
|
|
if (!isxdigit(digit))
|
|
return -1;
|
|
if (isdigit(digit))
|
|
return digit - '0';
|
|
return tolower(digit) - 'a' + 10;
|
|
}
|
|
|
|
static int hex2byte(const char *hex)
|
|
{
|
|
int d1, d2;
|
|
|
|
d1 = hex2num(hex[0]);
|
|
if (d1 < 0)
|
|
return -1;
|
|
d2 = hex2num(hex[1]);
|
|
if (d2 < 0)
|
|
return -1;
|
|
return (d1 << 4) | d2;
|
|
}
|
|
|
|
char *hex2bin(const char *hex, char *buf)
|
|
{
|
|
char *result = buf;
|
|
int d;
|
|
|
|
while (hex[0]) {
|
|
d = hex2byte(hex);
|
|
if (d < 0)
|
|
return NULL;
|
|
buf[0] = d;
|
|
buf++;
|
|
hex += 2;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int parse_akm_suite(const char *cipher_str)
|
|
{
|
|
|
|
if (!strcmp(cipher_str, "PSK"))
|
|
return 0x000FAC02;
|
|
if (!strcmp(cipher_str, "FT/PSK"))
|
|
return 0x000FAC03;
|
|
if (!strcmp(cipher_str, "PSK/SHA-256"))
|
|
return 0x000FAC06;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int parse_cipher_suite(const char *cipher_str)
|
|
{
|
|
|
|
if (!strcmp(cipher_str, "TKIP"))
|
|
return WLAN_CIPHER_SUITE_TKIP;
|
|
if (!strcmp(cipher_str, "CCMP") || !strcmp(cipher_str, "CCMP-128"))
|
|
return WLAN_CIPHER_SUITE_CCMP;
|
|
if (!strcmp(cipher_str, "GCMP") || !strcmp(cipher_str, "GCMP-128"))
|
|
return WLAN_CIPHER_SUITE_GCMP;
|
|
if (!strcmp(cipher_str, "GCMP-256"))
|
|
return WLAN_CIPHER_SUITE_GCMP_256;
|
|
if (!strcmp(cipher_str, "CCMP-256"))
|
|
return WLAN_CIPHER_SUITE_CCMP_256;
|
|
return -EINVAL;
|
|
}
|
|
|
|
int parse_keys(struct nl_msg *msg, char **argv[], int *argc)
|
|
{
|
|
struct nlattr *keys;
|
|
int i = 0;
|
|
bool have_default = false;
|
|
char *arg = **argv;
|
|
char keybuf[13];
|
|
int pos = 0;
|
|
|
|
if (!*argc)
|
|
return 1;
|
|
|
|
if (!memcmp(&arg[pos], "psk", 3)) {
|
|
char psk_keybuf[32];
|
|
int cipher_suite, akm_suite;
|
|
|
|
if (*argc < 4)
|
|
goto explain;
|
|
|
|
pos+=3;
|
|
if (arg[pos] != ':')
|
|
goto explain;
|
|
pos++;
|
|
|
|
NLA_PUT_U32(msg, NL80211_ATTR_WPA_VERSIONS, NL80211_WPA_VERSION_2);
|
|
|
|
if (strlen(&arg[pos]) != (sizeof(psk_keybuf) * 2) || !hex2bin(&arg[pos], psk_keybuf)) {
|
|
printf("Bad PSK\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
NLA_PUT(msg, NL80211_ATTR_PMK, 32, psk_keybuf);
|
|
NLA_PUT_U32(msg, NL80211_ATTR_AUTH_TYPE, NL80211_AUTHTYPE_OPEN_SYSTEM);
|
|
|
|
*argv += 1;
|
|
*argc -= 1;
|
|
arg = **argv;
|
|
|
|
akm_suite = parse_akm_suite(arg);
|
|
if (akm_suite < 0)
|
|
goto explain;
|
|
|
|
NLA_PUT_U32(msg, NL80211_ATTR_AKM_SUITES, akm_suite);
|
|
|
|
*argv += 1;
|
|
*argc -= 1;
|
|
arg = **argv;
|
|
|
|
cipher_suite = parse_cipher_suite(arg);
|
|
if (cipher_suite < 0)
|
|
goto explain;
|
|
|
|
NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITES_PAIRWISE, cipher_suite);
|
|
|
|
*argv += 1;
|
|
*argc -= 1;
|
|
arg = **argv;
|
|
|
|
cipher_suite = parse_cipher_suite(arg);
|
|
if (cipher_suite < 0)
|
|
goto explain;
|
|
|
|
NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITE_GROUP, cipher_suite);
|
|
|
|
*argv += 1;
|
|
*argc -= 1;
|
|
return 0;
|
|
}
|
|
|
|
NLA_PUT_FLAG(msg, NL80211_ATTR_PRIVACY);
|
|
|
|
keys = nla_nest_start(msg, NL80211_ATTR_KEYS);
|
|
if (!keys)
|
|
return -ENOBUFS;
|
|
|
|
do {
|
|
int keylen;
|
|
struct nlattr *key = nla_nest_start(msg, ++i);
|
|
char *keydata;
|
|
|
|
arg = **argv;
|
|
pos = 0;
|
|
|
|
if (!key)
|
|
return -ENOBUFS;
|
|
|
|
if (arg[pos] == 'd') {
|
|
NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT);
|
|
pos++;
|
|
if (arg[pos] == ':')
|
|
pos++;
|
|
have_default = true;
|
|
}
|
|
|
|
if (!isdigit(arg[pos]))
|
|
goto explain;
|
|
NLA_PUT_U8(msg, NL80211_KEY_IDX, arg[pos++] - '0');
|
|
if (arg[pos++] != ':')
|
|
goto explain;
|
|
keydata = arg + pos;
|
|
switch (strlen(keydata)) {
|
|
case 10:
|
|
keydata = hex2bin(keydata, keybuf);
|
|
/* fall through */
|
|
case 5:
|
|
NLA_PUT_U32(msg, NL80211_KEY_CIPHER,
|
|
WLAN_CIPHER_SUITE_WEP40);
|
|
keylen = 5;
|
|
break;
|
|
case 26:
|
|
keydata = hex2bin(keydata, keybuf);
|
|
/* fall through */
|
|
case 13:
|
|
NLA_PUT_U32(msg, NL80211_KEY_CIPHER,
|
|
WLAN_CIPHER_SUITE_WEP104);
|
|
keylen = 13;
|
|
break;
|
|
default:
|
|
goto explain;
|
|
}
|
|
|
|
if (!keydata)
|
|
goto explain;
|
|
|
|
NLA_PUT(msg, NL80211_KEY_DATA, keylen, keydata);
|
|
|
|
*argv += 1;
|
|
*argc -= 1;
|
|
|
|
/* one key should be TX key */
|
|
if (!have_default && !*argc)
|
|
NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT);
|
|
|
|
nla_nest_end(msg, key);
|
|
} while (*argc);
|
|
|
|
nla_nest_end(msg, keys);
|
|
|
|
return 0;
|
|
nla_put_failure:
|
|
return -ENOBUFS;
|
|
explain:
|
|
fprintf(stderr, "key must be [d:]index:data where\n"
|
|
" 'd:' means default (transmit) key\n"
|
|
" 'index:' is a single digit (0-3)\n"
|
|
" 'data' must be 5 or 13 ascii chars\n"
|
|
" or 10 or 26 hex digits\n"
|
|
"for example: d:2:6162636465 is the same as d:2:abcde\n"
|
|
"or psk:data <AKM Suite> <pairwise CIPHER> <groupwise CIPHER> where\n"
|
|
" 'data' is the PSK (output of wpa_passphrase and the CIPHER can be CCMP or GCMP\n"
|
|
"for example: psk:0123456789abcdef PSK CCMP CCMP\n"
|
|
"The allowed AKM suites are PSK, FT/PSK, PSK/SHA-256\n"
|
|
"The allowed Cipher suites are TKIP, CCMP, GCMP, GCMP-256, CCMP-256\n");
|
|
return 2;
|
|
}
|
|
|
|
enum nl80211_chan_width str_to_bw(const char *str)
|
|
{
|
|
static const struct {
|
|
const char *name;
|
|
unsigned int val;
|
|
} bwmap[] = {
|
|
{ .name = "5", .val = NL80211_CHAN_WIDTH_5, },
|
|
{ .name = "10", .val = NL80211_CHAN_WIDTH_10, },
|
|
{ .name = "20", .val = NL80211_CHAN_WIDTH_20, },
|
|
{ .name = "40", .val = NL80211_CHAN_WIDTH_40, },
|
|
{ .name = "80", .val = NL80211_CHAN_WIDTH_80, },
|
|
{ .name = "80+80", .val = NL80211_CHAN_WIDTH_80P80, },
|
|
{ .name = "160", .val = NL80211_CHAN_WIDTH_160, },
|
|
};
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bwmap); i++) {
|
|
if (strcasecmp(bwmap[i].name, str) == 0)
|
|
return bwmap[i].val;
|
|
}
|
|
|
|
return NL80211_CHAN_WIDTH_20_NOHT;
|
|
}
|
|
|
|
static int parse_freqs(struct chandef *chandef, int argc, char **argv,
|
|
int *parsed)
|
|
{
|
|
uint32_t freq;
|
|
char *end;
|
|
bool need_cf1 = false, need_cf2 = false;
|
|
|
|
if (argc < 1)
|
|
return 0;
|
|
|
|
chandef->width = str_to_bw(argv[0]);
|
|
|
|
switch (chandef->width) {
|
|
case NL80211_CHAN_WIDTH_20_NOHT:
|
|
/* First argument was not understood, give up gracefully. */
|
|
return 0;
|
|
case NL80211_CHAN_WIDTH_20:
|
|
case NL80211_CHAN_WIDTH_5:
|
|
case NL80211_CHAN_WIDTH_10:
|
|
break;
|
|
case NL80211_CHAN_WIDTH_80P80:
|
|
need_cf2 = true;
|
|
/* fall through */
|
|
case NL80211_CHAN_WIDTH_40:
|
|
case NL80211_CHAN_WIDTH_80:
|
|
case NL80211_CHAN_WIDTH_160:
|
|
case NL80211_CHAN_WIDTH_320:
|
|
need_cf1 = true;
|
|
break;
|
|
case NL80211_CHAN_WIDTH_1:
|
|
case NL80211_CHAN_WIDTH_2:
|
|
case NL80211_CHAN_WIDTH_4:
|
|
case NL80211_CHAN_WIDTH_8:
|
|
case NL80211_CHAN_WIDTH_16:
|
|
/* can't happen yet */
|
|
break;
|
|
}
|
|
|
|
*parsed += 1;
|
|
|
|
if (!need_cf1)
|
|
return 0;
|
|
|
|
if (argc < 2)
|
|
return 1;
|
|
|
|
/* center freq 1 */
|
|
if (!*argv[1])
|
|
return 1;
|
|
freq = strtoul(argv[1], &end, 10);
|
|
if (*end)
|
|
return 1;
|
|
*parsed += 1;
|
|
|
|
chandef->center_freq1 = freq;
|
|
|
|
if (!need_cf2)
|
|
return 0;
|
|
|
|
if (argc < 3)
|
|
return 1;
|
|
|
|
/* center freq 2 */
|
|
if (!*argv[2])
|
|
return 1;
|
|
freq = strtoul(argv[2], &end, 10);
|
|
if (*end)
|
|
return 1;
|
|
chandef->center_freq2 = freq;
|
|
|
|
*parsed += 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* parse_freqchan - Parse frequency or channel definition
|
|
*
|
|
* @chandef: chandef structure to be filled in
|
|
* @chan: Boolean whether to parse a channel or frequency based specifier
|
|
* @argc: Number of arguments
|
|
* @argv: Array of string arguments
|
|
* @parsed: Pointer to return the number of used arguments, or NULL to error
|
|
* out if any argument is left unused.
|
|
*
|
|
* The given chandef structure will be filled in from the command line
|
|
* arguments. argc/argv will be updated so that further arguments from the
|
|
* command line can be parsed.
|
|
*
|
|
* Note that despite the fact that the function knows how many center freqs
|
|
* are needed, there's an ambiguity if the next argument after this is an
|
|
* integer argument, since the valid channel width values are interpreted
|
|
* as such, rather than a following argument. This can be avoided by the
|
|
* user by giving "NOHT" instead.
|
|
*
|
|
* The working specifier if chan is set are:
|
|
* <channel> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz|160MHz]
|
|
*
|
|
* And if frequency is set:
|
|
* <freq> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz|160MHz]
|
|
* <control freq> [5|10|20|40|80|80+80|160] [<center1_freq> [<center2_freq>]]
|
|
*
|
|
* If the mode/channel width is not given the NOHT is assumed.
|
|
*
|
|
* Return: Number of used arguments, zero or negative error number otherwise
|
|
*/
|
|
int parse_freqchan(struct chandef *chandef, bool chan, int argc, char **argv,
|
|
int *parsed)
|
|
{
|
|
char *end;
|
|
static const struct chanmode chanmode[] = {
|
|
{ .name = "HT20",
|
|
.width = NL80211_CHAN_WIDTH_20,
|
|
.freq1_diff = 0,
|
|
.chantype = NL80211_CHAN_HT20 },
|
|
{ .name = "HT40+",
|
|
.width = NL80211_CHAN_WIDTH_40,
|
|
.freq1_diff = 10,
|
|
.chantype = NL80211_CHAN_HT40PLUS },
|
|
{ .name = "HT40-",
|
|
.width = NL80211_CHAN_WIDTH_40,
|
|
.freq1_diff = -10,
|
|
.chantype = NL80211_CHAN_HT40MINUS },
|
|
{ .name = "NOHT",
|
|
.width = NL80211_CHAN_WIDTH_20_NOHT,
|
|
.freq1_diff = 0,
|
|
.chantype = NL80211_CHAN_NO_HT },
|
|
{ .name = "5MHz",
|
|
.width = NL80211_CHAN_WIDTH_5,
|
|
.freq1_diff = 0,
|
|
.chantype = -1 },
|
|
{ .name = "10MHz",
|
|
.width = NL80211_CHAN_WIDTH_10,
|
|
.freq1_diff = 0,
|
|
.chantype = -1 },
|
|
{ .name = "80MHz",
|
|
.width = NL80211_CHAN_WIDTH_80,
|
|
.freq1_diff = 0,
|
|
.chantype = -1 },
|
|
{ .name = "160MHz",
|
|
.width = NL80211_CHAN_WIDTH_160,
|
|
.freq1_diff = 0,
|
|
.chantype = -1 },
|
|
{ .name = "320MHz",
|
|
.width = NL80211_CHAN_WIDTH_320,
|
|
.freq1_diff = 0,
|
|
.chantype = -1 },
|
|
};
|
|
const struct chanmode *chanmode_selected = NULL;
|
|
unsigned int freq;
|
|
unsigned int i;
|
|
int _parsed = 0;
|
|
int res = 0;
|
|
|
|
if (argc < 1)
|
|
return 1;
|
|
|
|
if (!argv[0])
|
|
goto out;
|
|
freq = strtoul(argv[0], &end, 10);
|
|
if (*end) {
|
|
res = 1;
|
|
goto out;
|
|
}
|
|
|
|
_parsed += 1;
|
|
|
|
memset(chandef, 0, sizeof(struct chandef));
|
|
|
|
if (chan) {
|
|
enum nl80211_band band;
|
|
|
|
band = freq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
|
|
freq = ieee80211_channel_to_frequency(freq, band);
|
|
}
|
|
chandef->control_freq = freq;
|
|
/* Assume 20MHz NOHT channel for now. */
|
|
chandef->center_freq1 = freq;
|
|
|
|
/* Try to parse HT mode definitions */
|
|
if (argc > 1) {
|
|
for (i = 0; i < ARRAY_SIZE(chanmode); i++) {
|
|
if (strcasecmp(chanmode[i].name, argv[1]) == 0) {
|
|
chanmode_selected = &chanmode[i];
|
|
_parsed += 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* channel mode given, use it and return. */
|
|
if (chanmode_selected) {
|
|
chandef->center_freq1 = get_cf1(chanmode_selected, freq);
|
|
chandef->width = chanmode_selected->width;
|
|
goto out;
|
|
}
|
|
|
|
/* This was a only a channel definition, nothing further may follow. */
|
|
if (chan)
|
|
goto out;
|
|
|
|
res = parse_freqs(chandef, argc - 1, argv + 1, &_parsed);
|
|
|
|
out:
|
|
/* Error out if parsed is NULL. */
|
|
if (!parsed && _parsed != argc)
|
|
return 1;
|
|
|
|
if (parsed)
|
|
*parsed = _parsed;
|
|
|
|
return res;
|
|
}
|
|
|
|
int put_chandef(struct nl_msg *msg, struct chandef *chandef)
|
|
{
|
|
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_FREQ, chandef->control_freq);
|
|
NLA_PUT_U32(msg, NL80211_ATTR_CHANNEL_WIDTH, chandef->width);
|
|
|
|
switch (chandef->width) {
|
|
case NL80211_CHAN_WIDTH_20_NOHT:
|
|
NLA_PUT_U32(msg,
|
|
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
|
|
NL80211_CHAN_NO_HT);
|
|
break;
|
|
case NL80211_CHAN_WIDTH_20:
|
|
NLA_PUT_U32(msg,
|
|
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
|
|
NL80211_CHAN_HT20);
|
|
break;
|
|
case NL80211_CHAN_WIDTH_40:
|
|
if (chandef->control_freq > chandef->center_freq1)
|
|
NLA_PUT_U32(msg,
|
|
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
|
|
NL80211_CHAN_HT40MINUS);
|
|
else
|
|
NLA_PUT_U32(msg,
|
|
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
|
|
NL80211_CHAN_HT40PLUS);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (chandef->center_freq1)
|
|
NLA_PUT_U32(msg,
|
|
NL80211_ATTR_CENTER_FREQ1,
|
|
chandef->center_freq1);
|
|
|
|
if (chandef->center_freq2)
|
|
NLA_PUT_U32(msg,
|
|
NL80211_ATTR_CENTER_FREQ2,
|
|
chandef->center_freq2);
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
static void print_mcs_index(const __u8 *mcs)
|
|
{
|
|
int mcs_bit, prev_bit = -2, prev_cont = 0;
|
|
|
|
for (mcs_bit = 0; mcs_bit <= 76; mcs_bit++) {
|
|
unsigned int mcs_octet = mcs_bit/8;
|
|
unsigned int MCS_RATE_BIT = 1 << mcs_bit % 8;
|
|
bool mcs_rate_idx_set;
|
|
|
|
mcs_rate_idx_set = !!(mcs[mcs_octet] & MCS_RATE_BIT);
|
|
|
|
if (!mcs_rate_idx_set)
|
|
continue;
|
|
|
|
if (prev_bit != mcs_bit - 1) {
|
|
if (prev_bit != -2)
|
|
printf("%d, ", prev_bit);
|
|
else
|
|
printf(" ");
|
|
printf("%d", mcs_bit);
|
|
prev_cont = 0;
|
|
} else if (!prev_cont) {
|
|
printf("-");
|
|
prev_cont = 1;
|
|
}
|
|
|
|
prev_bit = mcs_bit;
|
|
}
|
|
|
|
if (prev_cont)
|
|
printf("%d", prev_bit);
|
|
printf("\n");
|
|
}
|
|
|
|
/*
|
|
* There are only 4 possible values, we just use a case instead of computing it,
|
|
* but technically this can also be computed through the formula:
|
|
*
|
|
* Max AMPDU length = (2 ^ (13 + exponent)) - 1 bytes
|
|
*/
|
|
static __u32 compute_ampdu_length(__u8 exponent)
|
|
{
|
|
switch (exponent) {
|
|
case 0: return 8191; /* (2 ^(13 + 0)) -1 */
|
|
case 1: return 16383; /* (2 ^(13 + 1)) -1 */
|
|
case 2: return 32767; /* (2 ^(13 + 2)) -1 */
|
|
case 3: return 65535; /* (2 ^(13 + 3)) -1 */
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
static const char *print_ampdu_space(__u8 space)
|
|
{
|
|
switch (space) {
|
|
case 0: return "No restriction";
|
|
case 1: return "1/4 usec";
|
|
case 2: return "1/2 usec";
|
|
case 3: return "1 usec";
|
|
case 4: return "2 usec";
|
|
case 5: return "4 usec";
|
|
case 6: return "8 usec";
|
|
case 7: return "16 usec";
|
|
default:
|
|
return "BUG (spacing more than 3 bits!)";
|
|
}
|
|
}
|
|
|
|
void print_ampdu_length(__u8 exponent)
|
|
{
|
|
__u32 max_ampdu_length;
|
|
|
|
max_ampdu_length = compute_ampdu_length(exponent);
|
|
|
|
if (max_ampdu_length) {
|
|
printf("\t\tMaximum RX AMPDU length %d bytes (exponent: 0x0%02x)\n",
|
|
max_ampdu_length, exponent);
|
|
} else {
|
|
printf("\t\tMaximum RX AMPDU length: unrecognized bytes "
|
|
"(exponent: %d)\n", exponent);
|
|
}
|
|
}
|
|
|
|
void print_ampdu_spacing(__u8 spacing)
|
|
{
|
|
printf("\t\tMinimum RX AMPDU time spacing: %s (0x%02x)\n",
|
|
print_ampdu_space(spacing), spacing);
|
|
}
|
|
|
|
void print_ht_capability(__u16 cap)
|
|
{
|
|
#define PRINT_HT_CAP(_cond, _str) \
|
|
do { \
|
|
if (_cond) \
|
|
printf("\t\t\t" _str "\n"); \
|
|
} while (0)
|
|
|
|
printf("\t\tCapabilities: 0x%02x\n", cap);
|
|
|
|
PRINT_HT_CAP((cap & BIT(0)), "RX LDPC");
|
|
PRINT_HT_CAP((cap & BIT(1)), "HT20/HT40");
|
|
PRINT_HT_CAP(!(cap & BIT(1)), "HT20");
|
|
|
|
PRINT_HT_CAP(((cap >> 2) & 0x3) == 0, "Static SM Power Save");
|
|
PRINT_HT_CAP(((cap >> 2) & 0x3) == 1, "Dynamic SM Power Save");
|
|
PRINT_HT_CAP(((cap >> 2) & 0x3) == 3, "SM Power Save disabled");
|
|
|
|
PRINT_HT_CAP((cap & BIT(4)), "RX Greenfield");
|
|
PRINT_HT_CAP((cap & BIT(5)), "RX HT20 SGI");
|
|
PRINT_HT_CAP((cap & BIT(6)), "RX HT40 SGI");
|
|
PRINT_HT_CAP((cap & BIT(7)), "TX STBC");
|
|
|
|
PRINT_HT_CAP(((cap >> 8) & 0x3) == 0, "No RX STBC");
|
|
PRINT_HT_CAP(((cap >> 8) & 0x3) == 1, "RX STBC 1-stream");
|
|
PRINT_HT_CAP(((cap >> 8) & 0x3) == 2, "RX STBC 2-streams");
|
|
PRINT_HT_CAP(((cap >> 8) & 0x3) == 3, "RX STBC 3-streams");
|
|
|
|
PRINT_HT_CAP((cap & BIT(10)), "HT Delayed Block Ack");
|
|
|
|
PRINT_HT_CAP(!(cap & BIT(11)), "Max AMSDU length: 3839 bytes");
|
|
PRINT_HT_CAP((cap & BIT(11)), "Max AMSDU length: 7935 bytes");
|
|
|
|
/*
|
|
* For beacons and probe response this would mean the BSS
|
|
* does or does not allow the usage of DSSS/CCK HT40.
|
|
* Otherwise it means the STA does or does not use
|
|
* DSSS/CCK HT40.
|
|
*/
|
|
PRINT_HT_CAP((cap & BIT(12)), "DSSS/CCK HT40");
|
|
PRINT_HT_CAP(!(cap & BIT(12)), "No DSSS/CCK HT40");
|
|
|
|
/* BIT(13) is reserved */
|
|
|
|
PRINT_HT_CAP((cap & BIT(14)), "40 MHz Intolerant");
|
|
|
|
PRINT_HT_CAP((cap & BIT(15)), "L-SIG TXOP protection");
|
|
#undef PRINT_HT_CAP
|
|
}
|
|
|
|
void print_ht_mcs(const __u8 *mcs)
|
|
{
|
|
/* As defined in 7.3.2.57.4 Supported MCS Set field */
|
|
unsigned int tx_max_num_spatial_streams, max_rx_supp_data_rate;
|
|
bool tx_mcs_set_defined, tx_mcs_set_equal, tx_unequal_modulation;
|
|
|
|
max_rx_supp_data_rate = (mcs[10] | ((mcs[11] & 0x3) << 8));
|
|
tx_mcs_set_defined = !!(mcs[12] & (1 << 0));
|
|
tx_mcs_set_equal = !(mcs[12] & (1 << 1));
|
|
tx_max_num_spatial_streams = ((mcs[12] >> 2) & 3) + 1;
|
|
tx_unequal_modulation = !!(mcs[12] & (1 << 4));
|
|
|
|
if (max_rx_supp_data_rate)
|
|
printf("\t\tHT Max RX data rate: %d Mbps\n", max_rx_supp_data_rate);
|
|
/* XXX: else see 9.6.0e.5.3 how to get this I think */
|
|
|
|
if (tx_mcs_set_defined) {
|
|
if (tx_mcs_set_equal) {
|
|
printf("\t\tHT TX/RX MCS rate indexes supported:");
|
|
print_mcs_index(mcs);
|
|
} else {
|
|
printf("\t\tHT RX MCS rate indexes supported:");
|
|
print_mcs_index(mcs);
|
|
|
|
if (tx_unequal_modulation)
|
|
printf("\t\tTX unequal modulation supported\n");
|
|
else
|
|
printf("\t\tTX unequal modulation not supported\n");
|
|
|
|
printf("\t\tHT TX Max spatial streams: %d\n",
|
|
tx_max_num_spatial_streams);
|
|
|
|
printf("\t\tHT TX MCS rate indexes supported may differ\n");
|
|
}
|
|
} else {
|
|
printf("\t\tHT RX MCS rate indexes supported:");
|
|
print_mcs_index(mcs);
|
|
printf("\t\tHT TX MCS rate indexes are undefined\n");
|
|
}
|
|
}
|
|
|
|
void print_vht_info(__u32 capa, const __u8 *mcs)
|
|
{
|
|
__u16 tmp;
|
|
int i;
|
|
|
|
printf("\t\tVHT Capabilities (0x%.8x):\n", capa);
|
|
|
|
#define PRINT_VHT_CAPA(_bit, _str) \
|
|
do { \
|
|
if (capa & BIT(_bit)) \
|
|
printf("\t\t\t" _str "\n"); \
|
|
} while (0)
|
|
|
|
printf("\t\t\tMax MPDU length: ");
|
|
switch (capa & 3) {
|
|
case 0: printf("3895\n"); break;
|
|
case 1: printf("7991\n"); break;
|
|
case 2: printf("11454\n"); break;
|
|
case 3: printf("(reserved)\n");
|
|
}
|
|
printf("\t\t\tSupported Channel Width: ");
|
|
switch ((capa >> 2) & 3) {
|
|
case 0: printf("neither 160 nor 80+80\n"); break;
|
|
case 1: printf("160 MHz\n"); break;
|
|
case 2: printf("160 MHz, 80+80 MHz\n"); break;
|
|
case 3: printf("(reserved)\n");
|
|
}
|
|
PRINT_VHT_CAPA(4, "RX LDPC");
|
|
PRINT_VHT_CAPA(5, "short GI (80 MHz)");
|
|
PRINT_VHT_CAPA(6, "short GI (160/80+80 MHz)");
|
|
PRINT_VHT_CAPA(7, "TX STBC");
|
|
/* RX STBC */
|
|
PRINT_VHT_CAPA(11, "SU Beamformer");
|
|
PRINT_VHT_CAPA(12, "SU Beamformee");
|
|
/* compressed steering */
|
|
/* # of sounding dimensions */
|
|
PRINT_VHT_CAPA(19, "MU Beamformer");
|
|
PRINT_VHT_CAPA(20, "MU Beamformee");
|
|
PRINT_VHT_CAPA(21, "VHT TXOP PS");
|
|
PRINT_VHT_CAPA(22, "+HTC-VHT");
|
|
/* max A-MPDU */
|
|
/* VHT link adaptation */
|
|
PRINT_VHT_CAPA(28, "RX antenna pattern consistency");
|
|
PRINT_VHT_CAPA(29, "TX antenna pattern consistency");
|
|
|
|
printf("\t\tVHT RX MCS set:\n");
|
|
tmp = mcs[0] | (mcs[1] << 8);
|
|
for (i = 1; i <= 8; i++) {
|
|
printf("\t\t\t%d streams: ", i);
|
|
switch ((tmp >> ((i-1)*2) ) & 3) {
|
|
case 0: printf("MCS 0-7\n"); break;
|
|
case 1: printf("MCS 0-8\n"); break;
|
|
case 2: printf("MCS 0-9\n"); break;
|
|
case 3: printf("not supported\n"); break;
|
|
}
|
|
}
|
|
tmp = mcs[2] | (mcs[3] << 8);
|
|
printf("\t\tVHT RX highest supported: %d Mbps\n", tmp & 0x1fff);
|
|
|
|
printf("\t\tVHT TX MCS set:\n");
|
|
tmp = mcs[4] | (mcs[5] << 8);
|
|
for (i = 1; i <= 8; i++) {
|
|
printf("\t\t\t%d streams: ", i);
|
|
switch ((tmp >> ((i-1)*2) ) & 3) {
|
|
case 0: printf("MCS 0-7\n"); break;
|
|
case 1: printf("MCS 0-8\n"); break;
|
|
case 2: printf("MCS 0-9\n"); break;
|
|
case 3: printf("not supported\n"); break;
|
|
}
|
|
}
|
|
tmp = mcs[6] | (mcs[7] << 8);
|
|
printf("\t\tVHT TX highest supported: %d Mbps\n", tmp & 0x1fff);
|
|
}
|
|
|
|
static void __print_he_capa(const __u16 *mac_cap,
|
|
const __u16 *phy_cap,
|
|
const __u16 *mcs_set, size_t mcs_len,
|
|
const __u8 *ppet, int ppet_len,
|
|
bool indent)
|
|
{
|
|
size_t mcs_used;
|
|
int i;
|
|
const char *pre = indent ? "\t" : "";
|
|
|
|
#define PRINT_HE_CAP(_var, _idx, _bit, _str) \
|
|
do { \
|
|
if (_var[_idx] & BIT(_bit)) \
|
|
printf("%s\t\t\t" _str "\n", pre); \
|
|
} while (0)
|
|
|
|
#define PRINT_HE_CAP_MASK(_var, _idx, _shift, _mask, _str) \
|
|
do { \
|
|
if ((_var[_idx] >> _shift) & _mask) \
|
|
printf("%s\t\t\t" _str ": %d\n", pre, (_var[_idx] >> _shift) & _mask); \
|
|
} while (0)
|
|
|
|
#define PRINT_HE_MAC_CAP(...) PRINT_HE_CAP(mac_cap, __VA_ARGS__)
|
|
#define PRINT_HE_MAC_CAP_MASK(...) PRINT_HE_CAP_MASK(mac_cap, __VA_ARGS__)
|
|
#define PRINT_HE_PHY_CAP(...) PRINT_HE_CAP(phy_cap, __VA_ARGS__)
|
|
#define PRINT_HE_PHY_CAP0(_idx, _bit, ...) PRINT_HE_CAP(phy_cap, _idx, _bit + 8, __VA_ARGS__)
|
|
#define PRINT_HE_PHY_CAP_MASK(...) PRINT_HE_CAP_MASK(phy_cap, __VA_ARGS__)
|
|
|
|
printf("%s\t\tHE MAC Capabilities (0x", pre);
|
|
for (i = 0; i < 3; i++)
|
|
printf("%04x", mac_cap[i]);
|
|
printf("):\n");
|
|
|
|
PRINT_HE_MAC_CAP(0, 0, "+HTC HE Supported");
|
|
PRINT_HE_MAC_CAP(0, 1, "TWT Requester");
|
|
PRINT_HE_MAC_CAP(0, 2, "TWT Responder");
|
|
PRINT_HE_MAC_CAP_MASK(0, 3, 0x3, "Dynamic BA Fragementation Level");
|
|
PRINT_HE_MAC_CAP_MASK(0, 5, 0x7, "Maximum number of MSDUS Fragments");
|
|
PRINT_HE_MAC_CAP_MASK(0, 8, 0x3, "Minimum Payload size of 128 bytes");
|
|
PRINT_HE_MAC_CAP_MASK(0, 10, 0x3, "Trigger Frame MAC Padding Duration");
|
|
PRINT_HE_MAC_CAP_MASK(0, 12, 0x7, "Multi-TID Aggregation Support");
|
|
|
|
PRINT_HE_MAC_CAP(1, 1, "All Ack");
|
|
PRINT_HE_MAC_CAP(1, 2, "TRS");
|
|
PRINT_HE_MAC_CAP(1, 3, "BSR");
|
|
PRINT_HE_MAC_CAP(1, 4, "Broadcast TWT");
|
|
PRINT_HE_MAC_CAP(1, 5, "32-bit BA Bitmap");
|
|
PRINT_HE_MAC_CAP(1, 6, "MU Cascading");
|
|
PRINT_HE_MAC_CAP(1, 7, "Ack-Enabled Aggregation");
|
|
PRINT_HE_MAC_CAP(1, 9, "OM Control");
|
|
PRINT_HE_MAC_CAP(1, 10, "OFDMA RA");
|
|
PRINT_HE_MAC_CAP_MASK(1, 11, 0x3, "Maximum A-MPDU Length Exponent");
|
|
PRINT_HE_MAC_CAP(1, 13, "A-MSDU Fragmentation");
|
|
PRINT_HE_MAC_CAP(1, 14, "Flexible TWT Scheduling");
|
|
PRINT_HE_MAC_CAP(1, 15, "RX Control Frame to MultiBSS");
|
|
|
|
PRINT_HE_MAC_CAP(2, 0, "BSRP BQRP A-MPDU Aggregation");
|
|
PRINT_HE_MAC_CAP(2, 1, "QTP");
|
|
PRINT_HE_MAC_CAP(2, 2, "BQR");
|
|
PRINT_HE_MAC_CAP(2, 3, "SRP Responder Role");
|
|
PRINT_HE_MAC_CAP(2, 4, "NDP Feedback Report");
|
|
PRINT_HE_MAC_CAP(2, 5, "OPS");
|
|
PRINT_HE_MAC_CAP(2, 6, "A-MSDU in A-MPDU");
|
|
PRINT_HE_MAC_CAP_MASK(2, 7, 7, "Multi-TID Aggregation TX");
|
|
PRINT_HE_MAC_CAP(2, 10, "HE Subchannel Selective Transmission");
|
|
PRINT_HE_MAC_CAP(2, 11, "UL 2x996-Tone RU");
|
|
PRINT_HE_MAC_CAP(2, 12, "OM Control UL MU Data Disable RX");
|
|
|
|
printf("%s\t\tHE PHY Capabilities: (0x", pre);
|
|
for (i = 0; i < 11; i++)
|
|
printf("%02x", ((__u8 *)phy_cap)[i + 1]);
|
|
printf("):\n");
|
|
|
|
PRINT_HE_PHY_CAP0(0, 1, "HE40/2.4GHz");
|
|
PRINT_HE_PHY_CAP0(0, 2, "HE40/HE80/5GHz");
|
|
PRINT_HE_PHY_CAP0(0, 3, "HE160/5GHz");
|
|
PRINT_HE_PHY_CAP0(0, 4, "HE160/HE80+80/5GHz");
|
|
PRINT_HE_PHY_CAP0(0, 5, "242 tone RUs/2.4GHz");
|
|
PRINT_HE_PHY_CAP0(0, 6, "242 tone RUs/5GHz");
|
|
|
|
PRINT_HE_PHY_CAP_MASK(1, 0, 0xf, "Punctured Preamble RX");
|
|
PRINT_HE_PHY_CAP_MASK(1, 4, 0x1, "Device Class");
|
|
PRINT_HE_PHY_CAP(1, 5, "LDPC Coding in Payload");
|
|
PRINT_HE_PHY_CAP(1, 6, "HE SU PPDU with 1x HE-LTF and 0.8us GI");
|
|
PRINT_HE_PHY_CAP_MASK(1, 7, 0x3, "Midamble Rx Max NSTS");
|
|
PRINT_HE_PHY_CAP(1, 9, "NDP with 4x HE-LTF and 3.2us GI");
|
|
PRINT_HE_PHY_CAP(1, 10, "STBC Tx <= 80MHz");
|
|
PRINT_HE_PHY_CAP(1, 11, "STBC Rx <= 80MHz");
|
|
PRINT_HE_PHY_CAP(1, 12, "Doppler Tx");
|
|
PRINT_HE_PHY_CAP(1, 13, "Doppler Rx");
|
|
PRINT_HE_PHY_CAP(1, 14, "Full Bandwidth UL MU-MIMO");
|
|
PRINT_HE_PHY_CAP(1, 15, "Partial Bandwidth UL MU-MIMO");
|
|
|
|
PRINT_HE_PHY_CAP_MASK(2, 0, 0x3, "DCM Max Constellation");
|
|
PRINT_HE_PHY_CAP_MASK(2, 2, 0x1, "DCM Max NSS Tx");
|
|
PRINT_HE_PHY_CAP_MASK(2, 3, 0x3, "DCM Max Constellation Rx");
|
|
PRINT_HE_PHY_CAP_MASK(2, 5, 0x1, "DCM Max NSS Rx");
|
|
PRINT_HE_PHY_CAP(2, 6, "Rx HE MU PPDU from Non-AP STA");
|
|
PRINT_HE_PHY_CAP(2, 7, "SU Beamformer");
|
|
PRINT_HE_PHY_CAP(2, 8, "SU Beamformee");
|
|
PRINT_HE_PHY_CAP(2, 9, "MU Beamformer");
|
|
PRINT_HE_PHY_CAP_MASK(2, 10, 0x7, "Beamformee STS <= 80Mhz");
|
|
PRINT_HE_PHY_CAP_MASK(2, 13, 0x7, "Beamformee STS > 80Mhz");
|
|
|
|
PRINT_HE_PHY_CAP_MASK(3, 0, 0x7, "Sounding Dimensions <= 80Mhz");
|
|
PRINT_HE_PHY_CAP_MASK(3, 3, 0x7, "Sounding Dimensions > 80Mhz");
|
|
PRINT_HE_PHY_CAP(3, 6, "Ng = 16 SU Feedback");
|
|
PRINT_HE_PHY_CAP(3, 7, "Ng = 16 MU Feedback");
|
|
PRINT_HE_PHY_CAP(3, 8, "Codebook Size SU Feedback");
|
|
PRINT_HE_PHY_CAP(3, 9, "Codebook Size MU Feedback");
|
|
PRINT_HE_PHY_CAP(3, 10, "Triggered SU Beamforming Feedback");
|
|
PRINT_HE_PHY_CAP(3, 11, "Triggered MU Beamforming Feedback");
|
|
PRINT_HE_PHY_CAP(3, 12, "Triggered CQI Feedback");
|
|
PRINT_HE_PHY_CAP(3, 13, "Partial Bandwidth Extended Range");
|
|
PRINT_HE_PHY_CAP(3, 14, "Partial Bandwidth DL MU-MIMO");
|
|
PRINT_HE_PHY_CAP(3, 15, "PPE Threshold Present");
|
|
|
|
PRINT_HE_PHY_CAP(4, 0, "SRP-based SR");
|
|
PRINT_HE_PHY_CAP(4, 1, "Power Boost Factor ar");
|
|
PRINT_HE_PHY_CAP(4, 2, "HE SU PPDU & HE PPDU 4x HE-LTF 0.8us GI");
|
|
PRINT_HE_PHY_CAP_MASK(4, 3, 0x7, "Max NC");
|
|
PRINT_HE_PHY_CAP(4, 6, "STBC Tx > 80MHz");
|
|
PRINT_HE_PHY_CAP(4, 7, "STBC Rx > 80MHz");
|
|
PRINT_HE_PHY_CAP(4, 8, "HE ER SU PPDU 4x HE-LTF 0.8us GI");
|
|
PRINT_HE_PHY_CAP(4, 9, "20MHz in 40MHz HE PPDU 2.4GHz");
|
|
PRINT_HE_PHY_CAP(4, 10, "20MHz in 160/80+80MHz HE PPDU");
|
|
PRINT_HE_PHY_CAP(4, 11, "80MHz in 160/80+80MHz HE PPDU");
|
|
PRINT_HE_PHY_CAP(4, 12, "HE ER SU PPDU 1x HE-LTF 0.8us GI");
|
|
PRINT_HE_PHY_CAP(4, 13, "Midamble Rx 2x & 1x HE-LTF");
|
|
PRINT_HE_PHY_CAP_MASK(4, 14, 0x3, "DCM Max BW");
|
|
|
|
PRINT_HE_PHY_CAP(5, 0, "Longer Than 16HE SIG-B OFDM Symbols");
|
|
PRINT_HE_PHY_CAP(5, 1, "Non-Triggered CQI Feedback");
|
|
PRINT_HE_PHY_CAP(5, 2, "TX 1024-QAM");
|
|
PRINT_HE_PHY_CAP(5, 3, "RX 1024-QAM");
|
|
PRINT_HE_PHY_CAP(5, 4, "RX Full BW SU Using HE MU PPDU with Compression SIGB");
|
|
PRINT_HE_PHY_CAP(5, 5, "RX Full BW SU Using HE MU PPDU with Non-Compression SIGB");
|
|
|
|
mcs_used = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
__u8 phy_cap_support[] = { BIT(1) | BIT(2), BIT(3), BIT(4) };
|
|
char *bw[] = { "<= 80", "160", "80+80" };
|
|
int j;
|
|
|
|
if ((phy_cap[0] & (phy_cap_support[i] << 8)) == 0)
|
|
continue;
|
|
|
|
/* Supports more, but overflow? Abort. */
|
|
if ((i * 2 + 2) * sizeof(mcs_set[0]) >= mcs_len)
|
|
return;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
int k;
|
|
printf("%s\t\tHE %s MCS and NSS set %s MHz\n", pre, j ? "TX" : "RX", bw[i]);
|
|
for (k = 0; k < 8; k++) {
|
|
__u16 mcs = mcs_set[(i * 2) + j];
|
|
mcs >>= k * 2;
|
|
mcs &= 0x3;
|
|
printf("%s\t\t\t%d streams: ", pre, k + 1);
|
|
if (mcs == 3)
|
|
printf("not supported\n");
|
|
else
|
|
printf("MCS 0-%d\n", 7 + (mcs * 2));
|
|
}
|
|
|
|
}
|
|
mcs_used += 2 * sizeof(mcs_set[0]);
|
|
}
|
|
|
|
/* Caller didn't provide ppet; infer it, if there's trailing space. */
|
|
if (!ppet) {
|
|
ppet = (const void *)((const __u8 *)mcs_set + mcs_used);
|
|
if (mcs_used < mcs_len)
|
|
ppet_len = mcs_len - mcs_used;
|
|
else
|
|
ppet_len = 0;
|
|
}
|
|
|
|
if (ppet_len && (phy_cap[3] & BIT(15))) {
|
|
printf("%s\t\tPPE Threshold ", pre);
|
|
for (i = 0; i < ppet_len; i++)
|
|
if (ppet[i])
|
|
printf("0x%02x ", ppet[i]);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
void print_iftype_list(const char *name, const char *pfx, struct nlattr *attr)
|
|
{
|
|
struct nlattr *ift;
|
|
int rem;
|
|
|
|
printf("%s:\n", name);
|
|
nla_for_each_nested(ift, attr, rem)
|
|
printf("%s * %s\n", pfx, iftype_name(nla_type(ift)));
|
|
}
|
|
|
|
void print_iftype_line(struct nlattr *attr)
|
|
{
|
|
struct nlattr *ift;
|
|
bool first = true;
|
|
int rem;
|
|
|
|
nla_for_each_nested(ift, attr, rem) {
|
|
if (first)
|
|
first = false;
|
|
else
|
|
printf(", ");
|
|
printf("%s", iftype_name(nla_type(ift)));
|
|
}
|
|
}
|
|
|
|
void print_he_info(struct nlattr *nl_iftype)
|
|
{
|
|
struct nlattr *tb[NL80211_BAND_IFTYPE_ATTR_MAX + 1];
|
|
__u16 mac_cap[3] = { 0 };
|
|
__u16 phy_cap[6] = { 0 };
|
|
__u16 mcs_set[6] = { 0 };
|
|
__u8 ppet[25] = { 0 };
|
|
size_t len;
|
|
int mcs_len = 0, ppet_len = 0;
|
|
|
|
nla_parse(tb, NL80211_BAND_IFTYPE_ATTR_MAX,
|
|
nla_data(nl_iftype), nla_len(nl_iftype), NULL);
|
|
|
|
if (!tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES])
|
|
return;
|
|
|
|
printf("\t\tHE Iftypes: ");
|
|
print_iftype_line(tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES]);
|
|
printf("\n");
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]);
|
|
if (len > sizeof(mac_cap))
|
|
len = sizeof(mac_cap);
|
|
memcpy(mac_cap,
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]),
|
|
len);
|
|
}
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]);
|
|
|
|
if (len > sizeof(phy_cap) - 1)
|
|
len = sizeof(phy_cap) - 1;
|
|
memcpy(&((__u8 *)phy_cap)[1],
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]),
|
|
len);
|
|
}
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]);
|
|
if (len > sizeof(mcs_set))
|
|
len = sizeof(mcs_set);
|
|
memcpy(mcs_set,
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]),
|
|
len);
|
|
mcs_len = len;
|
|
}
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]);
|
|
if (len > sizeof(ppet))
|
|
len = sizeof(ppet);
|
|
memcpy(ppet,
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]),
|
|
len);
|
|
ppet_len = len;
|
|
}
|
|
|
|
__print_he_capa(mac_cap, phy_cap, mcs_set, mcs_len, ppet, ppet_len,
|
|
true);
|
|
}
|
|
|
|
static void __print_eht_capa(int band,
|
|
const __u8 *mac_cap,
|
|
const __u32 *phy_cap,
|
|
const __u8 *mcs_set, size_t mcs_len,
|
|
const __u8 *ppet, size_t ppet_len,
|
|
const __u16 *he_phy_cap,
|
|
bool indent)
|
|
{
|
|
unsigned int i;
|
|
const char *pre = indent ? "\t" : "";
|
|
const char *mcs[] = { "0-7", "8-9", "10-11", "12-13"};
|
|
|
|
#define PRINT_EHT_CAP(_var, _idx, _bit, _str) \
|
|
do { \
|
|
if (_var[_idx] & BIT(_bit)) \
|
|
printf("%s\t\t\t" _str "\n", pre); \
|
|
} while (0)
|
|
|
|
#define PRINT_EHT_CAP_MASK(_var, _idx, _shift, _mask, _str) \
|
|
do { \
|
|
if ((_var[_idx] >> _shift) & _mask) \
|
|
printf("%s\t\t\t" _str ": %d\n", pre, (_var[_idx] >> _shift) & _mask); \
|
|
} while (0)
|
|
|
|
#define PRINT_EHT_MAC_CAP(...) PRINT_EHT_CAP(mac_cap, __VA_ARGS__)
|
|
#define PRINT_EHT_PHY_CAP(...) PRINT_EHT_CAP(phy_cap, __VA_ARGS__)
|
|
#define PRINT_EHT_PHY_CAP_MASK(...) PRINT_EHT_CAP_MASK(phy_cap, __VA_ARGS__)
|
|
|
|
printf("%s\t\tEHT MAC Capabilities (0x", pre);
|
|
for (i = 0; i < 2; i++)
|
|
printf("%02x", mac_cap[i]);
|
|
printf("):\n");
|
|
|
|
PRINT_EHT_MAC_CAP(0, 0, "NSEP priority access Supported");
|
|
PRINT_EHT_MAC_CAP(0, 1, "EHT OM Control Supported");
|
|
PRINT_EHT_MAC_CAP(0, 2, "Triggered TXOP Sharing Supported");
|
|
PRINT_EHT_MAC_CAP(0, 3, "ARR Supported");
|
|
|
|
printf("%s\t\tEHT PHY Capabilities: (0x", pre);
|
|
for (i = 0; i < 8; i++)
|
|
printf("%02x", ((__u8 *)phy_cap)[i]);
|
|
printf("):\n");
|
|
|
|
PRINT_EHT_PHY_CAP(0, 1, "320MHz in 6GHz Supported");
|
|
PRINT_EHT_PHY_CAP(0, 2, "242-tone RU in BW wider than 20MHz Supported");
|
|
PRINT_EHT_PHY_CAP(0, 3, "NDP With EHT-LTF And 3.2 µs GI");
|
|
PRINT_EHT_PHY_CAP(0, 4, "Partial Bandwidth UL MU-MIMO");
|
|
PRINT_EHT_PHY_CAP(0, 5, "SU Beamformer");
|
|
PRINT_EHT_PHY_CAP(0, 6, "SU Beamformee");
|
|
PRINT_EHT_PHY_CAP_MASK(0, 7, 0x7, "Beamformee SS (80MHz)");
|
|
PRINT_EHT_PHY_CAP_MASK(0, 10, 0x7, "Beamformee SS (160MHz)");
|
|
PRINT_EHT_PHY_CAP_MASK(0, 13, 0x7, "Beamformee SS (320MHz)");
|
|
|
|
PRINT_EHT_PHY_CAP_MASK(0, 16, 0x7, "Number Of Sounding Dimensions (80MHz)");
|
|
PRINT_EHT_PHY_CAP_MASK(0, 19, 0x7, "Number Of Sounding Dimensions (160MHz)");
|
|
PRINT_EHT_PHY_CAP_MASK(0, 22, 0x7, "Number Of Sounding Dimensions (320MHz)");
|
|
PRINT_EHT_PHY_CAP(0, 25, "Ng = 16 SU Feedback");
|
|
PRINT_EHT_PHY_CAP(0, 26, "Ng = 16 MU Feedback");
|
|
PRINT_EHT_PHY_CAP(0, 27, "Codebook size (4, 2) SU Feedback");
|
|
PRINT_EHT_PHY_CAP(0, 28, "Codebook size (7, 5) MU Feedback");
|
|
PRINT_EHT_PHY_CAP(0, 29, "Triggered SU Beamforming Feedback");
|
|
PRINT_EHT_PHY_CAP(0, 30, "Triggered MU Beamforming Partial BW Feedback");
|
|
PRINT_EHT_PHY_CAP(0, 31, "Triggered CQI Feedback");
|
|
|
|
PRINT_EHT_PHY_CAP(1, 0, "Partial Bandwidth DL MU-MIMO");
|
|
PRINT_EHT_PHY_CAP(1, 1, "PSR-Based SR Support");
|
|
PRINT_EHT_PHY_CAP(1, 2, "Power Boost Factor Support");
|
|
PRINT_EHT_PHY_CAP(1, 3, "EHT MU PPDU With 4 EHT-LTF And 0.8 µs GI");
|
|
PRINT_EHT_PHY_CAP_MASK(1, 4, 0xf, "Max Nc");
|
|
PRINT_EHT_PHY_CAP(1, 8, "Non-Triggered CQI Feedback");
|
|
|
|
PRINT_EHT_PHY_CAP(1, 9, "Tx 1024-QAM And 4096-QAM < 242-tone RU");
|
|
PRINT_EHT_PHY_CAP(1, 10, "Rx 1024-QAM And 4096-QAM < 242-tone RU");
|
|
PRINT_EHT_PHY_CAP(1, 11, "PPE Thresholds Present");
|
|
PRINT_EHT_PHY_CAP_MASK(1, 12, 0x3, "Common Nominal Packet Padding");
|
|
PRINT_EHT_PHY_CAP_MASK(1, 14, 0x1f, "Maximum Number Of Supported EHT-LTFs");
|
|
PRINT_EHT_PHY_CAP_MASK(1, 19, 0xf, "Support of MCS 15");
|
|
PRINT_EHT_PHY_CAP(1, 23, "Support Of EHT DUP In 6 GHz");
|
|
PRINT_EHT_PHY_CAP(1, 24, "Support For 20MHz Rx NDP With Wider Bandwidth");
|
|
PRINT_EHT_PHY_CAP(1, 25, "Non-OFDMA UL MU-MIMO (80MHz)");
|
|
PRINT_EHT_PHY_CAP(1, 26, "Non-OFDMA UL MU-MIMO (160MHz)");
|
|
PRINT_EHT_PHY_CAP(1, 27, "Non-OFDMA UL MU-MIMO (320MHz)");
|
|
PRINT_EHT_PHY_CAP(1, 28, "MU Beamformer (80MHz)");
|
|
PRINT_EHT_PHY_CAP(1, 29, "MU Beamformer (160MHz)");
|
|
PRINT_EHT_PHY_CAP(1, 30, "MU Beamformer (320MHz)");
|
|
|
|
printf("%s\t\tEHT MCS/NSS: (0x", pre);
|
|
for (i = 0; i < mcs_len; i++)
|
|
printf("%02x", ((__u8 *)mcs_set)[i]);
|
|
printf("):\n");
|
|
|
|
if (!(he_phy_cap[0] & ((BIT(2) | BIT(3) | BIT(4)) << 8))){
|
|
for (i = 0; i < 4; i++)
|
|
printf("%s\t\tEHT bw=20 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n",
|
|
pre, mcs[i],
|
|
mcs_set[i] & 0xf, mcs_set[i] >> 4);
|
|
}
|
|
|
|
mcs_set += 4;
|
|
if (he_phy_cap[0] & (BIT(2) << 8)) {
|
|
for (i = 0; i < 3; i++)
|
|
printf("%s\t\tEHT bw <= 80 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n",
|
|
pre, mcs[i + 1],
|
|
mcs_set[i] & 0xf, mcs_set[i] >> 4);
|
|
|
|
}
|
|
|
|
mcs_set += 3;
|
|
if (he_phy_cap[0] & (BIT(3) << 8)) {
|
|
for (i = 0; i < 3; i++)
|
|
printf("%s\t\tEHT bw=160 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n",
|
|
pre, mcs[i + 1],
|
|
mcs_set[i] & 0xf, mcs_set[i] >> 4);
|
|
|
|
}
|
|
|
|
mcs_set += 3;
|
|
if (band == NL80211_BAND_6GHZ && (phy_cap[0] & BIT(1))) {
|
|
for (i = 0; i < 3; i++)
|
|
printf("%s\t\tEHT bw=320 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n",
|
|
pre, mcs[i + 1],
|
|
mcs_set[i] & 0xf, mcs_set[i] >> 4);
|
|
|
|
}
|
|
|
|
if (ppet && ppet_len && (phy_cap[1] & BIT(11))) {
|
|
printf("%s\t\tEHT PPE Thresholds ", pre);
|
|
for (i = 0; i < ppet_len; i++)
|
|
if (ppet[i])
|
|
printf("0x%02x ", ppet[i]);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
void print_eht_info(struct nlattr *nl_iftype, int band)
|
|
{
|
|
struct nlattr *tb[NL80211_BAND_IFTYPE_ATTR_MAX + 1];
|
|
__u8 mac_cap[2] = { 0 };
|
|
__u32 phy_cap[2] = { 0 };
|
|
__u8 mcs_set[13] = { 0 };
|
|
__u8 ppet[31] = { 0 };
|
|
__u16 he_phy_cap[6] = { 0 };
|
|
size_t len, mcs_len = 0, ppet_len = 0;
|
|
|
|
nla_parse(tb, NL80211_BAND_IFTYPE_ATTR_MAX,
|
|
nla_data(nl_iftype), nla_len(nl_iftype), NULL);
|
|
|
|
if (!tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES])
|
|
return;
|
|
|
|
printf("\t\tEHT Iftypes: ");
|
|
print_iftype_line(tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES]);
|
|
printf("\n");
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MAC]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MAC]);
|
|
if (len > sizeof(mac_cap))
|
|
len = sizeof(mac_cap);
|
|
memcpy(mac_cap,
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MAC]),
|
|
len);
|
|
}
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PHY]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PHY]);
|
|
|
|
if (len > sizeof(phy_cap))
|
|
len = sizeof(phy_cap);
|
|
|
|
memcpy(phy_cap,
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PHY]),
|
|
len);
|
|
}
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MCS_SET]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MCS_SET]);
|
|
if (len > sizeof(mcs_set))
|
|
len = sizeof(mcs_set);
|
|
memcpy(mcs_set,
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MCS_SET]),
|
|
len);
|
|
|
|
// Assume that all parts of the MCS set are present
|
|
mcs_len = sizeof(mcs_set);
|
|
}
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PPE]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PPE]);
|
|
if (len > sizeof(ppet))
|
|
len = sizeof(ppet);
|
|
memcpy(ppet,
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PPE]),
|
|
len);
|
|
ppet_len = len;
|
|
}
|
|
|
|
if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]) {
|
|
len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]);
|
|
|
|
if (len > sizeof(he_phy_cap) - 1)
|
|
len = sizeof(he_phy_cap) - 1;
|
|
memcpy(&((__u8 *)he_phy_cap)[1],
|
|
nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]),
|
|
len);
|
|
}
|
|
|
|
__print_eht_capa(band, mac_cap, phy_cap, mcs_set, mcs_len, ppet, ppet_len,
|
|
he_phy_cap, true);
|
|
}
|
|
|
|
void print_he_capability(const uint8_t *ie, int len)
|
|
{
|
|
const void *mac_cap, *phy_cap, *mcs_set;
|
|
int mcs_len;
|
|
int i = 0;
|
|
|
|
mac_cap = &ie[i];
|
|
i += 6;
|
|
|
|
phy_cap = &ie[i];
|
|
i += 11;
|
|
|
|
mcs_set = &ie[i];
|
|
mcs_len = len - i;
|
|
|
|
__print_he_capa(mac_cap, (const void *)((const __u8 *)phy_cap - 1),
|
|
mcs_set, mcs_len, NULL, 0, false);
|
|
}
|
|
|
|
void iw_hexdump(const char *prefix, const __u8 *buf, size_t size)
|
|
{
|
|
size_t i;
|
|
|
|
printf("%s: ", prefix);
|
|
for (i = 0; i < size; i++) {
|
|
if (i && i % 16 == 0)
|
|
printf("\n%s: ", prefix);
|
|
printf("%02x ", buf[i]);
|
|
}
|
|
printf("\n\n");
|
|
}
|
|
|
|
int get_cf1(const struct chanmode *chanmode, unsigned long freq)
|
|
{
|
|
unsigned int cf1 = freq, j;
|
|
unsigned int bw80[] = { 5180, 5260, 5500, 5580, 5660, 5745,
|
|
5955, 6035, 6115, 6195, 6275, 6355,
|
|
6435, 6515, 6595, 6675, 6755, 6835,
|
|
6195, 6995 };
|
|
unsigned int bw160[] = { 5180, 5500, 5955, 6115, 6275, 6435,
|
|
6595, 6755, 6915 };
|
|
|
|
switch (chanmode->width) {
|
|
case NL80211_CHAN_WIDTH_80:
|
|
/* setup center_freq1 */
|
|
for (j = 0; j < ARRAY_SIZE(bw80); j++) {
|
|
if (freq >= bw80[j] && freq < bw80[j] + 80)
|
|
break;
|
|
}
|
|
|
|
if (j == ARRAY_SIZE(bw80))
|
|
break;
|
|
|
|
cf1 = bw80[j] + 30;
|
|
break;
|
|
case NL80211_CHAN_WIDTH_160:
|
|
/* setup center_freq1 */
|
|
for (j = 0; j < ARRAY_SIZE(bw160); j++) {
|
|
if (freq >= bw160[j] && freq < bw160[j] + 160)
|
|
break;
|
|
}
|
|
|
|
if (j == ARRAY_SIZE(bw160))
|
|
break;
|
|
|
|
cf1 = bw160[j] + 70;
|
|
break;
|
|
default:
|
|
cf1 = freq + chanmode->freq1_diff;
|
|
break;
|
|
}
|
|
|
|
return cf1;
|
|
}
|
|
|
|
int parse_random_mac_addr(struct nl_msg *msg, char *addrs)
|
|
{
|
|
char *a_addr, *a_mask, *sep;
|
|
unsigned char addr[ETH_ALEN], mask[ETH_ALEN];
|
|
|
|
if (!*addrs) {
|
|
/* randomise all but the multicast bit */
|
|
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN,
|
|
"\x00\x00\x00\x00\x00\x00");
|
|
NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN,
|
|
"\x01\x00\x00\x00\x00\x00");
|
|
return 0;
|
|
}
|
|
|
|
if (*addrs != '=')
|
|
return 1;
|
|
|
|
addrs++;
|
|
sep = strchr(addrs, '/');
|
|
a_addr = addrs;
|
|
|
|
if (!sep)
|
|
return 1;
|
|
|
|
*sep = 0;
|
|
a_mask = sep + 1;
|
|
if (mac_addr_a2n(addr, a_addr) || mac_addr_a2n(mask, a_mask))
|
|
return 1;
|
|
|
|
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, addr);
|
|
NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN, mask);
|
|
|
|
return 0;
|
|
nla_put_failure:
|
|
return -ENOBUFS;
|
|
}
|