297 lines
7.6 KiB
C
297 lines
7.6 KiB
C
/*-
|
|
* Copyright 2009 Colin Percival
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This file was originally written by Colin Percival as part of the Tarsnap
|
|
* online backup system.
|
|
*/
|
|
#include "scrypt_platform.h"
|
|
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifdef USE_OPENSSL_PBKDF2
|
|
#include <openssl/evp.h>
|
|
#else
|
|
#include "sha256.h"
|
|
#endif
|
|
#include "sysendian.h"
|
|
|
|
#include "crypto_scrypt.h"
|
|
|
|
static void blkcpy(uint8_t *, uint8_t *, size_t);
|
|
static void blkxor(uint8_t *, uint8_t *, size_t);
|
|
static void salsa20_8(uint8_t[64]);
|
|
static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
|
|
static uint64_t integerify(uint8_t *, size_t);
|
|
static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);
|
|
|
|
static void
|
|
blkcpy(uint8_t * dest, uint8_t * src, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
dest[i] = src[i];
|
|
}
|
|
|
|
static void
|
|
blkxor(uint8_t * dest, uint8_t * src, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
dest[i] ^= src[i];
|
|
}
|
|
|
|
/**
|
|
* salsa20_8(B):
|
|
* Apply the salsa20/8 core to the provided block.
|
|
*/
|
|
static void
|
|
salsa20_8(uint8_t B[64])
|
|
{
|
|
uint32_t B32[16];
|
|
uint32_t x[16];
|
|
size_t i;
|
|
|
|
/* Convert little-endian values in. */
|
|
for (i = 0; i < 16; i++)
|
|
B32[i] = le32dec(&B[i * 4]);
|
|
|
|
/* Compute x = doubleround^4(B32). */
|
|
for (i = 0; i < 16; i++)
|
|
x[i] = B32[i];
|
|
for (i = 0; i < 8; i += 2) {
|
|
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
|
|
/* Operate on columns. */
|
|
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
|
|
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
|
|
|
|
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
|
|
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
|
|
|
|
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
|
|
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
|
|
|
|
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
|
|
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
|
|
|
|
/* Operate on rows. */
|
|
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
|
|
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
|
|
|
|
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
|
|
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
|
|
|
|
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
|
|
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
|
|
|
|
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
|
|
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
|
|
#undef R
|
|
}
|
|
|
|
/* Compute B32 = B32 + x. */
|
|
for (i = 0; i < 16; i++)
|
|
B32[i] += x[i];
|
|
|
|
/* Convert little-endian values out. */
|
|
for (i = 0; i < 16; i++)
|
|
le32enc(&B[4 * i], B32[i]);
|
|
}
|
|
|
|
/**
|
|
* blockmix_salsa8(B, Y, r):
|
|
* Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in
|
|
* length; the temporary space Y must also be the same size.
|
|
*/
|
|
static void
|
|
blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
|
|
{
|
|
uint8_t X[64];
|
|
size_t i;
|
|
|
|
/* 1: X <-- B_{2r - 1} */
|
|
blkcpy(X, &B[(2 * r - 1) * 64], 64);
|
|
|
|
/* 2: for i = 0 to 2r - 1 do */
|
|
for (i = 0; i < 2 * r; i++) {
|
|
/* 3: X <-- H(X \xor B_i) */
|
|
blkxor(X, &B[i * 64], 64);
|
|
salsa20_8(X);
|
|
|
|
/* 4: Y_i <-- X */
|
|
blkcpy(&Y[i * 64], X, 64);
|
|
}
|
|
|
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
|
for (i = 0; i < r; i++)
|
|
blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
|
|
for (i = 0; i < r; i++)
|
|
blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
|
|
}
|
|
|
|
/**
|
|
* integerify(B, r):
|
|
* Return the result of parsing B_{2r-1} as a little-endian integer.
|
|
*/
|
|
static uint64_t
|
|
integerify(uint8_t * B, size_t r)
|
|
{
|
|
uint8_t * X = &B[(2 * r - 1) * 64];
|
|
|
|
return (le64dec(X));
|
|
}
|
|
|
|
/**
|
|
* smix(B, r, N, V, XY):
|
|
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the
|
|
* temporary storage V must be 128rN bytes in length; the temporary storage
|
|
* XY must be 256r bytes in length. The value N must be a power of 2.
|
|
*/
|
|
static void
|
|
smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
|
|
{
|
|
uint8_t * X = XY;
|
|
uint8_t * Y = &XY[128 * r];
|
|
uint64_t i;
|
|
uint64_t j;
|
|
|
|
/* 1: X <-- B */
|
|
blkcpy(X, B, 128 * r);
|
|
|
|
/* 2: for i = 0 to N - 1 do */
|
|
for (i = 0; i < N; i++) {
|
|
/* 3: V_i <-- X */
|
|
blkcpy(&V[i * (128 * r)], X, 128 * r);
|
|
|
|
/* 4: X <-- H(X) */
|
|
blockmix_salsa8(X, Y, r);
|
|
}
|
|
|
|
/* 6: for i = 0 to N - 1 do */
|
|
for (i = 0; i < N; i++) {
|
|
/* 7: j <-- Integerify(X) mod N */
|
|
j = integerify(X, r) & (N - 1);
|
|
|
|
/* 8: X <-- H(X \xor V_j) */
|
|
blkxor(X, &V[j * (128 * r)], 128 * r);
|
|
blockmix_salsa8(X, Y, r);
|
|
}
|
|
|
|
/* 10: B' <-- X */
|
|
blkcpy(B, X, 128 * r);
|
|
}
|
|
|
|
/**
|
|
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
|
|
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
|
* p, buflen) and write the result into buf. The parameters r, p, and buflen
|
|
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
|
* must be a power of 2.
|
|
*
|
|
* Return 0 on success; or -1 on error.
|
|
*/
|
|
int
|
|
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
|
|
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
|
|
uint8_t * buf, size_t buflen)
|
|
{
|
|
uint8_t * B;
|
|
uint8_t * V;
|
|
uint8_t * XY;
|
|
uint32_t i;
|
|
|
|
/* Sanity-check parameters. */
|
|
#if SIZE_MAX > UINT32_MAX
|
|
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
|
|
errno = EFBIG;
|
|
goto err0;
|
|
}
|
|
#endif
|
|
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
|
|
errno = EFBIG;
|
|
goto err0;
|
|
}
|
|
if (((N & (N - 1)) != 0) || (N == 0)) {
|
|
errno = EINVAL;
|
|
goto err0;
|
|
}
|
|
if ((r > SIZE_MAX / 128 / p) ||
|
|
#if SIZE_MAX / 256 <= UINT32_MAX
|
|
(r > SIZE_MAX / 256) ||
|
|
#endif
|
|
(N > SIZE_MAX / 128 / r)) {
|
|
errno = ENOMEM;
|
|
goto err0;
|
|
}
|
|
|
|
/* Allocate memory. */
|
|
if ((B = malloc(128 * r * p)) == NULL)
|
|
goto err0;
|
|
if ((XY = malloc(256 * r)) == NULL)
|
|
goto err1;
|
|
if ((V = malloc(128 * r * N)) == NULL)
|
|
goto err2;
|
|
|
|
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
|
|
#ifdef USE_OPENSSL_PBKDF2
|
|
PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B);
|
|
#else
|
|
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
|
|
#endif
|
|
|
|
/* 2: for i = 0 to p - 1 do */
|
|
for (i = 0; i < p; i++) {
|
|
/* 3: B_i <-- MF(B_i, N) */
|
|
smix(&B[i * 128 * r], r, N, V, XY);
|
|
}
|
|
|
|
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
|
|
#ifdef USE_OPENSSL_PBKDF2
|
|
PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf);
|
|
#else
|
|
PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
|
|
#endif
|
|
|
|
/* Free memory. */
|
|
free(V);
|
|
free(XY);
|
|
free(B);
|
|
|
|
/* Success! */
|
|
return (0);
|
|
|
|
err2:
|
|
free(XY);
|
|
err1:
|
|
free(B);
|
|
err0:
|
|
/* Failure! */
|
|
return (-1);
|
|
}
|