608 lines
21 KiB
C++
608 lines
21 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc/agc_manager_direct.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include "common_audio/include/audio_util.h"
|
|
#include "modules/audio_processing/agc/gain_control.h"
|
|
#include "modules/audio_processing/agc/gain_map_internal.h"
|
|
#include "modules/audio_processing/agc2/adaptive_mode_level_estimator_agc.h"
|
|
#include "rtc_base/atomic_ops.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_minmax.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
#include "system_wrappers/include/metrics.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
// Amount the microphone level is lowered with every clipping event.
|
|
const int kClippedLevelStep = 15;
|
|
// Proportion of clipped samples required to declare a clipping event.
|
|
const float kClippedRatioThreshold = 0.1f;
|
|
// Time in frames to wait after a clipping event before checking again.
|
|
const int kClippedWaitFrames = 300;
|
|
|
|
// Amount of error we tolerate in the microphone level (presumably due to OS
|
|
// quantization) before we assume the user has manually adjusted the microphone.
|
|
const int kLevelQuantizationSlack = 25;
|
|
|
|
const int kDefaultCompressionGain = 7;
|
|
const int kMaxCompressionGain = 12;
|
|
const int kMinCompressionGain = 2;
|
|
// Controls the rate of compression changes towards the target.
|
|
const float kCompressionGainStep = 0.05f;
|
|
|
|
const int kMaxMicLevel = 255;
|
|
static_assert(kGainMapSize > kMaxMicLevel, "gain map too small");
|
|
const int kMinMicLevel = 12;
|
|
|
|
// Prevent very large microphone level changes.
|
|
const int kMaxResidualGainChange = 15;
|
|
|
|
// Maximum additional gain allowed to compensate for microphone level
|
|
// restrictions from clipping events.
|
|
const int kSurplusCompressionGain = 6;
|
|
|
|
// Returns whether a fall-back solution to choose the maximum level should be
|
|
// chosen.
|
|
bool UseMaxAnalogChannelLevel() {
|
|
return field_trial::IsEnabled("WebRTC-UseMaxAnalogAgcChannelLevel");
|
|
}
|
|
|
|
// Returns kMinMicLevel if no field trial exists or if it has been disabled.
|
|
// Returns a value between 0 and 255 depending on the field-trial string.
|
|
// Example: 'WebRTC-Audio-AgcMinMicLevelExperiment/Enabled-80' => returns 80.
|
|
int GetMinMicLevel() {
|
|
RTC_LOG(LS_INFO) << "[agc] GetMinMicLevel";
|
|
constexpr char kMinMicLevelFieldTrial[] =
|
|
"WebRTC-Audio-AgcMinMicLevelExperiment";
|
|
if (!webrtc::field_trial::IsEnabled(kMinMicLevelFieldTrial)) {
|
|
RTC_LOG(LS_INFO) << "[agc] Using default min mic level: " << kMinMicLevel;
|
|
return kMinMicLevel;
|
|
}
|
|
const auto field_trial_string =
|
|
webrtc::field_trial::FindFullName(kMinMicLevelFieldTrial);
|
|
int min_mic_level = -1;
|
|
sscanf(field_trial_string.c_str(), "Enabled-%d", &min_mic_level);
|
|
if (min_mic_level >= 0 && min_mic_level <= 255) {
|
|
RTC_LOG(LS_INFO) << "[agc] Experimental min mic level: " << min_mic_level;
|
|
return min_mic_level;
|
|
} else {
|
|
RTC_LOG(LS_WARNING) << "[agc] Invalid parameter for "
|
|
<< kMinMicLevelFieldTrial << ", ignored.";
|
|
return kMinMicLevel;
|
|
}
|
|
}
|
|
|
|
int ClampLevel(int mic_level, int min_mic_level) {
|
|
return rtc::SafeClamp(mic_level, min_mic_level, kMaxMicLevel);
|
|
}
|
|
|
|
int LevelFromGainError(int gain_error, int level, int min_mic_level) {
|
|
RTC_DCHECK_GE(level, 0);
|
|
RTC_DCHECK_LE(level, kMaxMicLevel);
|
|
if (gain_error == 0) {
|
|
return level;
|
|
}
|
|
|
|
int new_level = level;
|
|
if (gain_error > 0) {
|
|
while (kGainMap[new_level] - kGainMap[level] < gain_error &&
|
|
new_level < kMaxMicLevel) {
|
|
++new_level;
|
|
}
|
|
} else {
|
|
while (kGainMap[new_level] - kGainMap[level] > gain_error &&
|
|
new_level > min_mic_level) {
|
|
--new_level;
|
|
}
|
|
}
|
|
return new_level;
|
|
}
|
|
|
|
// Returns the proportion of samples in the buffer which are at full-scale
|
|
// (and presumably clipped).
|
|
float ComputeClippedRatio(const float* const* audio,
|
|
size_t num_channels,
|
|
size_t samples_per_channel) {
|
|
RTC_DCHECK_GT(samples_per_channel, 0);
|
|
int num_clipped = 0;
|
|
for (size_t ch = 0; ch < num_channels; ++ch) {
|
|
int num_clipped_in_ch = 0;
|
|
for (size_t i = 0; i < samples_per_channel; ++i) {
|
|
RTC_DCHECK(audio[ch]);
|
|
if (audio[ch][i] >= 32767.f || audio[ch][i] <= -32768.f) {
|
|
++num_clipped_in_ch;
|
|
}
|
|
}
|
|
num_clipped = std::max(num_clipped, num_clipped_in_ch);
|
|
}
|
|
return static_cast<float>(num_clipped) / (samples_per_channel);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
MonoAgc::MonoAgc(ApmDataDumper* data_dumper,
|
|
int startup_min_level,
|
|
int clipped_level_min,
|
|
bool use_agc2_level_estimation,
|
|
bool disable_digital_adaptive,
|
|
int min_mic_level)
|
|
: min_mic_level_(min_mic_level),
|
|
disable_digital_adaptive_(disable_digital_adaptive),
|
|
max_level_(kMaxMicLevel),
|
|
max_compression_gain_(kMaxCompressionGain),
|
|
target_compression_(kDefaultCompressionGain),
|
|
compression_(target_compression_),
|
|
compression_accumulator_(compression_),
|
|
startup_min_level_(ClampLevel(startup_min_level, min_mic_level_)),
|
|
clipped_level_min_(clipped_level_min) {
|
|
if (use_agc2_level_estimation) {
|
|
agc_ = std::make_unique<AdaptiveModeLevelEstimatorAgc>(data_dumper);
|
|
} else {
|
|
agc_ = std::make_unique<Agc>();
|
|
}
|
|
}
|
|
|
|
MonoAgc::~MonoAgc() = default;
|
|
|
|
void MonoAgc::Initialize() {
|
|
max_level_ = kMaxMicLevel;
|
|
max_compression_gain_ = kMaxCompressionGain;
|
|
target_compression_ = disable_digital_adaptive_ ? 0 : kDefaultCompressionGain;
|
|
compression_ = disable_digital_adaptive_ ? 0 : target_compression_;
|
|
compression_accumulator_ = compression_;
|
|
capture_muted_ = false;
|
|
check_volume_on_next_process_ = true;
|
|
}
|
|
|
|
void MonoAgc::Process(const int16_t* audio,
|
|
size_t samples_per_channel,
|
|
int sample_rate_hz) {
|
|
new_compression_to_set_ = absl::nullopt;
|
|
|
|
if (check_volume_on_next_process_) {
|
|
check_volume_on_next_process_ = false;
|
|
// We have to wait until the first process call to check the volume,
|
|
// because Chromium doesn't guarantee it to be valid any earlier.
|
|
CheckVolumeAndReset();
|
|
}
|
|
|
|
agc_->Process(audio, samples_per_channel, sample_rate_hz);
|
|
|
|
UpdateGain();
|
|
if (!disable_digital_adaptive_) {
|
|
UpdateCompressor();
|
|
}
|
|
}
|
|
|
|
void MonoAgc::HandleClipping() {
|
|
// Always decrease the maximum level, even if the current level is below
|
|
// threshold.
|
|
SetMaxLevel(std::max(clipped_level_min_, max_level_ - kClippedLevelStep));
|
|
if (log_to_histograms_) {
|
|
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.AgcClippingAdjustmentAllowed",
|
|
level_ - kClippedLevelStep >= clipped_level_min_);
|
|
}
|
|
if (level_ > clipped_level_min_) {
|
|
// Don't try to adjust the level if we're already below the limit. As
|
|
// a consequence, if the user has brought the level above the limit, we
|
|
// will still not react until the postproc updates the level.
|
|
SetLevel(std::max(clipped_level_min_, level_ - kClippedLevelStep));
|
|
// Reset the AGCs for all channels since the level has changed.
|
|
agc_->Reset();
|
|
}
|
|
}
|
|
|
|
void MonoAgc::SetLevel(int new_level) {
|
|
int voe_level = stream_analog_level_;
|
|
if (voe_level == 0) {
|
|
RTC_DLOG(LS_INFO)
|
|
<< "[agc] VolumeCallbacks returned level=0, taking no action.";
|
|
return;
|
|
}
|
|
if (voe_level < 0 || voe_level > kMaxMicLevel) {
|
|
RTC_LOG(LS_ERROR) << "VolumeCallbacks returned an invalid level="
|
|
<< voe_level;
|
|
return;
|
|
}
|
|
|
|
if (voe_level > level_ + kLevelQuantizationSlack ||
|
|
voe_level < level_ - kLevelQuantizationSlack) {
|
|
RTC_DLOG(LS_INFO) << "[agc] Mic volume was manually adjusted. Updating "
|
|
"stored level from "
|
|
<< level_ << " to " << voe_level;
|
|
level_ = voe_level;
|
|
// Always allow the user to increase the volume.
|
|
if (level_ > max_level_) {
|
|
SetMaxLevel(level_);
|
|
}
|
|
// Take no action in this case, since we can't be sure when the volume
|
|
// was manually adjusted. The compressor will still provide some of the
|
|
// desired gain change.
|
|
agc_->Reset();
|
|
|
|
return;
|
|
}
|
|
|
|
new_level = std::min(new_level, max_level_);
|
|
if (new_level == level_) {
|
|
return;
|
|
}
|
|
|
|
stream_analog_level_ = new_level;
|
|
RTC_DLOG(LS_INFO) << "[agc] voe_level=" << voe_level << ", level_=" << level_
|
|
<< ", new_level=" << new_level;
|
|
level_ = new_level;
|
|
}
|
|
|
|
void MonoAgc::SetMaxLevel(int level) {
|
|
RTC_DCHECK_GE(level, clipped_level_min_);
|
|
max_level_ = level;
|
|
// Scale the |kSurplusCompressionGain| linearly across the restricted
|
|
// level range.
|
|
max_compression_gain_ =
|
|
kMaxCompressionGain + std::floor((1.f * kMaxMicLevel - max_level_) /
|
|
(kMaxMicLevel - clipped_level_min_) *
|
|
kSurplusCompressionGain +
|
|
0.5f);
|
|
RTC_DLOG(LS_INFO) << "[agc] max_level_=" << max_level_
|
|
<< ", max_compression_gain_=" << max_compression_gain_;
|
|
}
|
|
|
|
void MonoAgc::SetCaptureMuted(bool muted) {
|
|
if (capture_muted_ == muted) {
|
|
return;
|
|
}
|
|
capture_muted_ = muted;
|
|
|
|
if (!muted) {
|
|
// When we unmute, we should reset things to be safe.
|
|
check_volume_on_next_process_ = true;
|
|
}
|
|
}
|
|
|
|
int MonoAgc::CheckVolumeAndReset() {
|
|
int level = stream_analog_level_;
|
|
// Reasons for taking action at startup:
|
|
// 1) A person starting a call is expected to be heard.
|
|
// 2) Independent of interpretation of |level| == 0 we should raise it so the
|
|
// AGC can do its job properly.
|
|
if (level == 0 && !startup_) {
|
|
RTC_DLOG(LS_INFO)
|
|
<< "[agc] VolumeCallbacks returned level=0, taking no action.";
|
|
return 0;
|
|
}
|
|
if (level < 0 || level > kMaxMicLevel) {
|
|
RTC_LOG(LS_ERROR) << "[agc] VolumeCallbacks returned an invalid level="
|
|
<< level;
|
|
return -1;
|
|
}
|
|
RTC_DLOG(LS_INFO) << "[agc] Initial GetMicVolume()=" << level;
|
|
|
|
int minLevel = startup_ ? startup_min_level_ : min_mic_level_;
|
|
if (level < minLevel) {
|
|
level = minLevel;
|
|
RTC_DLOG(LS_INFO) << "[agc] Initial volume too low, raising to " << level;
|
|
stream_analog_level_ = level;
|
|
}
|
|
agc_->Reset();
|
|
level_ = level;
|
|
startup_ = false;
|
|
return 0;
|
|
}
|
|
|
|
// Requests the RMS error from AGC and distributes the required gain change
|
|
// between the digital compression stage and volume slider. We use the
|
|
// compressor first, providing a slack region around the current slider
|
|
// position to reduce movement.
|
|
//
|
|
// If the slider needs to be moved, we check first if the user has adjusted
|
|
// it, in which case we take no action and cache the updated level.
|
|
void MonoAgc::UpdateGain() {
|
|
int rms_error = 0;
|
|
if (!agc_->GetRmsErrorDb(&rms_error)) {
|
|
// No error update ready.
|
|
return;
|
|
}
|
|
// The compressor will always add at least kMinCompressionGain. In effect,
|
|
// this adjusts our target gain upward by the same amount and rms_error
|
|
// needs to reflect that.
|
|
rms_error += kMinCompressionGain;
|
|
|
|
// Handle as much error as possible with the compressor first.
|
|
int raw_compression =
|
|
rtc::SafeClamp(rms_error, kMinCompressionGain, max_compression_gain_);
|
|
|
|
// Deemphasize the compression gain error. Move halfway between the current
|
|
// target and the newly received target. This serves to soften perceptible
|
|
// intra-talkspurt adjustments, at the cost of some adaptation speed.
|
|
if ((raw_compression == max_compression_gain_ &&
|
|
target_compression_ == max_compression_gain_ - 1) ||
|
|
(raw_compression == kMinCompressionGain &&
|
|
target_compression_ == kMinCompressionGain + 1)) {
|
|
// Special case to allow the target to reach the endpoints of the
|
|
// compression range. The deemphasis would otherwise halt it at 1 dB shy.
|
|
target_compression_ = raw_compression;
|
|
} else {
|
|
target_compression_ =
|
|
(raw_compression - target_compression_) / 2 + target_compression_;
|
|
}
|
|
|
|
// Residual error will be handled by adjusting the volume slider. Use the
|
|
// raw rather than deemphasized compression here as we would otherwise
|
|
// shrink the amount of slack the compressor provides.
|
|
const int residual_gain =
|
|
rtc::SafeClamp(rms_error - raw_compression, -kMaxResidualGainChange,
|
|
kMaxResidualGainChange);
|
|
RTC_DLOG(LS_INFO) << "[agc] rms_error=" << rms_error
|
|
<< ", target_compression=" << target_compression_
|
|
<< ", residual_gain=" << residual_gain;
|
|
if (residual_gain == 0)
|
|
return;
|
|
|
|
int old_level = level_;
|
|
SetLevel(LevelFromGainError(residual_gain, level_, min_mic_level_));
|
|
if (old_level != level_) {
|
|
// level_ was updated by SetLevel; log the new value.
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.AgcSetLevel", level_, 1,
|
|
kMaxMicLevel, 50);
|
|
// Reset the AGC since the level has changed.
|
|
agc_->Reset();
|
|
}
|
|
}
|
|
|
|
void MonoAgc::UpdateCompressor() {
|
|
calls_since_last_gain_log_++;
|
|
if (calls_since_last_gain_log_ == 100) {
|
|
calls_since_last_gain_log_ = 0;
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainApplied",
|
|
compression_, 0, kMaxCompressionGain,
|
|
kMaxCompressionGain + 1);
|
|
}
|
|
if (compression_ == target_compression_) {
|
|
return;
|
|
}
|
|
|
|
// Adapt the compression gain slowly towards the target, in order to avoid
|
|
// highly perceptible changes.
|
|
if (target_compression_ > compression_) {
|
|
compression_accumulator_ += kCompressionGainStep;
|
|
} else {
|
|
compression_accumulator_ -= kCompressionGainStep;
|
|
}
|
|
|
|
// The compressor accepts integer gains in dB. Adjust the gain when
|
|
// we've come within half a stepsize of the nearest integer. (We don't
|
|
// check for equality due to potential floating point imprecision).
|
|
int new_compression = compression_;
|
|
int nearest_neighbor = std::floor(compression_accumulator_ + 0.5);
|
|
if (std::fabs(compression_accumulator_ - nearest_neighbor) <
|
|
kCompressionGainStep / 2) {
|
|
new_compression = nearest_neighbor;
|
|
}
|
|
|
|
// Set the new compression gain.
|
|
if (new_compression != compression_) {
|
|
RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainUpdated",
|
|
new_compression, 0, kMaxCompressionGain,
|
|
kMaxCompressionGain + 1);
|
|
compression_ = new_compression;
|
|
compression_accumulator_ = new_compression;
|
|
new_compression_to_set_ = compression_;
|
|
}
|
|
}
|
|
|
|
int AgcManagerDirect::instance_counter_ = 0;
|
|
|
|
AgcManagerDirect::AgcManagerDirect(Agc* agc,
|
|
int startup_min_level,
|
|
int clipped_level_min,
|
|
int sample_rate_hz)
|
|
: AgcManagerDirect(/*num_capture_channels*/ 1,
|
|
startup_min_level,
|
|
clipped_level_min,
|
|
/*use_agc2_level_estimation*/ false,
|
|
/*disable_digital_adaptive*/ false,
|
|
sample_rate_hz) {
|
|
RTC_DCHECK(channel_agcs_[0]);
|
|
RTC_DCHECK(agc);
|
|
channel_agcs_[0]->set_agc(agc);
|
|
}
|
|
|
|
AgcManagerDirect::AgcManagerDirect(int num_capture_channels,
|
|
int startup_min_level,
|
|
int clipped_level_min,
|
|
bool use_agc2_level_estimation,
|
|
bool disable_digital_adaptive,
|
|
int sample_rate_hz)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_counter_))),
|
|
use_min_channel_level_(!UseMaxAnalogChannelLevel()),
|
|
sample_rate_hz_(sample_rate_hz),
|
|
num_capture_channels_(num_capture_channels),
|
|
disable_digital_adaptive_(disable_digital_adaptive),
|
|
frames_since_clipped_(kClippedWaitFrames),
|
|
capture_muted_(false),
|
|
channel_agcs_(num_capture_channels),
|
|
new_compressions_to_set_(num_capture_channels) {
|
|
const int min_mic_level = GetMinMicLevel();
|
|
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
|
|
ApmDataDumper* data_dumper_ch = ch == 0 ? data_dumper_.get() : nullptr;
|
|
|
|
channel_agcs_[ch] = std::make_unique<MonoAgc>(
|
|
data_dumper_ch, startup_min_level, clipped_level_min,
|
|
use_agc2_level_estimation, disable_digital_adaptive_, min_mic_level);
|
|
}
|
|
RTC_DCHECK_LT(0, channel_agcs_.size());
|
|
channel_agcs_[0]->ActivateLogging();
|
|
}
|
|
|
|
AgcManagerDirect::~AgcManagerDirect() {}
|
|
|
|
void AgcManagerDirect::Initialize() {
|
|
RTC_DLOG(LS_INFO) << "AgcManagerDirect::Initialize";
|
|
data_dumper_->InitiateNewSetOfRecordings();
|
|
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
|
|
channel_agcs_[ch]->Initialize();
|
|
}
|
|
capture_muted_ = false;
|
|
|
|
AggregateChannelLevels();
|
|
}
|
|
|
|
void AgcManagerDirect::SetupDigitalGainControl(
|
|
GainControl* gain_control) const {
|
|
RTC_DCHECK(gain_control);
|
|
if (gain_control->set_mode(GainControl::kFixedDigital) != 0) {
|
|
RTC_LOG(LS_ERROR) << "set_mode(GainControl::kFixedDigital) failed.";
|
|
}
|
|
const int target_level_dbfs = disable_digital_adaptive_ ? 0 : 2;
|
|
if (gain_control->set_target_level_dbfs(target_level_dbfs) != 0) {
|
|
RTC_LOG(LS_ERROR) << "set_target_level_dbfs() failed.";
|
|
}
|
|
const int compression_gain_db =
|
|
disable_digital_adaptive_ ? 0 : kDefaultCompressionGain;
|
|
if (gain_control->set_compression_gain_db(compression_gain_db) != 0) {
|
|
RTC_LOG(LS_ERROR) << "set_compression_gain_db() failed.";
|
|
}
|
|
const bool enable_limiter = !disable_digital_adaptive_;
|
|
if (gain_control->enable_limiter(enable_limiter) != 0) {
|
|
RTC_LOG(LS_ERROR) << "enable_limiter() failed.";
|
|
}
|
|
}
|
|
|
|
void AgcManagerDirect::AnalyzePreProcess(const AudioBuffer* audio) {
|
|
RTC_DCHECK(audio);
|
|
AnalyzePreProcess(audio->channels_const(), audio->num_frames());
|
|
}
|
|
|
|
void AgcManagerDirect::AnalyzePreProcess(const float* const* audio,
|
|
size_t samples_per_channel) {
|
|
RTC_DCHECK(audio);
|
|
AggregateChannelLevels();
|
|
if (capture_muted_) {
|
|
return;
|
|
}
|
|
|
|
if (frames_since_clipped_ < kClippedWaitFrames) {
|
|
++frames_since_clipped_;
|
|
return;
|
|
}
|
|
|
|
// Check for clipped samples, as the AGC has difficulty detecting pitch
|
|
// under clipping distortion. We do this in the preprocessing phase in order
|
|
// to catch clipped echo as well.
|
|
//
|
|
// If we find a sufficiently clipped frame, drop the current microphone level
|
|
// and enforce a new maximum level, dropped the same amount from the current
|
|
// maximum. This harsh treatment is an effort to avoid repeated clipped echo
|
|
// events. As compensation for this restriction, the maximum compression
|
|
// gain is increased, through SetMaxLevel().
|
|
float clipped_ratio =
|
|
ComputeClippedRatio(audio, num_capture_channels_, samples_per_channel);
|
|
|
|
if (clipped_ratio > kClippedRatioThreshold) {
|
|
RTC_DLOG(LS_INFO) << "[agc] Clipping detected. clipped_ratio="
|
|
<< clipped_ratio;
|
|
for (auto& state_ch : channel_agcs_) {
|
|
state_ch->HandleClipping();
|
|
}
|
|
frames_since_clipped_ = 0;
|
|
}
|
|
AggregateChannelLevels();
|
|
}
|
|
|
|
void AgcManagerDirect::Process(const AudioBuffer* audio) {
|
|
AggregateChannelLevels();
|
|
|
|
if (capture_muted_) {
|
|
return;
|
|
}
|
|
|
|
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
|
|
int16_t* audio_use = nullptr;
|
|
std::array<int16_t, AudioBuffer::kMaxSampleRate / 100> audio_data;
|
|
int num_frames_per_band;
|
|
if (audio) {
|
|
FloatS16ToS16(audio->split_bands_const_f(ch)[0],
|
|
audio->num_frames_per_band(), audio_data.data());
|
|
audio_use = audio_data.data();
|
|
num_frames_per_band = audio->num_frames_per_band();
|
|
} else {
|
|
// Only used for testing.
|
|
// TODO(peah): Change unittests to only allow on non-null audio input.
|
|
num_frames_per_band = 320;
|
|
}
|
|
channel_agcs_[ch]->Process(audio_use, num_frames_per_band, sample_rate_hz_);
|
|
new_compressions_to_set_[ch] = channel_agcs_[ch]->new_compression();
|
|
}
|
|
|
|
AggregateChannelLevels();
|
|
}
|
|
|
|
absl::optional<int> AgcManagerDirect::GetDigitalComressionGain() {
|
|
return new_compressions_to_set_[channel_controlling_gain_];
|
|
}
|
|
|
|
void AgcManagerDirect::SetCaptureMuted(bool muted) {
|
|
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
|
|
channel_agcs_[ch]->SetCaptureMuted(muted);
|
|
}
|
|
capture_muted_ = muted;
|
|
}
|
|
|
|
float AgcManagerDirect::voice_probability() const {
|
|
float max_prob = 0.f;
|
|
for (const auto& state_ch : channel_agcs_) {
|
|
max_prob = std::max(max_prob, state_ch->voice_probability());
|
|
}
|
|
|
|
return max_prob;
|
|
}
|
|
|
|
void AgcManagerDirect::set_stream_analog_level(int level) {
|
|
for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
|
|
channel_agcs_[ch]->set_stream_analog_level(level);
|
|
}
|
|
|
|
AggregateChannelLevels();
|
|
}
|
|
|
|
void AgcManagerDirect::AggregateChannelLevels() {
|
|
stream_analog_level_ = channel_agcs_[0]->stream_analog_level();
|
|
channel_controlling_gain_ = 0;
|
|
if (use_min_channel_level_) {
|
|
for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) {
|
|
int level = channel_agcs_[ch]->stream_analog_level();
|
|
if (level < stream_analog_level_) {
|
|
stream_analog_level_ = level;
|
|
channel_controlling_gain_ = static_cast<int>(ch);
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) {
|
|
int level = channel_agcs_[ch]->stream_analog_level();
|
|
if (level > stream_analog_level_) {
|
|
stream_analog_level_ = level;
|
|
channel_controlling_gain_ = static_cast<int>(ch);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|