1779 lines
74 KiB
C++
1779 lines
74 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_tools/rtc_event_log_visualizer/analyzer.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "absl/strings/string_view.h"
|
|
#include "api/function_view.h"
|
|
#include "api/transport/field_trial_based_config.h"
|
|
#include "api/transport/goog_cc_factory.h"
|
|
#include "call/audio_receive_stream.h"
|
|
#include "call/audio_send_stream.h"
|
|
#include "call/call.h"
|
|
#include "call/video_receive_stream.h"
|
|
#include "call/video_send_stream.h"
|
|
#include "logging/rtc_event_log/rtc_event_processor.h"
|
|
#include "logging/rtc_event_log/rtc_stream_config.h"
|
|
#include "modules/audio_coding/audio_network_adaptor/include/audio_network_adaptor.h"
|
|
#include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h"
|
|
#include "modules/congestion_controller/goog_cc/bitrate_estimator.h"
|
|
#include "modules/congestion_controller/goog_cc/delay_based_bwe.h"
|
|
#include "modules/congestion_controller/include/receive_side_congestion_controller.h"
|
|
#include "modules/congestion_controller/rtp/transport_feedback_adapter.h"
|
|
#include "modules/pacing/paced_sender.h"
|
|
#include "modules/pacing/packet_router.h"
|
|
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
|
|
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/common_header.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/remb.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h"
|
|
#include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
|
|
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
|
|
#include "modules/rtp_rtcp/source/rtp_rtcp_interface.h"
|
|
#include "modules/rtp_rtcp/source/rtp_utility.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/format_macros.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/sequence_number_util.h"
|
|
#include "rtc_base/rate_statistics.h"
|
|
#include "rtc_base/strings/string_builder.h"
|
|
#include "rtc_tools/rtc_event_log_visualizer/log_simulation.h"
|
|
#include "test/explicit_key_value_config.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
std::string SsrcToString(uint32_t ssrc) {
|
|
rtc::StringBuilder ss;
|
|
ss << "SSRC " << ssrc;
|
|
return ss.Release();
|
|
}
|
|
|
|
// Checks whether an SSRC is contained in the list of desired SSRCs.
|
|
// Note that an empty SSRC list matches every SSRC.
|
|
bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) {
|
|
if (desired_ssrc.empty())
|
|
return true;
|
|
return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) !=
|
|
desired_ssrc.end();
|
|
}
|
|
|
|
double AbsSendTimeToMicroseconds(int64_t abs_send_time) {
|
|
// The timestamp is a fixed point representation with 6 bits for seconds
|
|
// and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the
|
|
// time in seconds and then multiply by kNumMicrosecsPerSec to convert to
|
|
// microseconds.
|
|
static constexpr double kTimestampToMicroSec =
|
|
static_cast<double>(kNumMicrosecsPerSec) / static_cast<double>(1ul << 18);
|
|
return abs_send_time * kTimestampToMicroSec;
|
|
}
|
|
|
|
// Computes the difference |later| - |earlier| where |later| and |earlier|
|
|
// are counters that wrap at |modulus|. The difference is chosen to have the
|
|
// least absolute value. For example if |modulus| is 8, then the difference will
|
|
// be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will
|
|
// be in [-4, 4].
|
|
int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) {
|
|
RTC_DCHECK_LE(1, modulus);
|
|
RTC_DCHECK_LT(later, modulus);
|
|
RTC_DCHECK_LT(earlier, modulus);
|
|
int64_t difference =
|
|
static_cast<int64_t>(later) - static_cast<int64_t>(earlier);
|
|
int64_t max_difference = modulus / 2;
|
|
int64_t min_difference = max_difference - modulus + 1;
|
|
if (difference > max_difference) {
|
|
difference -= modulus;
|
|
}
|
|
if (difference < min_difference) {
|
|
difference += modulus;
|
|
}
|
|
if (difference > max_difference / 2 || difference < min_difference / 2) {
|
|
RTC_LOG(LS_WARNING) << "Difference between" << later << " and " << earlier
|
|
<< " expected to be in the range ("
|
|
<< min_difference / 2 << "," << max_difference / 2
|
|
<< ") but is " << difference
|
|
<< ". Correct unwrapping is uncertain.";
|
|
}
|
|
return difference;
|
|
}
|
|
|
|
// This is much more reliable for outgoing streams than for incoming streams.
|
|
template <typename RtpPacketContainer>
|
|
absl::optional<uint32_t> EstimateRtpClockFrequency(
|
|
const RtpPacketContainer& packets,
|
|
int64_t end_time_us) {
|
|
RTC_CHECK(packets.size() >= 2);
|
|
SeqNumUnwrapper<uint32_t> unwrapper;
|
|
int64_t first_rtp_timestamp =
|
|
unwrapper.Unwrap(packets[0].rtp.header.timestamp);
|
|
int64_t first_log_timestamp = packets[0].log_time_us();
|
|
int64_t last_rtp_timestamp = first_rtp_timestamp;
|
|
int64_t last_log_timestamp = first_log_timestamp;
|
|
for (size_t i = 1; i < packets.size(); i++) {
|
|
if (packets[i].log_time_us() > end_time_us)
|
|
break;
|
|
last_rtp_timestamp = unwrapper.Unwrap(packets[i].rtp.header.timestamp);
|
|
last_log_timestamp = packets[i].log_time_us();
|
|
}
|
|
if (last_log_timestamp - first_log_timestamp < kNumMicrosecsPerSec) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Failed to estimate RTP clock frequency: Stream too short. ("
|
|
<< packets.size() << " packets, "
|
|
<< last_log_timestamp - first_log_timestamp << " us)";
|
|
return absl::nullopt;
|
|
}
|
|
double duration =
|
|
static_cast<double>(last_log_timestamp - first_log_timestamp) /
|
|
kNumMicrosecsPerSec;
|
|
double estimated_frequency =
|
|
(last_rtp_timestamp - first_rtp_timestamp) / duration;
|
|
for (uint32_t f : {8000, 16000, 32000, 48000, 90000}) {
|
|
if (std::fabs(estimated_frequency - f) < 0.15 * f) {
|
|
return f;
|
|
}
|
|
}
|
|
RTC_LOG(LS_WARNING) << "Failed to estimate RTP clock frequency: Estimate "
|
|
<< estimated_frequency
|
|
<< " not close to any stardard RTP frequency.";
|
|
return absl::nullopt;
|
|
}
|
|
|
|
absl::optional<double> NetworkDelayDiff_AbsSendTime(
|
|
const LoggedRtpPacketIncoming& old_packet,
|
|
const LoggedRtpPacketIncoming& new_packet) {
|
|
if (old_packet.rtp.header.extension.hasAbsoluteSendTime &&
|
|
new_packet.rtp.header.extension.hasAbsoluteSendTime) {
|
|
int64_t send_time_diff = WrappingDifference(
|
|
new_packet.rtp.header.extension.absoluteSendTime,
|
|
old_packet.rtp.header.extension.absoluteSendTime, 1ul << 24);
|
|
int64_t recv_time_diff =
|
|
new_packet.log_time_us() - old_packet.log_time_us();
|
|
double delay_change_us =
|
|
recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff);
|
|
return delay_change_us / 1000;
|
|
} else {
|
|
return absl::nullopt;
|
|
}
|
|
}
|
|
|
|
absl::optional<double> NetworkDelayDiff_CaptureTime(
|
|
const LoggedRtpPacketIncoming& old_packet,
|
|
const LoggedRtpPacketIncoming& new_packet,
|
|
const double sample_rate) {
|
|
int64_t send_time_diff =
|
|
WrappingDifference(new_packet.rtp.header.timestamp,
|
|
old_packet.rtp.header.timestamp, 1ull << 32);
|
|
int64_t recv_time_diff = new_packet.log_time_us() - old_packet.log_time_us();
|
|
|
|
double delay_change =
|
|
static_cast<double>(recv_time_diff) / 1000 -
|
|
static_cast<double>(send_time_diff) / sample_rate * 1000;
|
|
if (delay_change < -10000 || 10000 < delay_change) {
|
|
RTC_LOG(LS_WARNING) << "Very large delay change. Timestamps correct?";
|
|
RTC_LOG(LS_WARNING) << "Old capture time "
|
|
<< old_packet.rtp.header.timestamp << ", received time "
|
|
<< old_packet.log_time_us();
|
|
RTC_LOG(LS_WARNING) << "New capture time "
|
|
<< new_packet.rtp.header.timestamp << ", received time "
|
|
<< new_packet.log_time_us();
|
|
RTC_LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = "
|
|
<< static_cast<double>(recv_time_diff) /
|
|
kNumMicrosecsPerSec
|
|
<< "s";
|
|
RTC_LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = "
|
|
<< static_cast<double>(send_time_diff) / sample_rate
|
|
<< "s";
|
|
}
|
|
return delay_change;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
TimeSeries CreateRtcpTypeTimeSeries(const std::vector<T>& rtcp_list,
|
|
AnalyzerConfig config,
|
|
std::string rtcp_name,
|
|
int category_id) {
|
|
TimeSeries time_series(rtcp_name, LineStyle::kNone, PointStyle::kHighlight);
|
|
for (const auto& rtcp : rtcp_list) {
|
|
float x = config.GetCallTimeSec(rtcp.log_time_us());
|
|
float y = category_id;
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
return time_series;
|
|
}
|
|
|
|
const char kUnknownEnumValue[] = "unknown";
|
|
|
|
const char kIceCandidateTypeLocal[] = "local";
|
|
const char kIceCandidateTypeStun[] = "stun";
|
|
const char kIceCandidateTypePrflx[] = "prflx";
|
|
const char kIceCandidateTypeRelay[] = "relay";
|
|
|
|
const char kProtocolUdp[] = "udp";
|
|
const char kProtocolTcp[] = "tcp";
|
|
const char kProtocolSsltcp[] = "ssltcp";
|
|
const char kProtocolTls[] = "tls";
|
|
|
|
const char kAddressFamilyIpv4[] = "ipv4";
|
|
const char kAddressFamilyIpv6[] = "ipv6";
|
|
|
|
const char kNetworkTypeEthernet[] = "ethernet";
|
|
const char kNetworkTypeLoopback[] = "loopback";
|
|
const char kNetworkTypeWifi[] = "wifi";
|
|
const char kNetworkTypeVpn[] = "vpn";
|
|
const char kNetworkTypeCellular[] = "cellular";
|
|
|
|
std::string GetIceCandidateTypeAsString(webrtc::IceCandidateType type) {
|
|
switch (type) {
|
|
case webrtc::IceCandidateType::kLocal:
|
|
return kIceCandidateTypeLocal;
|
|
case webrtc::IceCandidateType::kStun:
|
|
return kIceCandidateTypeStun;
|
|
case webrtc::IceCandidateType::kPrflx:
|
|
return kIceCandidateTypePrflx;
|
|
case webrtc::IceCandidateType::kRelay:
|
|
return kIceCandidateTypeRelay;
|
|
default:
|
|
return kUnknownEnumValue;
|
|
}
|
|
}
|
|
|
|
std::string GetProtocolAsString(webrtc::IceCandidatePairProtocol protocol) {
|
|
switch (protocol) {
|
|
case webrtc::IceCandidatePairProtocol::kUdp:
|
|
return kProtocolUdp;
|
|
case webrtc::IceCandidatePairProtocol::kTcp:
|
|
return kProtocolTcp;
|
|
case webrtc::IceCandidatePairProtocol::kSsltcp:
|
|
return kProtocolSsltcp;
|
|
case webrtc::IceCandidatePairProtocol::kTls:
|
|
return kProtocolTls;
|
|
default:
|
|
return kUnknownEnumValue;
|
|
}
|
|
}
|
|
|
|
std::string GetAddressFamilyAsString(
|
|
webrtc::IceCandidatePairAddressFamily family) {
|
|
switch (family) {
|
|
case webrtc::IceCandidatePairAddressFamily::kIpv4:
|
|
return kAddressFamilyIpv4;
|
|
case webrtc::IceCandidatePairAddressFamily::kIpv6:
|
|
return kAddressFamilyIpv6;
|
|
default:
|
|
return kUnknownEnumValue;
|
|
}
|
|
}
|
|
|
|
std::string GetNetworkTypeAsString(webrtc::IceCandidateNetworkType type) {
|
|
switch (type) {
|
|
case webrtc::IceCandidateNetworkType::kEthernet:
|
|
return kNetworkTypeEthernet;
|
|
case webrtc::IceCandidateNetworkType::kLoopback:
|
|
return kNetworkTypeLoopback;
|
|
case webrtc::IceCandidateNetworkType::kWifi:
|
|
return kNetworkTypeWifi;
|
|
case webrtc::IceCandidateNetworkType::kVpn:
|
|
return kNetworkTypeVpn;
|
|
case webrtc::IceCandidateNetworkType::kCellular:
|
|
return kNetworkTypeCellular;
|
|
default:
|
|
return kUnknownEnumValue;
|
|
}
|
|
}
|
|
|
|
std::string GetCandidatePairLogDescriptionAsString(
|
|
const LoggedIceCandidatePairConfig& config) {
|
|
// Example: stun:wifi->relay(tcp):cellular@udp:ipv4
|
|
// represents a pair of a local server-reflexive candidate on a WiFi network
|
|
// and a remote relay candidate using TCP as the relay protocol on a cell
|
|
// network, when the candidate pair communicates over UDP using IPv4.
|
|
rtc::StringBuilder ss;
|
|
std::string local_candidate_type =
|
|
GetIceCandidateTypeAsString(config.local_candidate_type);
|
|
std::string remote_candidate_type =
|
|
GetIceCandidateTypeAsString(config.remote_candidate_type);
|
|
if (config.local_candidate_type == webrtc::IceCandidateType::kRelay) {
|
|
local_candidate_type +=
|
|
"(" + GetProtocolAsString(config.local_relay_protocol) + ")";
|
|
}
|
|
ss << local_candidate_type << ":"
|
|
<< GetNetworkTypeAsString(config.local_network_type) << ":"
|
|
<< GetAddressFamilyAsString(config.local_address_family) << "->"
|
|
<< remote_candidate_type << ":"
|
|
<< GetAddressFamilyAsString(config.remote_address_family) << "@"
|
|
<< GetProtocolAsString(config.candidate_pair_protocol);
|
|
return ss.Release();
|
|
}
|
|
|
|
std::string GetDirectionAsString(PacketDirection direction) {
|
|
if (direction == kIncomingPacket) {
|
|
return "Incoming";
|
|
} else {
|
|
return "Outgoing";
|
|
}
|
|
}
|
|
|
|
std::string GetDirectionAsShortString(PacketDirection direction) {
|
|
if (direction == kIncomingPacket) {
|
|
return "In";
|
|
} else {
|
|
return "Out";
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log,
|
|
bool normalize_time)
|
|
: parsed_log_(log) {
|
|
config_.window_duration_ = 250000;
|
|
config_.step_ = 10000;
|
|
config_.normalize_time_ = normalize_time;
|
|
config_.begin_time_ = parsed_log_.first_timestamp();
|
|
config_.end_time_ = parsed_log_.last_timestamp();
|
|
if (config_.end_time_ < config_.begin_time_) {
|
|
RTC_LOG(LS_WARNING) << "No useful events in the log.";
|
|
config_.begin_time_ = config_.end_time_ = 0;
|
|
}
|
|
|
|
RTC_LOG(LS_INFO) << "Log is "
|
|
<< (parsed_log_.last_timestamp() -
|
|
parsed_log_.first_timestamp()) /
|
|
1000000
|
|
<< " seconds long.";
|
|
}
|
|
|
|
EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log,
|
|
const AnalyzerConfig& config)
|
|
: parsed_log_(log), config_(config) {
|
|
RTC_LOG(LS_INFO) << "Log is "
|
|
<< (parsed_log_.last_timestamp() -
|
|
parsed_log_.first_timestamp()) /
|
|
1000000
|
|
<< " seconds long.";
|
|
}
|
|
|
|
class BitrateObserver : public RemoteBitrateObserver {
|
|
public:
|
|
BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {}
|
|
|
|
void Update(NetworkControlUpdate update) {
|
|
if (update.target_rate) {
|
|
last_bitrate_bps_ = update.target_rate->target_rate.bps();
|
|
bitrate_updated_ = true;
|
|
}
|
|
}
|
|
|
|
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
|
|
uint32_t bitrate) override {}
|
|
|
|
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
|
|
bool GetAndResetBitrateUpdated() {
|
|
bool bitrate_updated = bitrate_updated_;
|
|
bitrate_updated_ = false;
|
|
return bitrate_updated;
|
|
}
|
|
|
|
private:
|
|
uint32_t last_bitrate_bps_;
|
|
bool bitrate_updated_;
|
|
};
|
|
|
|
void EventLogAnalyzer::CreatePacketGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
|
|
// Filter on SSRC.
|
|
if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc),
|
|
LineStyle::kBar);
|
|
auto GetPacketSize = [](const LoggedRtpPacket& packet) {
|
|
return absl::optional<float>(packet.total_length);
|
|
};
|
|
auto ToCallTime = [this](const LoggedRtpPacket& packet) {
|
|
return this->config_.GetCallTimeSec(packet.log_time_us());
|
|
};
|
|
ProcessPoints<LoggedRtpPacket>(ToCallTime, GetPacketSize,
|
|
stream.packet_view, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle(GetDirectionAsString(direction) + " RTP packets");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateRtcpTypeGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
|
|
parsed_log_.transport_feedbacks(direction), config_, "TWCC", 1));
|
|
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
|
|
parsed_log_.receiver_reports(direction), config_, "RR", 2));
|
|
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
|
|
parsed_log_.sender_reports(direction), config_, "SR", 3));
|
|
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(
|
|
parsed_log_.extended_reports(direction), config_, "XR", 4));
|
|
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.nacks(direction),
|
|
config_, "NACK", 5));
|
|
plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.rembs(direction),
|
|
config_, "REMB", 6));
|
|
plot->AppendTimeSeries(
|
|
CreateRtcpTypeTimeSeries(parsed_log_.firs(direction), config_, "FIR", 7));
|
|
plot->AppendTimeSeries(
|
|
CreateRtcpTypeTimeSeries(parsed_log_.plis(direction), config_, "PLI", 8));
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "RTCP type", kBottomMargin, kTopMargin);
|
|
plot->SetTitle(GetDirectionAsString(direction) + " RTCP packets");
|
|
plot->SetYAxisTickLabels({{1, "TWCC"},
|
|
{2, "RR"},
|
|
{3, "SR"},
|
|
{4, "XR"},
|
|
{5, "NACK"},
|
|
{6, "REMB"},
|
|
{7, "FIR"},
|
|
{8, "PLI"}});
|
|
}
|
|
|
|
template <typename IterableType>
|
|
void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries(
|
|
Plot* plot,
|
|
const IterableType& packets,
|
|
const std::string& label) {
|
|
TimeSeries time_series(label, LineStyle::kStep);
|
|
for (size_t i = 0; i < packets.size(); i++) {
|
|
float x = config_.GetCallTimeSec(packets[i].log_time_us());
|
|
time_series.points.emplace_back(x, i + 1);
|
|
}
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAccumulatedPacketsGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
|
|
if (!MatchingSsrc(stream.ssrc, desired_ssrc_))
|
|
continue;
|
|
std::string label = std::string("RTP ") +
|
|
GetStreamName(parsed_log_, direction, stream.ssrc);
|
|
CreateAccumulatedPacketsTimeSeries(plot, stream.packet_view, label);
|
|
}
|
|
std::string label =
|
|
std::string("RTCP ") + "(" + GetDirectionAsShortString(direction) + ")";
|
|
if (direction == kIncomingPacket) {
|
|
CreateAccumulatedPacketsTimeSeries(
|
|
plot, parsed_log_.incoming_rtcp_packets(), label);
|
|
} else {
|
|
CreateAccumulatedPacketsTimeSeries(
|
|
plot, parsed_log_.outgoing_rtcp_packets(), label);
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin);
|
|
plot->SetTitle(std::string("Accumulated ") + GetDirectionAsString(direction) +
|
|
" RTP/RTCP packets");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreatePacketRateGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
auto CountPackets = [](auto packet) { return 1.0; };
|
|
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
|
|
// Filter on SSRC.
|
|
if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
TimeSeries time_series(
|
|
std::string("RTP ") +
|
|
GetStreamName(parsed_log_, direction, stream.ssrc),
|
|
LineStyle::kLine);
|
|
MovingAverage<LoggedRtpPacket, double>(CountPackets, stream.packet_view,
|
|
config_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
TimeSeries time_series(
|
|
std::string("RTCP ") + "(" + GetDirectionAsShortString(direction) + ")",
|
|
LineStyle::kLine);
|
|
if (direction == kIncomingPacket) {
|
|
MovingAverage<LoggedRtcpPacketIncoming, double>(
|
|
CountPackets, parsed_log_.incoming_rtcp_packets(), config_,
|
|
&time_series);
|
|
} else {
|
|
MovingAverage<LoggedRtcpPacketOutgoing, double>(
|
|
CountPackets, parsed_log_.outgoing_rtcp_packets(), config_,
|
|
&time_series);
|
|
}
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Packet Rate (packets/s)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Rate of " + GetDirectionAsString(direction) +
|
|
" RTP/RTCP packets");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateTotalPacketRateGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
// Contains a log timestamp to enable counting logged events of different
|
|
// types using MovingAverage().
|
|
class LogTime {
|
|
public:
|
|
explicit LogTime(int64_t log_time_us) : log_time_us_(log_time_us) {}
|
|
|
|
int64_t log_time_us() const { return log_time_us_; }
|
|
|
|
private:
|
|
int64_t log_time_us_;
|
|
};
|
|
|
|
std::vector<LogTime> packet_times;
|
|
auto handle_rtp = [&](const LoggedRtpPacket& packet) {
|
|
packet_times.emplace_back(packet.log_time_us());
|
|
};
|
|
RtcEventProcessor process;
|
|
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
|
|
process.AddEvents(stream.packet_view, handle_rtp);
|
|
}
|
|
if (direction == kIncomingPacket) {
|
|
auto handle_incoming_rtcp = [&](const LoggedRtcpPacketIncoming& packet) {
|
|
packet_times.emplace_back(packet.log_time_us());
|
|
};
|
|
process.AddEvents(parsed_log_.incoming_rtcp_packets(),
|
|
handle_incoming_rtcp);
|
|
} else {
|
|
auto handle_outgoing_rtcp = [&](const LoggedRtcpPacketOutgoing& packet) {
|
|
packet_times.emplace_back(packet.log_time_us());
|
|
};
|
|
process.AddEvents(parsed_log_.outgoing_rtcp_packets(),
|
|
handle_outgoing_rtcp);
|
|
}
|
|
process.ProcessEventsInOrder();
|
|
TimeSeries time_series(std::string("Total ") + "(" +
|
|
GetDirectionAsShortString(direction) + ") packets",
|
|
LineStyle::kLine);
|
|
MovingAverage<LogTime, uint64_t>([](auto packet) { return 1; }, packet_times,
|
|
config_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Packet Rate (packets/s)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Rate of all " + GetDirectionAsString(direction) +
|
|
" RTP/RTCP packets");
|
|
}
|
|
|
|
// For each SSRC, plot the time between the consecutive playouts.
|
|
void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) {
|
|
for (const auto& playout_stream : parsed_log_.audio_playout_events()) {
|
|
uint32_t ssrc = playout_stream.first;
|
|
if (!MatchingSsrc(ssrc, desired_ssrc_))
|
|
continue;
|
|
absl::optional<int64_t> last_playout_ms;
|
|
TimeSeries time_series(SsrcToString(ssrc), LineStyle::kBar);
|
|
for (const auto& playout_event : playout_stream.second) {
|
|
float x = config_.GetCallTimeSec(playout_event.log_time_us());
|
|
int64_t playout_time_ms = playout_event.log_time_ms();
|
|
// If there were no previous playouts, place the point on the x-axis.
|
|
float y = playout_time_ms - last_playout_ms.value_or(playout_time_ms);
|
|
time_series.points.push_back(TimeSeriesPoint(x, y));
|
|
last_playout_ms.emplace(playout_time_ms);
|
|
}
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Audio playout");
|
|
}
|
|
|
|
// For audio SSRCs, plot the audio level.
|
|
void EventLogAnalyzer::CreateAudioLevelGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
|
|
if (!IsAudioSsrc(parsed_log_, direction, stream.ssrc))
|
|
continue;
|
|
TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc),
|
|
LineStyle::kLine);
|
|
for (auto& packet : stream.packet_view) {
|
|
if (packet.header.extension.hasAudioLevel) {
|
|
float x = config_.GetCallTimeSec(packet.log_time_us());
|
|
// The audio level is stored in -dBov (so e.g. -10 dBov is stored as 10)
|
|
// Here we convert it to dBov.
|
|
float y = static_cast<float>(-packet.header.extension.audioLevel);
|
|
time_series.points.emplace_back(TimeSeriesPoint(x, y));
|
|
}
|
|
}
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetYAxis(-127, 0, "Audio level (dBov)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle(GetDirectionAsString(direction) + " audio level");
|
|
}
|
|
|
|
// For each SSRC, plot the sequence number difference between consecutive
|
|
// incoming packets.
|
|
void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
|
|
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
|
|
// Filter on SSRC.
|
|
if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(
|
|
GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc),
|
|
LineStyle::kBar);
|
|
auto GetSequenceNumberDiff = [](const LoggedRtpPacketIncoming& old_packet,
|
|
const LoggedRtpPacketIncoming& new_packet) {
|
|
int64_t diff =
|
|
WrappingDifference(new_packet.rtp.header.sequenceNumber,
|
|
old_packet.rtp.header.sequenceNumber, 1ul << 16);
|
|
return diff;
|
|
};
|
|
auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) {
|
|
return this->config_.GetCallTimeSec(packet.log_time_us());
|
|
};
|
|
ProcessPairs<LoggedRtpPacketIncoming, float>(
|
|
ToCallTime, GetSequenceNumberDiff, stream.incoming_packets,
|
|
&time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Incoming sequence number delta");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) {
|
|
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
|
|
const std::vector<LoggedRtpPacketIncoming>& packets =
|
|
stream.incoming_packets;
|
|
// Filter on SSRC.
|
|
if (!MatchingSsrc(stream.ssrc, desired_ssrc_) || packets.empty()) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(
|
|
GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc),
|
|
LineStyle::kLine, PointStyle::kHighlight);
|
|
// TODO(terelius): Should the window and step size be read from the class
|
|
// instead?
|
|
const int64_t kWindowUs = 1000000;
|
|
const int64_t kStep = 1000000;
|
|
SeqNumUnwrapper<uint16_t> unwrapper_;
|
|
SeqNumUnwrapper<uint16_t> prior_unwrapper_;
|
|
size_t window_index_begin = 0;
|
|
size_t window_index_end = 0;
|
|
uint64_t highest_seq_number =
|
|
unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1;
|
|
uint64_t highest_prior_seq_number =
|
|
prior_unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1;
|
|
|
|
for (int64_t t = config_.begin_time_; t < config_.end_time_ + kStep;
|
|
t += kStep) {
|
|
while (window_index_end < packets.size() &&
|
|
packets[window_index_end].rtp.log_time_us() < t) {
|
|
uint64_t sequence_number = unwrapper_.Unwrap(
|
|
packets[window_index_end].rtp.header.sequenceNumber);
|
|
highest_seq_number = std::max(highest_seq_number, sequence_number);
|
|
++window_index_end;
|
|
}
|
|
while (window_index_begin < packets.size() &&
|
|
packets[window_index_begin].rtp.log_time_us() < t - kWindowUs) {
|
|
uint64_t sequence_number = prior_unwrapper_.Unwrap(
|
|
packets[window_index_begin].rtp.header.sequenceNumber);
|
|
highest_prior_seq_number =
|
|
std::max(highest_prior_seq_number, sequence_number);
|
|
++window_index_begin;
|
|
}
|
|
float x = config_.GetCallTimeSec(t);
|
|
uint64_t expected_packets = highest_seq_number - highest_prior_seq_number;
|
|
if (expected_packets > 0) {
|
|
int64_t received_packets = window_index_end - window_index_begin;
|
|
int64_t lost_packets = expected_packets - received_packets;
|
|
float y = static_cast<float>(lost_packets) / expected_packets * 100;
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Loss rate (in %)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Incoming packet loss (derived from incoming packets)");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateIncomingDelayGraph(Plot* plot) {
|
|
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
|
|
// Filter on SSRC.
|
|
if (!MatchingSsrc(stream.ssrc, desired_ssrc_) ||
|
|
IsRtxSsrc(parsed_log_, kIncomingPacket, stream.ssrc)) {
|
|
continue;
|
|
}
|
|
|
|
const std::vector<LoggedRtpPacketIncoming>& packets =
|
|
stream.incoming_packets;
|
|
if (packets.size() < 100) {
|
|
RTC_LOG(LS_WARNING) << "Can't estimate the RTP clock frequency with "
|
|
<< packets.size() << " packets in the stream.";
|
|
continue;
|
|
}
|
|
int64_t segment_end_us = parsed_log_.first_log_segment().stop_time_us();
|
|
absl::optional<uint32_t> estimated_frequency =
|
|
EstimateRtpClockFrequency(packets, segment_end_us);
|
|
if (!estimated_frequency)
|
|
continue;
|
|
const double frequency_hz = *estimated_frequency;
|
|
if (IsVideoSsrc(parsed_log_, kIncomingPacket, stream.ssrc) &&
|
|
frequency_hz != 90000) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Video stream should use a 90 kHz clock but appears to use "
|
|
<< frequency_hz / 1000 << ". Discarding.";
|
|
continue;
|
|
}
|
|
|
|
auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) {
|
|
return this->config_.GetCallTimeSec(packet.log_time_us());
|
|
};
|
|
auto ToNetworkDelay = [frequency_hz](
|
|
const LoggedRtpPacketIncoming& old_packet,
|
|
const LoggedRtpPacketIncoming& new_packet) {
|
|
return NetworkDelayDiff_CaptureTime(old_packet, new_packet, frequency_hz);
|
|
};
|
|
|
|
TimeSeries capture_time_data(
|
|
GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc) +
|
|
" capture-time",
|
|
LineStyle::kLine);
|
|
AccumulatePairs<LoggedRtpPacketIncoming, double>(
|
|
ToCallTime, ToNetworkDelay, packets, &capture_time_data);
|
|
plot->AppendTimeSeries(std::move(capture_time_data));
|
|
|
|
TimeSeries send_time_data(
|
|
GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc) +
|
|
" abs-send-time",
|
|
LineStyle::kLine);
|
|
AccumulatePairs<LoggedRtpPacketIncoming, double>(
|
|
ToCallTime, NetworkDelayDiff_AbsSendTime, packets, &send_time_data);
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(send_time_data));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Delay (ms)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Incoming network delay (relative to first packet)");
|
|
}
|
|
|
|
// Plot the fraction of packets lost (as perceived by the loss-based BWE).
|
|
void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) {
|
|
TimeSeries time_series("Fraction lost", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
for (auto& bwe_update : parsed_log_.bwe_loss_updates()) {
|
|
float x = config_.GetCallTimeSec(bwe_update.log_time_us());
|
|
float y = static_cast<float>(bwe_update.fraction_lost) / 255 * 100;
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Loss rate (in %)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Outgoing packet loss (as reported by BWE)");
|
|
}
|
|
|
|
// Plot the total bandwidth used by all RTP streams.
|
|
void EventLogAnalyzer::CreateTotalIncomingBitrateGraph(Plot* plot) {
|
|
// TODO(terelius): This could be provided by the parser.
|
|
std::multimap<int64_t, size_t> packets_in_order;
|
|
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
|
|
for (const LoggedRtpPacketIncoming& packet : stream.incoming_packets)
|
|
packets_in_order.insert(
|
|
std::make_pair(packet.rtp.log_time_us(), packet.rtp.total_length));
|
|
}
|
|
|
|
auto window_begin = packets_in_order.begin();
|
|
auto window_end = packets_in_order.begin();
|
|
size_t bytes_in_window = 0;
|
|
|
|
if (!packets_in_order.empty()) {
|
|
// Calculate a moving average of the bitrate and store in a TimeSeries.
|
|
TimeSeries bitrate_series("Bitrate", LineStyle::kLine);
|
|
for (int64_t time = config_.begin_time_;
|
|
time < config_.end_time_ + config_.step_; time += config_.step_) {
|
|
while (window_end != packets_in_order.end() && window_end->first < time) {
|
|
bytes_in_window += window_end->second;
|
|
++window_end;
|
|
}
|
|
while (window_begin != packets_in_order.end() &&
|
|
window_begin->first < time - config_.window_duration_) {
|
|
RTC_DCHECK_LE(window_begin->second, bytes_in_window);
|
|
bytes_in_window -= window_begin->second;
|
|
++window_begin;
|
|
}
|
|
float window_duration_in_seconds =
|
|
static_cast<float>(config_.window_duration_) / kNumMicrosecsPerSec;
|
|
float x = config_.GetCallTimeSec(time);
|
|
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
|
|
bitrate_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(bitrate_series));
|
|
}
|
|
|
|
// Overlay the outgoing REMB over incoming bitrate.
|
|
TimeSeries remb_series("Remb", LineStyle::kStep);
|
|
for (const auto& rtcp : parsed_log_.rembs(kOutgoingPacket)) {
|
|
float x = config_.GetCallTimeSec(rtcp.log_time_us());
|
|
float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000;
|
|
remb_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series));
|
|
|
|
if (!parsed_log_.generic_packets_received().empty()) {
|
|
TimeSeries time_series("Incoming generic bitrate", LineStyle::kLine);
|
|
auto GetPacketSizeKilobits = [](const LoggedGenericPacketReceived& packet) {
|
|
return packet.packet_length * 8.0 / 1000.0;
|
|
};
|
|
MovingAverage<LoggedGenericPacketReceived, double>(
|
|
GetPacketSizeKilobits, parsed_log_.generic_packets_received(), config_,
|
|
&time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Incoming RTP bitrate");
|
|
}
|
|
|
|
// Plot the total bandwidth used by all RTP streams.
|
|
void EventLogAnalyzer::CreateTotalOutgoingBitrateGraph(Plot* plot,
|
|
bool show_detector_state,
|
|
bool show_alr_state) {
|
|
// TODO(terelius): This could be provided by the parser.
|
|
std::multimap<int64_t, size_t> packets_in_order;
|
|
for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
|
|
for (const LoggedRtpPacketOutgoing& packet : stream.outgoing_packets)
|
|
packets_in_order.insert(
|
|
std::make_pair(packet.rtp.log_time_us(), packet.rtp.total_length));
|
|
}
|
|
|
|
auto window_begin = packets_in_order.begin();
|
|
auto window_end = packets_in_order.begin();
|
|
size_t bytes_in_window = 0;
|
|
|
|
if (!packets_in_order.empty()) {
|
|
// Calculate a moving average of the bitrate and store in a TimeSeries.
|
|
TimeSeries bitrate_series("Bitrate", LineStyle::kLine);
|
|
for (int64_t time = config_.begin_time_;
|
|
time < config_.end_time_ + config_.step_; time += config_.step_) {
|
|
while (window_end != packets_in_order.end() && window_end->first < time) {
|
|
bytes_in_window += window_end->second;
|
|
++window_end;
|
|
}
|
|
while (window_begin != packets_in_order.end() &&
|
|
window_begin->first < time - config_.window_duration_) {
|
|
RTC_DCHECK_LE(window_begin->second, bytes_in_window);
|
|
bytes_in_window -= window_begin->second;
|
|
++window_begin;
|
|
}
|
|
float window_duration_in_seconds =
|
|
static_cast<float>(config_.window_duration_) / kNumMicrosecsPerSec;
|
|
float x = config_.GetCallTimeSec(time);
|
|
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
|
|
bitrate_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(bitrate_series));
|
|
}
|
|
|
|
// Overlay the send-side bandwidth estimate over the outgoing bitrate.
|
|
TimeSeries loss_series("Loss-based estimate", LineStyle::kStep);
|
|
for (auto& loss_update : parsed_log_.bwe_loss_updates()) {
|
|
float x = config_.GetCallTimeSec(loss_update.log_time_us());
|
|
float y = static_cast<float>(loss_update.bitrate_bps) / 1000;
|
|
loss_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
TimeSeries delay_series("Delay-based estimate", LineStyle::kStep);
|
|
IntervalSeries overusing_series("Overusing", "#ff8e82",
|
|
IntervalSeries::kHorizontal);
|
|
IntervalSeries underusing_series("Underusing", "#5092fc",
|
|
IntervalSeries::kHorizontal);
|
|
IntervalSeries normal_series("Normal", "#c4ffc4",
|
|
IntervalSeries::kHorizontal);
|
|
IntervalSeries* last_series = &normal_series;
|
|
double last_detector_switch = 0.0;
|
|
|
|
BandwidthUsage last_detector_state = BandwidthUsage::kBwNormal;
|
|
|
|
for (auto& delay_update : parsed_log_.bwe_delay_updates()) {
|
|
float x = config_.GetCallTimeSec(delay_update.log_time_us());
|
|
float y = static_cast<float>(delay_update.bitrate_bps) / 1000;
|
|
|
|
if (last_detector_state != delay_update.detector_state) {
|
|
last_series->intervals.emplace_back(last_detector_switch, x);
|
|
last_detector_state = delay_update.detector_state;
|
|
last_detector_switch = x;
|
|
|
|
switch (delay_update.detector_state) {
|
|
case BandwidthUsage::kBwNormal:
|
|
last_series = &normal_series;
|
|
break;
|
|
case BandwidthUsage::kBwUnderusing:
|
|
last_series = &underusing_series;
|
|
break;
|
|
case BandwidthUsage::kBwOverusing:
|
|
last_series = &overusing_series;
|
|
break;
|
|
case BandwidthUsage::kLast:
|
|
RTC_NOTREACHED();
|
|
}
|
|
}
|
|
|
|
delay_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
RTC_CHECK(last_series);
|
|
last_series->intervals.emplace_back(last_detector_switch, config_.end_time_);
|
|
|
|
TimeSeries created_series("Probe cluster created.", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
for (auto& cluster : parsed_log_.bwe_probe_cluster_created_events()) {
|
|
float x = config_.GetCallTimeSec(cluster.log_time_us());
|
|
float y = static_cast<float>(cluster.bitrate_bps) / 1000;
|
|
created_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
TimeSeries result_series("Probing results.", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
for (auto& result : parsed_log_.bwe_probe_success_events()) {
|
|
float x = config_.GetCallTimeSec(result.log_time_us());
|
|
float y = static_cast<float>(result.bitrate_bps) / 1000;
|
|
result_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
TimeSeries probe_failures_series("Probe failed", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
for (auto& failure : parsed_log_.bwe_probe_failure_events()) {
|
|
float x = config_.GetCallTimeSec(failure.log_time_us());
|
|
probe_failures_series.points.emplace_back(x, 0);
|
|
}
|
|
|
|
IntervalSeries alr_state("ALR", "#555555", IntervalSeries::kHorizontal);
|
|
bool previously_in_alr = false;
|
|
int64_t alr_start = 0;
|
|
for (auto& alr : parsed_log_.alr_state_events()) {
|
|
float y = config_.GetCallTimeSec(alr.log_time_us());
|
|
if (!previously_in_alr && alr.in_alr) {
|
|
alr_start = alr.log_time_us();
|
|
previously_in_alr = true;
|
|
} else if (previously_in_alr && !alr.in_alr) {
|
|
float x = config_.GetCallTimeSec(alr_start);
|
|
alr_state.intervals.emplace_back(x, y);
|
|
previously_in_alr = false;
|
|
}
|
|
}
|
|
|
|
if (previously_in_alr) {
|
|
float x = config_.GetCallTimeSec(alr_start);
|
|
float y = config_.GetCallTimeSec(config_.end_time_);
|
|
alr_state.intervals.emplace_back(x, y);
|
|
}
|
|
|
|
if (show_detector_state) {
|
|
plot->AppendIntervalSeries(std::move(overusing_series));
|
|
plot->AppendIntervalSeries(std::move(underusing_series));
|
|
plot->AppendIntervalSeries(std::move(normal_series));
|
|
}
|
|
|
|
if (show_alr_state) {
|
|
plot->AppendIntervalSeries(std::move(alr_state));
|
|
}
|
|
plot->AppendTimeSeries(std::move(loss_series));
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(probe_failures_series));
|
|
plot->AppendTimeSeries(std::move(delay_series));
|
|
plot->AppendTimeSeries(std::move(created_series));
|
|
plot->AppendTimeSeries(std::move(result_series));
|
|
|
|
// Overlay the incoming REMB over the outgoing bitrate.
|
|
TimeSeries remb_series("Remb", LineStyle::kStep);
|
|
for (const auto& rtcp : parsed_log_.rembs(kIncomingPacket)) {
|
|
float x = config_.GetCallTimeSec(rtcp.log_time_us());
|
|
float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000;
|
|
remb_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series));
|
|
|
|
if (!parsed_log_.generic_packets_sent().empty()) {
|
|
{
|
|
TimeSeries time_series("Outgoing generic total bitrate",
|
|
LineStyle::kLine);
|
|
auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) {
|
|
return packet.packet_length() * 8.0 / 1000.0;
|
|
};
|
|
MovingAverage<LoggedGenericPacketSent, double>(
|
|
GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_,
|
|
&time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
{
|
|
TimeSeries time_series("Outgoing generic payload bitrate",
|
|
LineStyle::kLine);
|
|
auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) {
|
|
return packet.payload_length * 8.0 / 1000.0;
|
|
};
|
|
MovingAverage<LoggedGenericPacketSent, double>(
|
|
GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_,
|
|
&time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Outgoing RTP bitrate");
|
|
}
|
|
|
|
// For each SSRC, plot the bandwidth used by that stream.
|
|
void EventLogAnalyzer::CreateStreamBitrateGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
|
|
// Filter on SSRC.
|
|
if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc),
|
|
LineStyle::kLine);
|
|
auto GetPacketSizeKilobits = [](const LoggedRtpPacket& packet) {
|
|
return packet.total_length * 8.0 / 1000.0;
|
|
};
|
|
MovingAverage<LoggedRtpPacket, double>(
|
|
GetPacketSizeKilobits, stream.packet_view, config_, &time_series);
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle(GetDirectionAsString(direction) + " bitrate per stream");
|
|
}
|
|
|
|
// Plot the bitrate allocation for each temporal and spatial layer.
|
|
// Computed from RTCP XR target bitrate block, so the graph is only populated if
|
|
// those are sent.
|
|
void EventLogAnalyzer::CreateBitrateAllocationGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
std::map<LayerDescription, TimeSeries> time_series;
|
|
const auto& xr_list = parsed_log_.extended_reports(direction);
|
|
for (const auto& rtcp : xr_list) {
|
|
const absl::optional<rtcp::TargetBitrate>& target_bitrate =
|
|
rtcp.xr.target_bitrate();
|
|
if (!target_bitrate.has_value())
|
|
continue;
|
|
for (const auto& bitrate_item : target_bitrate->GetTargetBitrates()) {
|
|
LayerDescription layer(rtcp.xr.sender_ssrc(), bitrate_item.spatial_layer,
|
|
bitrate_item.temporal_layer);
|
|
auto time_series_it = time_series.find(layer);
|
|
if (time_series_it == time_series.end()) {
|
|
std::string layer_name = GetLayerName(layer);
|
|
bool inserted;
|
|
std::tie(time_series_it, inserted) = time_series.insert(
|
|
std::make_pair(layer, TimeSeries(layer_name, LineStyle::kStep)));
|
|
RTC_DCHECK(inserted);
|
|
}
|
|
float x = config_.GetCallTimeSec(rtcp.log_time_us());
|
|
float y = bitrate_item.target_bitrate_kbps;
|
|
time_series_it->second.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
for (auto& layer : time_series) {
|
|
plot->AppendTimeSeries(std::move(layer.second));
|
|
}
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
if (direction == kIncomingPacket)
|
|
plot->SetTitle("Target bitrate per incoming layer");
|
|
else
|
|
plot->SetTitle("Target bitrate per outgoing layer");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateGoogCcSimulationGraph(Plot* plot) {
|
|
TimeSeries target_rates("Simulated target rate", LineStyle::kStep,
|
|
PointStyle::kHighlight);
|
|
TimeSeries delay_based("Logged delay-based estimate", LineStyle::kStep,
|
|
PointStyle::kHighlight);
|
|
TimeSeries loss_based("Logged loss-based estimate", LineStyle::kStep,
|
|
PointStyle::kHighlight);
|
|
TimeSeries probe_results("Logged probe success", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
|
|
LogBasedNetworkControllerSimulation simulation(
|
|
std::make_unique<GoogCcNetworkControllerFactory>(),
|
|
[&](const NetworkControlUpdate& update, Timestamp at_time) {
|
|
if (update.target_rate) {
|
|
target_rates.points.emplace_back(
|
|
config_.GetCallTimeSec(at_time.us()),
|
|
update.target_rate->target_rate.kbps<float>());
|
|
}
|
|
});
|
|
|
|
simulation.ProcessEventsInLog(parsed_log_);
|
|
for (const auto& logged : parsed_log_.bwe_delay_updates())
|
|
delay_based.points.emplace_back(
|
|
config_.GetCallTimeSec(logged.log_time_us()),
|
|
logged.bitrate_bps / 1000);
|
|
for (const auto& logged : parsed_log_.bwe_probe_success_events())
|
|
probe_results.points.emplace_back(
|
|
config_.GetCallTimeSec(logged.log_time_us()),
|
|
logged.bitrate_bps / 1000);
|
|
for (const auto& logged : parsed_log_.bwe_loss_updates())
|
|
loss_based.points.emplace_back(config_.GetCallTimeSec(logged.log_time_us()),
|
|
logged.bitrate_bps / 1000);
|
|
|
|
plot->AppendTimeSeries(std::move(delay_based));
|
|
plot->AppendTimeSeries(std::move(loss_based));
|
|
plot->AppendTimeSeries(std::move(probe_results));
|
|
plot->AppendTimeSeries(std::move(target_rates));
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Simulated BWE behavior");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) {
|
|
using RtpPacketType = LoggedRtpPacketOutgoing;
|
|
using TransportFeedbackType = LoggedRtcpPacketTransportFeedback;
|
|
|
|
// TODO(terelius): This could be provided by the parser.
|
|
std::multimap<int64_t, const RtpPacketType*> outgoing_rtp;
|
|
for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
|
|
for (const RtpPacketType& rtp_packet : stream.outgoing_packets)
|
|
outgoing_rtp.insert(
|
|
std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet));
|
|
}
|
|
|
|
const std::vector<TransportFeedbackType>& incoming_rtcp =
|
|
parsed_log_.transport_feedbacks(kIncomingPacket);
|
|
|
|
SimulatedClock clock(0);
|
|
BitrateObserver observer;
|
|
RtcEventLogNull null_event_log;
|
|
PacketRouter packet_router;
|
|
PacedSender pacer(&clock, &packet_router, &null_event_log);
|
|
TransportFeedbackAdapter transport_feedback;
|
|
auto factory = GoogCcNetworkControllerFactory();
|
|
TimeDelta process_interval = factory.GetProcessInterval();
|
|
// TODO(holmer): Log the call config and use that here instead.
|
|
static const uint32_t kDefaultStartBitrateBps = 300000;
|
|
NetworkControllerConfig cc_config;
|
|
cc_config.constraints.at_time = Timestamp::Micros(clock.TimeInMicroseconds());
|
|
cc_config.constraints.starting_rate =
|
|
DataRate::BitsPerSec(kDefaultStartBitrateBps);
|
|
cc_config.event_log = &null_event_log;
|
|
auto goog_cc = factory.Create(cc_config);
|
|
|
|
TimeSeries time_series("Delay-based estimate", LineStyle::kStep,
|
|
PointStyle::kHighlight);
|
|
TimeSeries acked_time_series("Raw acked bitrate", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
TimeSeries robust_time_series("Robust throughput estimate", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
TimeSeries acked_estimate_time_series("Ackednowledged bitrate estimate",
|
|
LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
|
|
auto rtp_iterator = outgoing_rtp.begin();
|
|
auto rtcp_iterator = incoming_rtcp.begin();
|
|
|
|
auto NextRtpTime = [&]() {
|
|
if (rtp_iterator != outgoing_rtp.end())
|
|
return static_cast<int64_t>(rtp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
auto NextRtcpTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end())
|
|
return static_cast<int64_t>(rtcp_iterator->log_time_us());
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
int64_t next_process_time_us_ = std::min({NextRtpTime(), NextRtcpTime()});
|
|
|
|
auto NextProcessTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end() ||
|
|
rtp_iterator != outgoing_rtp.end()) {
|
|
return next_process_time_us_;
|
|
}
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
RateStatistics acked_bitrate(750, 8000);
|
|
test::ExplicitKeyValueConfig throughput_config(
|
|
"WebRTC-Bwe-RobustThroughputEstimatorSettings/"
|
|
"enabled:true,reduce_bias:true,assume_shared_link:false,initial_packets:"
|
|
"10,min_packets:25,window_duration:750ms,unacked_weight:0.5/");
|
|
std::unique_ptr<AcknowledgedBitrateEstimatorInterface>
|
|
robust_throughput_estimator(
|
|
AcknowledgedBitrateEstimatorInterface::Create(&throughput_config));
|
|
FieldTrialBasedConfig field_trial_config;
|
|
std::unique_ptr<AcknowledgedBitrateEstimatorInterface>
|
|
acknowledged_bitrate_estimator(
|
|
AcknowledgedBitrateEstimatorInterface::Create(&field_trial_config));
|
|
int64_t time_us =
|
|
std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
|
|
int64_t last_update_us = 0;
|
|
while (time_us != std::numeric_limits<int64_t>::max()) {
|
|
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
|
|
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
|
|
const RtpPacketType& rtp_packet = *rtp_iterator->second;
|
|
if (rtp_packet.rtp.header.extension.hasTransportSequenceNumber) {
|
|
RtpPacketSendInfo packet_info;
|
|
packet_info.ssrc = rtp_packet.rtp.header.ssrc;
|
|
packet_info.transport_sequence_number =
|
|
rtp_packet.rtp.header.extension.transportSequenceNumber;
|
|
packet_info.rtp_sequence_number = rtp_packet.rtp.header.sequenceNumber;
|
|
packet_info.length = rtp_packet.rtp.total_length;
|
|
if (IsRtxSsrc(parsed_log_, PacketDirection::kOutgoingPacket,
|
|
rtp_packet.rtp.header.ssrc)) {
|
|
// Don't set the optional media type as we don't know if it is
|
|
// a retransmission, FEC or padding.
|
|
} else if (IsVideoSsrc(parsed_log_, PacketDirection::kOutgoingPacket,
|
|
rtp_packet.rtp.header.ssrc)) {
|
|
packet_info.packet_type = RtpPacketMediaType::kVideo;
|
|
} else if (IsAudioSsrc(parsed_log_, PacketDirection::kOutgoingPacket,
|
|
rtp_packet.rtp.header.ssrc)) {
|
|
packet_info.packet_type = RtpPacketMediaType::kAudio;
|
|
}
|
|
transport_feedback.AddPacket(
|
|
packet_info,
|
|
0u, // Per packet overhead bytes.
|
|
Timestamp::Micros(rtp_packet.rtp.log_time_us()));
|
|
}
|
|
rtc::SentPacket sent_packet;
|
|
sent_packet.send_time_ms = rtp_packet.rtp.log_time_ms();
|
|
sent_packet.info.included_in_allocation = true;
|
|
sent_packet.info.packet_size_bytes = rtp_packet.rtp.total_length;
|
|
if (rtp_packet.rtp.header.extension.hasTransportSequenceNumber) {
|
|
sent_packet.packet_id =
|
|
rtp_packet.rtp.header.extension.transportSequenceNumber;
|
|
sent_packet.info.included_in_feedback = true;
|
|
}
|
|
auto sent_msg = transport_feedback.ProcessSentPacket(sent_packet);
|
|
if (sent_msg)
|
|
observer.Update(goog_cc->OnSentPacket(*sent_msg));
|
|
++rtp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
|
|
|
|
auto feedback_msg = transport_feedback.ProcessTransportFeedback(
|
|
rtcp_iterator->transport_feedback,
|
|
Timestamp::Millis(clock.TimeInMilliseconds()));
|
|
absl::optional<uint32_t> bitrate_bps;
|
|
if (feedback_msg) {
|
|
observer.Update(goog_cc->OnTransportPacketsFeedback(*feedback_msg));
|
|
std::vector<PacketResult> feedback =
|
|
feedback_msg->SortedByReceiveTime();
|
|
if (!feedback.empty()) {
|
|
acknowledged_bitrate_estimator->IncomingPacketFeedbackVector(
|
|
feedback);
|
|
robust_throughput_estimator->IncomingPacketFeedbackVector(feedback);
|
|
for (const PacketResult& packet : feedback) {
|
|
acked_bitrate.Update(packet.sent_packet.size.bytes(),
|
|
packet.receive_time.ms());
|
|
}
|
|
bitrate_bps = acked_bitrate.Rate(feedback.back().receive_time.ms());
|
|
}
|
|
}
|
|
|
|
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
|
|
float y = bitrate_bps.value_or(0) / 1000;
|
|
acked_time_series.points.emplace_back(x, y);
|
|
y = robust_throughput_estimator->bitrate()
|
|
.value_or(DataRate::Zero())
|
|
.kbps();
|
|
robust_time_series.points.emplace_back(x, y);
|
|
y = acknowledged_bitrate_estimator->bitrate()
|
|
.value_or(DataRate::Zero())
|
|
.kbps();
|
|
acked_estimate_time_series.points.emplace_back(x, y);
|
|
++rtcp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextProcessTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime());
|
|
ProcessInterval msg;
|
|
msg.at_time = Timestamp::Micros(clock.TimeInMicroseconds());
|
|
observer.Update(goog_cc->OnProcessInterval(msg));
|
|
next_process_time_us_ += process_interval.us();
|
|
}
|
|
if (observer.GetAndResetBitrateUpdated() ||
|
|
time_us - last_update_us >= 1e6) {
|
|
uint32_t y = observer.last_bitrate_bps() / 1000;
|
|
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
|
|
time_series.points.emplace_back(x, y);
|
|
last_update_us = time_us;
|
|
}
|
|
time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
|
|
}
|
|
// Add the data set to the plot.
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->AppendTimeSeries(std::move(robust_time_series));
|
|
plot->AppendTimeSeries(std::move(acked_time_series));
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(acked_estimate_time_series));
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Simulated send-side BWE behavior");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateReceiveSideBweSimulationGraph(Plot* plot) {
|
|
using RtpPacketType = LoggedRtpPacketIncoming;
|
|
class RembInterceptingPacketRouter : public PacketRouter {
|
|
public:
|
|
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
|
|
uint32_t bitrate_bps) override {
|
|
last_bitrate_bps_ = bitrate_bps;
|
|
bitrate_updated_ = true;
|
|
PacketRouter::OnReceiveBitrateChanged(ssrcs, bitrate_bps);
|
|
}
|
|
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
|
|
bool GetAndResetBitrateUpdated() {
|
|
bool bitrate_updated = bitrate_updated_;
|
|
bitrate_updated_ = false;
|
|
return bitrate_updated;
|
|
}
|
|
|
|
private:
|
|
// We don't know the start bitrate, but assume that it is the default 300
|
|
// kbps.
|
|
uint32_t last_bitrate_bps_ = 300000;
|
|
bool bitrate_updated_ = false;
|
|
};
|
|
|
|
std::multimap<int64_t, const RtpPacketType*> incoming_rtp;
|
|
|
|
for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) {
|
|
if (IsVideoSsrc(parsed_log_, kIncomingPacket, stream.ssrc)) {
|
|
for (const auto& rtp_packet : stream.incoming_packets)
|
|
incoming_rtp.insert(
|
|
std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet));
|
|
}
|
|
}
|
|
|
|
SimulatedClock clock(0);
|
|
RembInterceptingPacketRouter packet_router;
|
|
// TODO(terelius): The PacketRouter is used as the RemoteBitrateObserver.
|
|
// Is this intentional?
|
|
ReceiveSideCongestionController rscc(&clock, &packet_router);
|
|
// TODO(holmer): Log the call config and use that here instead.
|
|
// static const uint32_t kDefaultStartBitrateBps = 300000;
|
|
// rscc.SetBweBitrates(0, kDefaultStartBitrateBps, -1);
|
|
|
|
TimeSeries time_series("Receive side estimate", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
TimeSeries acked_time_series("Received bitrate", LineStyle::kLine);
|
|
|
|
RateStatistics acked_bitrate(250, 8000);
|
|
int64_t last_update_us = 0;
|
|
for (const auto& kv : incoming_rtp) {
|
|
const RtpPacketType& packet = *kv.second;
|
|
int64_t arrival_time_ms = packet.rtp.log_time_us() / 1000;
|
|
size_t payload = packet.rtp.total_length; /*Should subtract header?*/
|
|
clock.AdvanceTimeMicroseconds(packet.rtp.log_time_us() -
|
|
clock.TimeInMicroseconds());
|
|
rscc.OnReceivedPacket(arrival_time_ms, payload, packet.rtp.header);
|
|
acked_bitrate.Update(payload, arrival_time_ms);
|
|
absl::optional<uint32_t> bitrate_bps = acked_bitrate.Rate(arrival_time_ms);
|
|
if (bitrate_bps) {
|
|
uint32_t y = *bitrate_bps / 1000;
|
|
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
|
|
acked_time_series.points.emplace_back(x, y);
|
|
}
|
|
if (packet_router.GetAndResetBitrateUpdated() ||
|
|
clock.TimeInMicroseconds() - last_update_us >= 1e6) {
|
|
uint32_t y = packet_router.last_bitrate_bps() / 1000;
|
|
float x = config_.GetCallTimeSec(clock.TimeInMicroseconds());
|
|
time_series.points.emplace_back(x, y);
|
|
last_update_us = clock.TimeInMicroseconds();
|
|
}
|
|
}
|
|
// Add the data set to the plot.
|
|
plot->AppendTimeSeries(std::move(time_series));
|
|
plot->AppendTimeSeries(std::move(acked_time_series));
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Simulated receive-side BWE behavior");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) {
|
|
TimeSeries time_series("Network delay", LineStyle::kLine,
|
|
PointStyle::kHighlight);
|
|
int64_t min_send_receive_diff_ms = std::numeric_limits<int64_t>::max();
|
|
int64_t min_rtt_ms = std::numeric_limits<int64_t>::max();
|
|
|
|
int64_t prev_y = 0;
|
|
std::vector<MatchedSendArrivalTimes> matched_rtp_rtcp =
|
|
GetNetworkTrace(parsed_log_);
|
|
absl::c_stable_sort(matched_rtp_rtcp, [](const MatchedSendArrivalTimes& a,
|
|
const MatchedSendArrivalTimes& b) {
|
|
return a.feedback_arrival_time_ms < b.feedback_arrival_time_ms ||
|
|
(a.feedback_arrival_time_ms == b.feedback_arrival_time_ms &&
|
|
a.arrival_time_ms < b.arrival_time_ms);
|
|
});
|
|
for (const auto& packet : matched_rtp_rtcp) {
|
|
if (packet.arrival_time_ms == MatchedSendArrivalTimes::kNotReceived)
|
|
continue;
|
|
float x = config_.GetCallTimeSec(1000 * packet.feedback_arrival_time_ms);
|
|
int64_t y = packet.arrival_time_ms - packet.send_time_ms;
|
|
prev_y = y;
|
|
int64_t rtt_ms = packet.feedback_arrival_time_ms - packet.send_time_ms;
|
|
min_rtt_ms = std::min(rtt_ms, min_rtt_ms);
|
|
min_send_receive_diff_ms = std::min(y, min_send_receive_diff_ms);
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
|
|
// We assume that the base network delay (w/o queues) is equal to half
|
|
// the minimum RTT. Therefore rescale the delays by subtracting the minimum
|
|
// observed 1-ways delay and add half the minimum RTT.
|
|
const int64_t estimated_clock_offset_ms =
|
|
min_send_receive_diff_ms - min_rtt_ms / 2;
|
|
for (TimeSeriesPoint& point : time_series.points)
|
|
point.y -= estimated_clock_offset_ms;
|
|
|
|
// Add the data set to the plot.
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(time_series));
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Outgoing network delay (based on per-packet feedback)");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreatePacerDelayGraph(Plot* plot) {
|
|
for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) {
|
|
const std::vector<LoggedRtpPacketOutgoing>& packets =
|
|
stream.outgoing_packets;
|
|
|
|
if (IsRtxSsrc(parsed_log_, kOutgoingPacket, stream.ssrc)) {
|
|
continue;
|
|
}
|
|
|
|
if (packets.size() < 2) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Can't estimate a the RTP clock frequency or the "
|
|
"pacer delay with less than 2 packets in the stream";
|
|
continue;
|
|
}
|
|
int64_t segment_end_us = parsed_log_.first_log_segment().stop_time_us();
|
|
absl::optional<uint32_t> estimated_frequency =
|
|
EstimateRtpClockFrequency(packets, segment_end_us);
|
|
if (!estimated_frequency)
|
|
continue;
|
|
if (IsVideoSsrc(parsed_log_, kOutgoingPacket, stream.ssrc) &&
|
|
*estimated_frequency != 90000) {
|
|
RTC_LOG(LS_WARNING)
|
|
<< "Video stream should use a 90 kHz clock but appears to use "
|
|
<< *estimated_frequency / 1000 << ". Discarding.";
|
|
continue;
|
|
}
|
|
|
|
TimeSeries pacer_delay_series(
|
|
GetStreamName(parsed_log_, kOutgoingPacket, stream.ssrc) + "(" +
|
|
std::to_string(*estimated_frequency / 1000) + " kHz)",
|
|
LineStyle::kLine, PointStyle::kHighlight);
|
|
SeqNumUnwrapper<uint32_t> timestamp_unwrapper;
|
|
uint64_t first_capture_timestamp =
|
|
timestamp_unwrapper.Unwrap(packets.front().rtp.header.timestamp);
|
|
uint64_t first_send_timestamp = packets.front().rtp.log_time_us();
|
|
for (const auto& packet : packets) {
|
|
double capture_time_ms = (static_cast<double>(timestamp_unwrapper.Unwrap(
|
|
packet.rtp.header.timestamp)) -
|
|
first_capture_timestamp) /
|
|
*estimated_frequency * 1000;
|
|
double send_time_ms =
|
|
static_cast<double>(packet.rtp.log_time_us() - first_send_timestamp) /
|
|
1000;
|
|
float x = config_.GetCallTimeSec(packet.rtp.log_time_us());
|
|
float y = send_time_ms - capture_time_ms;
|
|
pacer_delay_series.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(pacer_delay_series));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Pacer delay (ms)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle(
|
|
"Delay from capture to send time. (First packet normalized to 0.)");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateTimestampGraph(PacketDirection direction,
|
|
Plot* plot) {
|
|
for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) {
|
|
TimeSeries rtp_timestamps(
|
|
GetStreamName(parsed_log_, direction, stream.ssrc) + " capture-time",
|
|
LineStyle::kLine, PointStyle::kHighlight);
|
|
for (const auto& packet : stream.packet_view) {
|
|
float x = config_.GetCallTimeSec(packet.log_time_us());
|
|
float y = packet.header.timestamp;
|
|
rtp_timestamps.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(rtp_timestamps));
|
|
|
|
TimeSeries rtcp_timestamps(
|
|
GetStreamName(parsed_log_, direction, stream.ssrc) +
|
|
" rtcp capture-time",
|
|
LineStyle::kLine, PointStyle::kHighlight);
|
|
// TODO(terelius): Why only sender reports?
|
|
const auto& sender_reports = parsed_log_.sender_reports(direction);
|
|
for (const auto& rtcp : sender_reports) {
|
|
if (rtcp.sr.sender_ssrc() != stream.ssrc)
|
|
continue;
|
|
float x = config_.GetCallTimeSec(rtcp.log_time_us());
|
|
float y = rtcp.sr.rtp_timestamp();
|
|
rtcp_timestamps.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeriesIfNotEmpty(std::move(rtcp_timestamps));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "RTP timestamp", kBottomMargin, kTopMargin);
|
|
plot->SetTitle(GetDirectionAsString(direction) + " timestamps");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateSenderAndReceiverReportPlot(
|
|
PacketDirection direction,
|
|
rtc::FunctionView<float(const rtcp::ReportBlock&)> fy,
|
|
std::string title,
|
|
std::string yaxis_label,
|
|
Plot* plot) {
|
|
std::map<uint32_t, TimeSeries> sr_reports_by_ssrc;
|
|
const auto& sender_reports = parsed_log_.sender_reports(direction);
|
|
for (const auto& rtcp : sender_reports) {
|
|
float x = config_.GetCallTimeSec(rtcp.log_time_us());
|
|
uint32_t ssrc = rtcp.sr.sender_ssrc();
|
|
for (const auto& block : rtcp.sr.report_blocks()) {
|
|
float y = fy(block);
|
|
auto sr_report_it = sr_reports_by_ssrc.find(ssrc);
|
|
bool inserted;
|
|
if (sr_report_it == sr_reports_by_ssrc.end()) {
|
|
std::tie(sr_report_it, inserted) = sr_reports_by_ssrc.emplace(
|
|
ssrc, TimeSeries(GetStreamName(parsed_log_, direction, ssrc) +
|
|
" Sender Reports",
|
|
LineStyle::kLine, PointStyle::kHighlight));
|
|
}
|
|
sr_report_it->second.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
for (auto& kv : sr_reports_by_ssrc) {
|
|
plot->AppendTimeSeries(std::move(kv.second));
|
|
}
|
|
|
|
std::map<uint32_t, TimeSeries> rr_reports_by_ssrc;
|
|
const auto& receiver_reports = parsed_log_.receiver_reports(direction);
|
|
for (const auto& rtcp : receiver_reports) {
|
|
float x = config_.GetCallTimeSec(rtcp.log_time_us());
|
|
uint32_t ssrc = rtcp.rr.sender_ssrc();
|
|
for (const auto& block : rtcp.rr.report_blocks()) {
|
|
float y = fy(block);
|
|
auto rr_report_it = rr_reports_by_ssrc.find(ssrc);
|
|
bool inserted;
|
|
if (rr_report_it == rr_reports_by_ssrc.end()) {
|
|
std::tie(rr_report_it, inserted) = rr_reports_by_ssrc.emplace(
|
|
ssrc, TimeSeries(GetStreamName(parsed_log_, direction, ssrc) +
|
|
" Receiver Reports",
|
|
LineStyle::kLine, PointStyle::kHighlight));
|
|
}
|
|
rr_report_it->second.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
for (auto& kv : rr_reports_by_ssrc) {
|
|
plot->AppendTimeSeries(std::move(kv.second));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, yaxis_label, kBottomMargin, kTopMargin);
|
|
plot->SetTitle(title);
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateIceCandidatePairConfigGraph(Plot* plot) {
|
|
std::map<uint32_t, TimeSeries> configs_by_cp_id;
|
|
for (const auto& config : parsed_log_.ice_candidate_pair_configs()) {
|
|
if (configs_by_cp_id.find(config.candidate_pair_id) ==
|
|
configs_by_cp_id.end()) {
|
|
const std::string candidate_pair_desc =
|
|
GetCandidatePairLogDescriptionAsString(config);
|
|
configs_by_cp_id[config.candidate_pair_id] =
|
|
TimeSeries("[" + std::to_string(config.candidate_pair_id) + "]" +
|
|
candidate_pair_desc,
|
|
LineStyle::kNone, PointStyle::kHighlight);
|
|
candidate_pair_desc_by_id_[config.candidate_pair_id] =
|
|
candidate_pair_desc;
|
|
}
|
|
float x = config_.GetCallTimeSec(config.log_time_us());
|
|
float y = static_cast<float>(config.type);
|
|
configs_by_cp_id[config.candidate_pair_id].points.emplace_back(x, y);
|
|
}
|
|
|
|
// TODO(qingsi): There can be a large number of candidate pairs generated by
|
|
// certain calls and the frontend cannot render the chart in this case due to
|
|
// the failure of generating a palette with the same number of colors.
|
|
for (auto& kv : configs_by_cp_id) {
|
|
plot->AppendTimeSeries(std::move(kv.second));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 3, "Config Type", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("[IceEventLog] ICE candidate pair configs");
|
|
plot->SetYAxisTickLabels(
|
|
{{static_cast<float>(IceCandidatePairConfigType::kAdded), "ADDED"},
|
|
{static_cast<float>(IceCandidatePairConfigType::kUpdated), "UPDATED"},
|
|
{static_cast<float>(IceCandidatePairConfigType::kDestroyed),
|
|
"DESTROYED"},
|
|
{static_cast<float>(IceCandidatePairConfigType::kSelected),
|
|
"SELECTED"}});
|
|
}
|
|
|
|
std::string EventLogAnalyzer::GetCandidatePairLogDescriptionFromId(
|
|
uint32_t candidate_pair_id) {
|
|
if (candidate_pair_desc_by_id_.find(candidate_pair_id) !=
|
|
candidate_pair_desc_by_id_.end()) {
|
|
return candidate_pair_desc_by_id_[candidate_pair_id];
|
|
}
|
|
for (const auto& config : parsed_log_.ice_candidate_pair_configs()) {
|
|
// TODO(qingsi): Add the handling of the "Updated" config event after the
|
|
// visualization of property change for candidate pairs is introduced.
|
|
if (candidate_pair_desc_by_id_.find(config.candidate_pair_id) ==
|
|
candidate_pair_desc_by_id_.end()) {
|
|
const std::string candidate_pair_desc =
|
|
GetCandidatePairLogDescriptionAsString(config);
|
|
candidate_pair_desc_by_id_[config.candidate_pair_id] =
|
|
candidate_pair_desc;
|
|
}
|
|
}
|
|
return candidate_pair_desc_by_id_[candidate_pair_id];
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateIceConnectivityCheckGraph(Plot* plot) {
|
|
constexpr int kEventTypeOffset =
|
|
static_cast<int>(IceCandidatePairConfigType::kNumValues);
|
|
std::map<uint32_t, TimeSeries> checks_by_cp_id;
|
|
for (const auto& event : parsed_log_.ice_candidate_pair_events()) {
|
|
if (checks_by_cp_id.find(event.candidate_pair_id) ==
|
|
checks_by_cp_id.end()) {
|
|
checks_by_cp_id[event.candidate_pair_id] = TimeSeries(
|
|
"[" + std::to_string(event.candidate_pair_id) + "]" +
|
|
GetCandidatePairLogDescriptionFromId(event.candidate_pair_id),
|
|
LineStyle::kNone, PointStyle::kHighlight);
|
|
}
|
|
float x = config_.GetCallTimeSec(event.log_time_us());
|
|
float y = static_cast<float>(event.type) + kEventTypeOffset;
|
|
checks_by_cp_id[event.candidate_pair_id].points.emplace_back(x, y);
|
|
}
|
|
|
|
// TODO(qingsi): The same issue as in CreateIceCandidatePairConfigGraph.
|
|
for (auto& kv : checks_by_cp_id) {
|
|
plot->AppendTimeSeries(std::move(kv.second));
|
|
}
|
|
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 4, "Connectivity State", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("[IceEventLog] ICE connectivity checks");
|
|
|
|
plot->SetYAxisTickLabels(
|
|
{{static_cast<float>(IceCandidatePairEventType::kCheckSent) +
|
|
kEventTypeOffset,
|
|
"CHECK SENT"},
|
|
{static_cast<float>(IceCandidatePairEventType::kCheckReceived) +
|
|
kEventTypeOffset,
|
|
"CHECK RECEIVED"},
|
|
{static_cast<float>(IceCandidatePairEventType::kCheckResponseSent) +
|
|
kEventTypeOffset,
|
|
"RESPONSE SENT"},
|
|
{static_cast<float>(IceCandidatePairEventType::kCheckResponseReceived) +
|
|
kEventTypeOffset,
|
|
"RESPONSE RECEIVED"}});
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateDtlsTransportStateGraph(Plot* plot) {
|
|
TimeSeries states("DTLS Transport State", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
for (const auto& event : parsed_log_.dtls_transport_states()) {
|
|
float x = config_.GetCallTimeSec(event.log_time_us());
|
|
float y = static_cast<float>(event.dtls_transport_state);
|
|
states.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(states));
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, static_cast<float>(DtlsTransportState::kNumValues),
|
|
"Transport State", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("DTLS Transport State");
|
|
plot->SetYAxisTickLabels(
|
|
{{static_cast<float>(DtlsTransportState::kNew), "NEW"},
|
|
{static_cast<float>(DtlsTransportState::kConnecting), "CONNECTING"},
|
|
{static_cast<float>(DtlsTransportState::kConnected), "CONNECTED"},
|
|
{static_cast<float>(DtlsTransportState::kClosed), "CLOSED"},
|
|
{static_cast<float>(DtlsTransportState::kFailed), "FAILED"}});
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateDtlsWritableStateGraph(Plot* plot) {
|
|
TimeSeries writable("DTLS Writable", LineStyle::kNone,
|
|
PointStyle::kHighlight);
|
|
for (const auto& event : parsed_log_.dtls_writable_states()) {
|
|
float x = config_.GetCallTimeSec(event.log_time_us());
|
|
float y = static_cast<float>(event.writable);
|
|
writable.points.emplace_back(x, y);
|
|
}
|
|
plot->AppendTimeSeries(std::move(writable));
|
|
plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(),
|
|
"Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Writable", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("DTLS Writable State");
|
|
}
|
|
|
|
} // namespace webrtc
|