143 lines
5.0 KiB
C++
143 lines
5.0 KiB
C++
/*
|
|
* Copyright (C) 2021 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "media/QuaternionUtil.h"
|
|
#include "TestUtil.h"
|
|
|
|
using Eigen::Quaternionf;
|
|
using Eigen::Vector3f;
|
|
|
|
namespace android {
|
|
namespace media {
|
|
namespace {
|
|
|
|
TEST(QuaternionUtil, RotationVectorToQuaternion) {
|
|
// 90 degrees around Z.
|
|
Vector3f rot = {0, 0, M_PI_2};
|
|
Quaternionf quat = rotationVectorToQuaternion(rot);
|
|
ASSERT_EQ(quat * Vector3f(1, 0, 0), Vector3f(0, 1, 0));
|
|
ASSERT_EQ(quat * Vector3f(0, 1, 0), Vector3f(-1, 0, 0));
|
|
ASSERT_EQ(quat * Vector3f(0, 0, 1), Vector3f(0, 0, 1));
|
|
}
|
|
|
|
TEST(QuaternionUtil, QuaternionToRotationVector) {
|
|
Quaternionf quat = Quaternionf::FromTwoVectors(Vector3f(1, 0, 0), Vector3f(0, 1, 0));
|
|
Vector3f rot = quaternionToRotationVector(quat);
|
|
ASSERT_EQ(rot, Vector3f(0, 0, M_PI_2));
|
|
}
|
|
|
|
TEST(QuaternionUtil, RoundTripFromQuaternion) {
|
|
Quaternionf quaternion = Quaternionf::UnitRandom();
|
|
EXPECT_EQ(quaternion, rotationVectorToQuaternion(quaternionToRotationVector(quaternion)));
|
|
}
|
|
|
|
TEST(QuaternionUtil, RoundTripFromVector) {
|
|
Vector3f vec{0.1, 0.2, 0.3};
|
|
EXPECT_EQ(vec, quaternionToRotationVector(rotationVectorToQuaternion(vec)));
|
|
}
|
|
|
|
// Float precision necessitates this precision (1e-4f fails)
|
|
constexpr float NEAR = 1e-3f;
|
|
|
|
TEST(QuaternionUtil, quaternionToAngles_basic) {
|
|
float pitch, roll, yaw;
|
|
|
|
// angles as reported.
|
|
// choose 11 angles between -M_PI / 2 to M_PI / 2
|
|
for (int step = -5; step <= 5; ++step) {
|
|
const float angle = M_PI * step * 0.1f;
|
|
|
|
quaternionToAngles(rotationVectorToQuaternion({angle, 0.f, 0.f}), &pitch, &roll, &yaw);
|
|
EXPECT_NEAR(angle, pitch, NEAR);
|
|
EXPECT_NEAR(0.f, roll, NEAR);
|
|
EXPECT_NEAR(0.f, yaw, NEAR);
|
|
|
|
quaternionToAngles(rotationVectorToQuaternion({0.f, angle, 0.f}), &pitch, &roll, &yaw);
|
|
EXPECT_NEAR(0.f, pitch, NEAR);
|
|
EXPECT_NEAR(angle, roll, NEAR);
|
|
EXPECT_NEAR(0.f, yaw, NEAR);
|
|
|
|
quaternionToAngles(rotationVectorToQuaternion({0.f, 0.f, angle}), &pitch, &roll, &yaw);
|
|
EXPECT_NEAR(0.f, pitch, NEAR);
|
|
EXPECT_NEAR(0.f, roll, NEAR);
|
|
EXPECT_NEAR(angle, yaw, NEAR);
|
|
}
|
|
|
|
// Generates a debug string
|
|
const std::string s = quaternionToAngles<true /* DEBUG */>(
|
|
rotationVectorToQuaternion({M_PI, 0.f, 0.f}), &pitch, &roll, &yaw);
|
|
ASSERT_FALSE(s.empty());
|
|
}
|
|
|
|
TEST(QuaternionUtil, quaternionToAngles_zaxis) {
|
|
float pitch, roll, yaw;
|
|
|
|
for (int rot_step = -10; rot_step <= 10; ++rot_step) {
|
|
const float rot_angle = M_PI * rot_step * 0.1f;
|
|
// pitch independent of world Z rotation
|
|
|
|
// We don't test the boundaries of pitch +-M_PI/2 as roll can become
|
|
// degenerate and atan(0, 0) may report 0, PI, or -PI.
|
|
for (int step = -4; step <= 4; ++step) {
|
|
const float angle = M_PI * step * 0.1f;
|
|
auto q = rotationVectorToQuaternion({angle, 0.f, 0.f});
|
|
auto world_z = rotationVectorToQuaternion({0.f, 0.f, rot_angle});
|
|
|
|
// Sequential active rotations (on world frame) compose as R_2 * R_1.
|
|
quaternionToAngles(world_z * q, &pitch, &roll, &yaw);
|
|
|
|
EXPECT_NEAR(angle, pitch, NEAR);
|
|
EXPECT_NEAR(0.f, roll, NEAR);
|
|
}
|
|
|
|
// roll independent of world Z rotation
|
|
for (int step = -5; step <= 5; ++step) {
|
|
const float angle = M_PI * step * 0.1f;
|
|
auto q = rotationVectorToQuaternion({0.f, angle, 0.f});
|
|
auto world_z = rotationVectorToQuaternion({0.f, 0.f, rot_angle});
|
|
|
|
// Sequential active rotations (on world frame) compose as R_2 * R_1.
|
|
quaternionToAngles(world_z * q, &pitch, &roll, &yaw);
|
|
|
|
EXPECT_NEAR(0.f, pitch, NEAR);
|
|
EXPECT_NEAR(angle, roll, NEAR);
|
|
|
|
// Convert extrinsic (world-based) active rotations to a sequence of
|
|
// intrinsic rotations (each rotation based off of previous rotation
|
|
// frame).
|
|
//
|
|
// R_1 * R_intrinsic = R_extrinsic * R_1
|
|
// implies
|
|
// R_intrinsic = (R_1)^-1 R_extrinsic R_1
|
|
//
|
|
auto world_z_intrinsic = rotationVectorToQuaternion(
|
|
q.inverse() * Vector3f(0.f, 0.f, rot_angle));
|
|
|
|
// Sequential intrinsic rotations compose as R_1 * R_2.
|
|
quaternionToAngles(q * world_z_intrinsic, &pitch, &roll, &yaw);
|
|
|
|
EXPECT_NEAR(0.f, pitch, NEAR);
|
|
EXPECT_NEAR(angle, roll, NEAR);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace media
|
|
} // namespace android
|