290 lines
9.9 KiB
C++
290 lines
9.9 KiB
C++
/*
|
|
* Copyright (C) 2020 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// Unit Test for AdjustableMaxPriorityQueue
|
|
|
|
#define LOG_NDEBUG 0
|
|
#define LOG_TAG "AdjustableMaxPriorityQueueTest"
|
|
|
|
#include <android-base/logging.h>
|
|
#include <android/binder_manager.h>
|
|
#include <android/binder_process.h>
|
|
#include <gtest/gtest.h>
|
|
#include <media/AdjustableMaxPriorityQueue.h>
|
|
#include <utils/Log.h>
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <list>
|
|
#include <queue>
|
|
#include <unordered_map>
|
|
|
|
namespace android {
|
|
|
|
class IntUniquePtrComp {
|
|
public:
|
|
bool operator()(const std::unique_ptr<int>& lhs, const std::unique_ptr<int>& rhs) const {
|
|
return *lhs < *rhs;
|
|
}
|
|
};
|
|
|
|
// Test the heap property and make sure it is the same as std::priority_queue.
|
|
TEST(AdjustableMaxPriorityQueueTest, BasicAPIS) {
|
|
AdjustableMaxPriorityQueue<std::pair<float, char*>> heap;
|
|
std::priority_queue<std::pair<float, char*>> pq;
|
|
AdjustableMaxPriorityQueue<std::pair<float, char*>> remove_queue;
|
|
|
|
// Push a set of values onto both AdjustableMaxPriorityQueue and priority_queue
|
|
// Also compute the sum of those values
|
|
double sum = 0;
|
|
for (int i = 0; i < 10; ++i) {
|
|
float value = 2.1 * i;
|
|
sum += value;
|
|
heap.push(std::pair<float, char*>(value, nullptr));
|
|
pq.push(std::pair<float, char*>(value, nullptr));
|
|
remove_queue.push(std::pair<float, char*>(value, nullptr));
|
|
}
|
|
|
|
// Test the iterator by using it to subtract all values from earlier sum
|
|
AdjustableMaxPriorityQueue<std::pair<float, char*>>::iterator it;
|
|
for (it = heap.begin(); it != heap.end(); ++it) {
|
|
sum -= it->first;
|
|
}
|
|
EXPECT_EQ(0, sum);
|
|
|
|
// Test the size();
|
|
EXPECT_EQ(10, heap.size());
|
|
|
|
// Testing pop() by popping values from both queues and compare if they are the same.
|
|
// Also check each pop is smaller than the previous pop max value.
|
|
float max = 1000;
|
|
while (!heap.empty()) {
|
|
float value = heap.top().first;
|
|
ALOGD("Value is %f ", value);
|
|
EXPECT_EQ(value, pq.top().first);
|
|
EXPECT_LE(value, max);
|
|
max = value;
|
|
heap.pop();
|
|
pq.pop();
|
|
}
|
|
|
|
// Test erase() by removing values and ensuring the heap
|
|
// condition is still met as miscellaneous elements are
|
|
// removed from the heap.
|
|
int iteration_mixer = 0;
|
|
float previous_value = remove_queue.top().first;
|
|
|
|
while (!remove_queue.empty()) {
|
|
int iteration_count = iteration_mixer % remove_queue.size();
|
|
|
|
AdjustableMaxPriorityQueue<std::pair<float, char*>>::iterator iterator =
|
|
remove_queue.begin();
|
|
|
|
// Empty loop as we just want to advance the iterator.
|
|
for (int i = 0; i < iteration_count; ++i, ++iterator) {
|
|
}
|
|
|
|
remove_queue.erase(iterator);
|
|
float value = remove_queue.top().first;
|
|
remove_queue.pop();
|
|
|
|
EXPECT_GE(previous_value, value);
|
|
|
|
++iteration_mixer;
|
|
previous_value = value;
|
|
}
|
|
}
|
|
|
|
TEST(AdjustableMaxPriorityQueueTest, BasicWithMoveOnly) {
|
|
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp> heap;
|
|
|
|
auto smaller = std::make_unique<int>(1);
|
|
EXPECT_TRUE(heap.push(std::move(smaller)));
|
|
EXPECT_EQ(1, *heap.top());
|
|
EXPECT_EQ(1, heap.size());
|
|
|
|
auto bigger = std::make_unique<int>(2);
|
|
heap.push(std::move(bigger));
|
|
EXPECT_EQ(2, *heap.top());
|
|
|
|
auto biggest = std::make_unique<int>(3);
|
|
EXPECT_TRUE(heap.push(std::move(biggest)));
|
|
|
|
EXPECT_EQ(3, heap.size());
|
|
// Biggest should be on top.
|
|
EXPECT_EQ(3, *heap.top());
|
|
|
|
biggest = heap.consume_top();
|
|
EXPECT_EQ(3, *biggest);
|
|
|
|
bigger = heap.consume_top();
|
|
EXPECT_EQ(2, *bigger);
|
|
|
|
smaller = heap.consume_top();
|
|
EXPECT_EQ(1, *smaller);
|
|
|
|
EXPECT_TRUE(heap.empty());
|
|
}
|
|
|
|
TEST(AdjustableMaxPriorityQueueTest, TestChangingItem) {
|
|
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp> heap;
|
|
using HeapIterator =
|
|
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp>::iterator;
|
|
|
|
int testValues[] = {1, 2, 3};
|
|
// Map to save each value's position in the heap.
|
|
std::unordered_map<int, HeapIterator> itemToIterratorMap;
|
|
|
|
// Insert the test values into the heap.
|
|
for (auto value : testValues) {
|
|
auto item = std::make_unique<int>(value);
|
|
EXPECT_TRUE(heap.push(std::move(item)));
|
|
}
|
|
|
|
// Save each value and its pos in the heap into the map.
|
|
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
|
|
itemToIterratorMap[*iter->get()] = iter;
|
|
}
|
|
|
|
// Change the item with value 1 -> 4. And expects the 4 to be the top of the HEAP after that.
|
|
// After changing, the heap should contain [2,3,4].
|
|
auto newValue = std::make_unique<int>(4);
|
|
itemToIterratorMap[1]->swap(newValue);
|
|
heap.rebuild();
|
|
EXPECT_EQ(4, *heap.top());
|
|
|
|
// Change the item with value 2 -> 5. And expects the 5 to be the top of the HEAP after that.
|
|
auto newValue2 = std::make_unique<int>(5);
|
|
itemToIterratorMap[2]->swap(newValue2);
|
|
heap.rebuild();
|
|
EXPECT_EQ(5, *heap.top());
|
|
}
|
|
|
|
TEST(AdjustableMaxPriorityQueueTest, TestErasingItem) {
|
|
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp> heap;
|
|
using HeapIterator =
|
|
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp>::iterator;
|
|
|
|
int testValues[] = {1, 2, 3};
|
|
// Map to save each value's position in the heap.
|
|
std::unordered_map<int, HeapIterator> itemToIterratorMap;
|
|
|
|
// Insert the test values into the heap.
|
|
for (auto value : testValues) {
|
|
auto item = std::make_unique<int>(value);
|
|
EXPECT_TRUE(heap.push(std::move(item)));
|
|
}
|
|
|
|
// Save each value and its pos in the heap into the map.
|
|
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
|
|
itemToIterratorMap[*iter->get()] = iter;
|
|
}
|
|
|
|
// The top of the heap must be 3.
|
|
EXPECT_EQ(3, *heap.top());
|
|
|
|
// Remove 3 and the top of the heap should be 2.
|
|
heap.erase(itemToIterratorMap[3]);
|
|
EXPECT_EQ(2, *heap.top());
|
|
|
|
// Reset the iter pos in the heap.
|
|
itemToIterratorMap.clear();
|
|
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
|
|
itemToIterratorMap[*iter->get()] = iter;
|
|
}
|
|
|
|
// Remove 2 and the top of the heap should be 1.
|
|
heap.erase(itemToIterratorMap[2]);
|
|
EXPECT_EQ(1, *heap.top());
|
|
|
|
// Reset the iter pos in the heap as iterator pos changed after
|
|
itemToIterratorMap.clear();
|
|
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
|
|
itemToIterratorMap[*iter->get()] = iter;
|
|
}
|
|
|
|
// Remove 1 and the heap should be empty.
|
|
heap.erase(itemToIterratorMap[1]);
|
|
EXPECT_TRUE(heap.empty());
|
|
}
|
|
|
|
// Test the heap property and make sure it is the same as std::priority_queue.
|
|
TEST(AdjustableMaxPriorityQueueTest, TranscodingSessionTest) {
|
|
// Test data structure that mimics the Transcoding session.
|
|
struct TranscodingSession {
|
|
int32_t priority;
|
|
int64_t createTimeUs;
|
|
};
|
|
|
|
// The session is arranging according to priority with highest priority comes first.
|
|
// For the session with the same priority, the session with early createTime will come first.
|
|
class TranscodingSessionComp {
|
|
public:
|
|
bool operator()(const std::unique_ptr<TranscodingSession>& lhs,
|
|
const std::unique_ptr<TranscodingSession>& rhs) const {
|
|
if (lhs->priority != rhs->priority) {
|
|
return lhs->priority < rhs->priority;
|
|
}
|
|
return lhs->createTimeUs > rhs->createTimeUs;
|
|
}
|
|
};
|
|
|
|
// Map to save each value's position in the heap.
|
|
std::unordered_map<int, TranscodingSession*> sessionIdToSessionMap;
|
|
|
|
TranscodingSession testSessions[] = {
|
|
{1 /*priority*/, 66 /*createTimeUs*/}, // First session,
|
|
{2 /*priority*/, 67 /*createTimeUs*/}, // Second session,
|
|
{2 /*priority*/, 66 /*createTimeUs*/}, // Third session,
|
|
{3 /*priority*/, 68 /*createTimeUs*/}, // Fourth session.
|
|
};
|
|
|
|
AdjustableMaxPriorityQueue<std::unique_ptr<TranscodingSession>, TranscodingSessionComp>
|
|
sessionQueue;
|
|
|
|
// Pushes all the sessions into the heap.
|
|
for (int sessionId = 0; sessionId < 4; ++sessionId) {
|
|
auto newSession = std::make_unique<TranscodingSession>(testSessions[sessionId]);
|
|
sessionIdToSessionMap[sessionId] = newSession.get();
|
|
EXPECT_TRUE(sessionQueue.push(std::move(newSession)));
|
|
}
|
|
|
|
// Check the session queue size.
|
|
EXPECT_EQ(4, sessionQueue.size());
|
|
|
|
// Check the top and it should be Forth session: (3, 68)
|
|
const std::unique_ptr<TranscodingSession>& topSession = sessionQueue.top();
|
|
EXPECT_EQ(3, topSession->priority);
|
|
EXPECT_EQ(68, topSession->createTimeUs);
|
|
|
|
// Consume the top.
|
|
std::unique_ptr<TranscodingSession> consumeSession = sessionQueue.consume_top();
|
|
|
|
// Check the top and it should be Third Session (2, 66)
|
|
const std::unique_ptr<TranscodingSession>& topSession2 = sessionQueue.top();
|
|
EXPECT_EQ(2, topSession2->priority);
|
|
EXPECT_EQ(66, topSession2->createTimeUs);
|
|
|
|
// Change the Second session's priority to 4 from (2, 67) -> (4, 67). It should becomes
|
|
// top of the queue.
|
|
sessionIdToSessionMap[1]->priority = 4;
|
|
sessionQueue.rebuild();
|
|
const std::unique_ptr<TranscodingSession>& topSession3 = sessionQueue.top();
|
|
EXPECT_EQ(4, topSession3->priority);
|
|
EXPECT_EQ(67, topSession3->createTimeUs);
|
|
}
|
|
} // namespace android
|