351 lines
15 KiB
C++
351 lines
15 KiB
C++
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <cstdint>
|
|
|
|
#include "RenderScriptToolkit.h"
|
|
#include "TaskProcessor.h"
|
|
#include "Utils.h"
|
|
|
|
namespace android {
|
|
namespace renderscript {
|
|
|
|
#define LOG_TAG "renderscript.toolkit.Convolve5x5"
|
|
|
|
extern "C" void rsdIntrinsicConvolve5x5_K(void* dst, const void* y0, const void* y1, const void* y2,
|
|
const void* y3, const void* y4, const int16_t* coef,
|
|
uint32_t count);
|
|
|
|
class Convolve5x5Task : public Task {
|
|
const void* mIn;
|
|
void* mOut;
|
|
// Even though we have exactly 25 coefficients, store them in an array of size 28 so that
|
|
// the SIMD instructions can load them in three chunks of 8 and 1 of chunk of 4.
|
|
float mFp[28];
|
|
int16_t mIp[28];
|
|
|
|
void kernelU4(uchar* out, uint32_t xstart, uint32_t xend, const uchar* py0, const uchar* py1,
|
|
const uchar* py2, const uchar* py3, const uchar* py4);
|
|
void convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY,
|
|
size_t startX, size_t startY, size_t endX, size_t endY);
|
|
|
|
// Process a 2D tile of the overall work. threadIndex identifies which thread does the work.
|
|
virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX,
|
|
size_t endY) override;
|
|
|
|
public:
|
|
Convolve5x5Task(const void* in, void* out, size_t vectorSize, size_t sizeX, size_t sizeY,
|
|
const float* coefficients, const Restriction* restriction)
|
|
: Task{sizeX, sizeY, vectorSize, false, restriction}, mIn{in}, mOut{out} {
|
|
for (int ct = 0; ct < 25; ct++) {
|
|
mFp[ct] = coefficients[ct];
|
|
if (mFp[ct] >= 0) {
|
|
mIp[ct] = (int16_t)(mFp[ct] * 256.f + 0.5f);
|
|
} else {
|
|
mIp[ct] = (int16_t)(mFp[ct] * 256.f - 0.5f);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename InputOutputType, typename ComputationType>
|
|
static void ConvolveOneU(uint32_t x, InputOutputType* out, const InputOutputType* py0,
|
|
const InputOutputType* py1, const InputOutputType* py2,
|
|
const InputOutputType* py3, const InputOutputType* py4, const float* coeff,
|
|
int32_t width) {
|
|
uint32_t x0 = std::max((int32_t)x - 2, 0);
|
|
uint32_t x1 = std::max((int32_t)x - 1, 0);
|
|
uint32_t x2 = x;
|
|
uint32_t x3 = std::min((int32_t)x + 1, width - 1);
|
|
uint32_t x4 = std::min((int32_t)x + 2, width - 1);
|
|
|
|
ComputationType px = convert<ComputationType>(py0[x0]) * coeff[0] +
|
|
convert<ComputationType>(py0[x1]) * coeff[1] +
|
|
convert<ComputationType>(py0[x2]) * coeff[2] +
|
|
convert<ComputationType>(py0[x3]) * coeff[3] +
|
|
convert<ComputationType>(py0[x4]) * coeff[4] +
|
|
|
|
convert<ComputationType>(py1[x0]) * coeff[5] +
|
|
convert<ComputationType>(py1[x1]) * coeff[6] +
|
|
convert<ComputationType>(py1[x2]) * coeff[7] +
|
|
convert<ComputationType>(py1[x3]) * coeff[8] +
|
|
convert<ComputationType>(py1[x4]) * coeff[9] +
|
|
|
|
convert<ComputationType>(py2[x0]) * coeff[10] +
|
|
convert<ComputationType>(py2[x1]) * coeff[11] +
|
|
convert<ComputationType>(py2[x2]) * coeff[12] +
|
|
convert<ComputationType>(py2[x3]) * coeff[13] +
|
|
convert<ComputationType>(py2[x4]) * coeff[14] +
|
|
|
|
convert<ComputationType>(py3[x0]) * coeff[15] +
|
|
convert<ComputationType>(py3[x1]) * coeff[16] +
|
|
convert<ComputationType>(py3[x2]) * coeff[17] +
|
|
convert<ComputationType>(py3[x3]) * coeff[18] +
|
|
convert<ComputationType>(py3[x4]) * coeff[19] +
|
|
|
|
convert<ComputationType>(py4[x0]) * coeff[20] +
|
|
convert<ComputationType>(py4[x1]) * coeff[21] +
|
|
convert<ComputationType>(py4[x2]) * coeff[22] +
|
|
convert<ComputationType>(py4[x3]) * coeff[23] +
|
|
convert<ComputationType>(py4[x4]) * coeff[24];
|
|
px = clamp(px + 0.5f, 0.f, 255.f);
|
|
*out = convert<InputOutputType>(px);
|
|
}
|
|
|
|
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
|
|
template <typename InputOutputType>
|
|
static void ConvolveOneF(uint32_t x, InputOutputType* out, const InputOutputType* py0,
|
|
const InputOutputType* py1, const InputOutputType* py2,
|
|
const InputOutputType* py3, const InputOutputType* py4, const float* coeff,
|
|
int32_t width) {
|
|
uint32_t x0 = std::max((int32_t)x - 2, 0);
|
|
uint32_t x1 = std::max((int32_t)x - 1, 0);
|
|
uint32_t x2 = x;
|
|
uint32_t x3 = std::min((int32_t)x + 1, width - 1);
|
|
uint32_t x4 = std::min((int32_t)x + 2, width - 1);
|
|
|
|
InputOutputType px = py0[x0] * coeff[0] + py0[x1] * coeff[1] + py0[x2] * coeff[2] +
|
|
py0[x3] * coeff[3] + py0[x4] * coeff[4] +
|
|
|
|
py1[x0] * coeff[5] + py1[x1] * coeff[6] + py1[x2] * coeff[7] +
|
|
py1[x3] * coeff[8] + py1[x4] * coeff[9] +
|
|
|
|
py2[x0] * coeff[10] + py2[x1] * coeff[11] + py2[x2] * coeff[12] +
|
|
py2[x3] * coeff[13] + py2[x4] * coeff[14] +
|
|
|
|
py3[x0] * coeff[15] + py3[x1] * coeff[16] + py3[x2] * coeff[17] +
|
|
py3[x3] * coeff[18] + py3[x4] * coeff[19] +
|
|
|
|
py4[x0] * coeff[20] + py4[x1] * coeff[21] + py4[x2] * coeff[22] +
|
|
py4[x3] * coeff[23] + py4[x4] * coeff[24];
|
|
*out = px;
|
|
}
|
|
#endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
|
|
|
|
/**
|
|
* This function convolves one line.
|
|
*
|
|
* @param pout Where to place the next output.
|
|
* @param xstart Index in the X direction of where to start.
|
|
* @param xend End index
|
|
* @param ppy0 Points to the start of the line two above.
|
|
* @param ppy1 Points to the start of the line one above.
|
|
* @param ppy2 Points to the start of the current line.
|
|
* @param ppy3 Points to the start of the line one below.
|
|
* @param ppy4 Points to the start of the line two below.
|
|
*/
|
|
void Convolve5x5Task::kernelU4(uchar* pout, uint32_t x1, uint32_t x2, const uchar* ppy0,
|
|
const uchar* ppy1, const uchar* ppy2, const uchar* ppy3,
|
|
const uchar* ppy4) {
|
|
uchar4* out = (uchar4*)pout;
|
|
const uchar4* py0 = (const uchar4*)ppy0;
|
|
const uchar4* py1 = (const uchar4*)ppy1;
|
|
const uchar4* py2 = (const uchar4*)ppy2;
|
|
const uchar4* py3 = (const uchar4*)ppy3;
|
|
const uchar4* py4 = (const uchar4*)ppy4;
|
|
|
|
while ((x1 < x2) && (x1 < 2)) {
|
|
ConvolveOneU<uchar4, float4>(x1, out, py0, py1, py2, py3, py4, mFp, mSizeX);
|
|
out++;
|
|
x1++;
|
|
}
|
|
#if defined(ARCH_X86_HAVE_SSSE3)
|
|
// for x86 SIMD, require minimum of 7 elements (4 for SIMD,
|
|
// 3 for end boundary where x may hit the end boundary)
|
|
if (mUsesSimd && ((x1 + 6) < x2)) {
|
|
// subtract 3 for end boundary
|
|
uint32_t len = (x2 - x1 - 3) >> 2;
|
|
rsdIntrinsicConvolve5x5_K(out, py0 + x1 - 2, py1 + x1 - 2, py2 + x1 - 2, py3 + x1 - 2,
|
|
py4 + x1 - 2, mIp, len);
|
|
out += len << 2;
|
|
x1 += len << 2;
|
|
}
|
|
#endif
|
|
|
|
#if defined(ARCH_ARM_USE_INTRINSICS)
|
|
if (mUsesSimd && ((x1 + 3) < x2)) {
|
|
uint32_t len = (x2 - x1 - 3) >> 1;
|
|
rsdIntrinsicConvolve5x5_K(out, py0 + x1 - 2, py1 + x1 - 2, py2 + x1 - 2, py3 + x1 - 2,
|
|
py4 + x1 - 2, mIp, len);
|
|
out += len << 1;
|
|
x1 += len << 1;
|
|
}
|
|
#endif
|
|
|
|
while (x1 < x2) {
|
|
ConvolveOneU<uchar4, float4>(x1, out, py0, py1, py2, py3, py4, mFp, mSizeX);
|
|
out++;
|
|
x1++;
|
|
}
|
|
}
|
|
|
|
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
|
|
// This will need more cleanup before it can be used.
|
|
void Convolve5x5Task::kernelF4(const ConvolveInfo* info, float4* out,
|
|
uint32_t xstart, uint32_t xend, uint32_t currentY) {
|
|
const uchar* pin = (const uchar*)info->in;
|
|
const size_t stride = info->stride;
|
|
|
|
uint32_t y0 = std::max((int32_t)currentY - 2, 0);
|
|
uint32_t y1 = std::max((int32_t)currentY - 1, 0);
|
|
uint32_t y2 = currentY;
|
|
uint32_t y3 = std::min((int32_t)currentY + 1, sizeY);
|
|
uint32_t y4 = std::min((int32_t)currentY + 2, sizeY);
|
|
|
|
const float4* py0 = (const float4*)(pin + stride * y0);
|
|
const float4* py1 = (const float4*)(pin + stride * y1);
|
|
const float4* py2 = (const float4*)(pin + stride * y2);
|
|
const float4* py3 = (const float4*)(pin + stride * y3);
|
|
const float4* py4 = (const float4*)(pin + stride * y4);
|
|
|
|
for (uint32_t x = xstart; x < xend; x++, out++) {
|
|
ConvolveOneF<float4>(x, out, py0, py1, py2, py3, py4, mFp, sizeX);
|
|
}
|
|
}
|
|
|
|
void RsdCpuScriptIntrinsicConvolve5x5_kernelF2(const ConvolveInfo* info, float2* out,
|
|
uint32_t xstart, uint32_t xend, uint32_t currentY) {
|
|
const uchar* pin = (const uchar*)info->in;
|
|
const size_t stride = info->stride;
|
|
|
|
uint32_t y0 = std::max((int32_t)currentY - 2, 0);
|
|
uint32_t y1 = std::max((int32_t)currentY - 1, 0);
|
|
uint32_t y2 = currentY;
|
|
uint32_t y3 = std::min((int32_t)currentY + 1, sizeY);
|
|
uint32_t y4 = std::min((int32_t)currentY + 2, sizeY);
|
|
|
|
const float2* py0 = (const float2*)(pin + stride * y0);
|
|
const float2* py1 = (const float2*)(pin + stride * y1);
|
|
const float2* py2 = (const float2*)(pin + stride * y2);
|
|
const float2* py3 = (const float2*)(pin + stride * y3);
|
|
const float2* py4 = (const float2*)(pin + stride * y4);
|
|
|
|
for (uint32_t x = xstart; x < xend; x++, out++) {
|
|
ConvolveOneF<float2>(x, out, py0, py1, py2, py3, py4, mFp, sizeX);
|
|
}
|
|
}
|
|
|
|
void RsdCpuScriptIntrinsicConvolve5x5_kernelF1(const ConvolveInfo* info, float* out,
|
|
uint32_t xstart, uint32_t xend, uint32_t currentY) {
|
|
const uchar* pin = (const uchar*)info->in;
|
|
const size_t stride = info->stride;
|
|
|
|
uint32_t y0 = std::max((int32_t)currentY - 2, 0);
|
|
uint32_t y1 = std::max((int32_t)currentY - 1, 0);
|
|
uint32_t y2 = currentY;
|
|
uint32_t y3 = std::min((int32_t)currentY + 1, sizeY);
|
|
uint32_t y4 = std::min((int32_t)currentY + 2, sizeY);
|
|
|
|
const float* py0 = (const float*)(pin + stride * y0);
|
|
const float* py1 = (const float*)(pin + stride * y1);
|
|
const float* py2 = (const float*)(pin + stride * y2);
|
|
const float* py3 = (const float*)(pin + stride * y3);
|
|
const float* py4 = (const float*)(pin + stride * y4);
|
|
|
|
for (uint32_t x = xstart; x < xend; x++, out++) {
|
|
ConvolveOneF<float>(x, out, py0, py1, py2, py3, py4, mFp, sizeX);
|
|
}
|
|
}
|
|
#endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT
|
|
|
|
template <typename InputOutputType, typename ComputationType>
|
|
static void convolveU(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY,
|
|
size_t startX, size_t startY, size_t endX, size_t endY, float* mFp) {
|
|
const size_t stride = vectorSize * sizeX;
|
|
for (size_t y = startY; y < endY; y++) {
|
|
uint32_t y0 = std::max((int32_t)y - 2, 0);
|
|
uint32_t y1 = std::max((int32_t)y - 1, 0);
|
|
uint32_t y2 = y;
|
|
uint32_t y3 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1));
|
|
uint32_t y4 = std::min((int32_t)y + 2, (int32_t)(sizeY - 1));
|
|
|
|
size_t offset = (y * sizeX + startX) * vectorSize;
|
|
InputOutputType* px = (InputOutputType*)(pout + offset);
|
|
InputOutputType* py0 = (InputOutputType*)(pin + stride * y0);
|
|
InputOutputType* py1 = (InputOutputType*)(pin + stride * y1);
|
|
InputOutputType* py2 = (InputOutputType*)(pin + stride * y2);
|
|
InputOutputType* py3 = (InputOutputType*)(pin + stride * y3);
|
|
InputOutputType* py4 = (InputOutputType*)(pin + stride * y4);
|
|
for (uint32_t x = startX; x < endX; x++, px++) {
|
|
ConvolveOneU<InputOutputType, ComputationType>(x, px, py0, py1, py2, py3, py4, mFp,
|
|
sizeX);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Convolve5x5Task::convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX,
|
|
size_t sizeY, size_t startX, size_t startY, size_t endX,
|
|
size_t endY) {
|
|
const size_t stride = paddedSize(vectorSize) * sizeX;
|
|
for (size_t y = startY; y < endY; y++) {
|
|
uint32_t y0 = std::max((int32_t)y - 2, 0);
|
|
uint32_t y1 = std::max((int32_t)y - 1, 0);
|
|
uint32_t y2 = y;
|
|
uint32_t y3 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1));
|
|
uint32_t y4 = std::min((int32_t)y + 2, (int32_t)(sizeY - 1));
|
|
|
|
size_t offset = (y * sizeX + startX) * paddedSize(vectorSize);
|
|
uchar* px = pout + offset;
|
|
const uchar* py0 = pin + stride * y0;
|
|
const uchar* py1 = pin + stride * y1;
|
|
const uchar* py2 = pin + stride * y2;
|
|
const uchar* py3 = pin + stride * y3;
|
|
const uchar* py4 = pin + stride * y4;
|
|
kernelU4(px, startX, endX, py0, py1, py2, py3, py4);
|
|
}
|
|
}
|
|
|
|
void Convolve5x5Task::processData(int /* threadIndex */, size_t startX, size_t startY, size_t endX,
|
|
size_t endY) {
|
|
// ALOGI("Thread %d start tile from (%zd, %zd) to (%zd, %zd)", threadIndex, startX, startY,
|
|
// endX, endY);
|
|
switch (mVectorSize) {
|
|
case 1:
|
|
convolveU<uchar, float>((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY,
|
|
startX, startY, endX, endY, mFp);
|
|
break;
|
|
case 2:
|
|
convolveU<uchar2, float2>((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY,
|
|
startX, startY, endX, endY, mFp);
|
|
break;
|
|
case 3:
|
|
case 4:
|
|
convolveU4((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, startX, startY,
|
|
endX, endY);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void RenderScriptToolkit::convolve5x5(const void* in, void* out, size_t vectorSize, size_t sizeX,
|
|
size_t sizeY, const float* coefficients,
|
|
const Restriction* restriction) {
|
|
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE
|
|
if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) {
|
|
return;
|
|
}
|
|
if (vectorSize < 1 || vectorSize > 4) {
|
|
ALOGE("The vectorSize should be between 1 and 4. %zu provided.", vectorSize);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
Convolve5x5Task task(in, out, vectorSize, sizeX, sizeY, coefficients, restriction);
|
|
processor->doTask(&task);
|
|
}
|
|
|
|
} // namespace renderscript
|
|
} // namespace android
|