android13/kernel-5.10/drivers/firmware/rockchip_sip.c

689 lines
17 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2016, Fuzhou Rockchip Electronics Co., Ltd
*/
#include <linux/arm-smccc.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/rockchip/rockchip_sip.h>
#include <asm/cputype.h>
#ifdef CONFIG_ARM
#include <asm/psci.h>
#endif
#include <asm/smp_plat.h>
#include <uapi/linux/psci.h>
#include <linux/ptrace.h>
#include <linux/sched/clock.h>
#include <linux/slab.h>
#include <soc/rockchip/rockchip_sip.h>
#ifdef CONFIG_64BIT
#define PSCI_FN_NATIVE(version, name) PSCI_##version##_FN64_##name
#else
#define PSCI_FN_NATIVE(version, name) PSCI_##version##_FN_##name
#endif
#define SIZE_PAGE(n) ((n) << 12)
static struct arm_smccc_res __invoke_sip_fn_smc(unsigned long function_id,
unsigned long arg0,
unsigned long arg1,
unsigned long arg2)
{
struct arm_smccc_res res;
arm_smccc_smc(function_id, arg0, arg1, arg2, 0, 0, 0, 0, &res);
return res;
}
struct arm_smccc_res sip_smc_dram(u32 arg0, u32 arg1, u32 arg2)
{
return __invoke_sip_fn_smc(SIP_DRAM_CONFIG, arg0, arg1, arg2);
}
EXPORT_SYMBOL_GPL(sip_smc_dram);
struct arm_smccc_res sip_smc_get_atf_version(void)
{
return __invoke_sip_fn_smc(SIP_ATF_VERSION, 0, 0, 0);
}
EXPORT_SYMBOL_GPL(sip_smc_get_atf_version);
struct arm_smccc_res sip_smc_get_sip_version(void)
{
return __invoke_sip_fn_smc(SIP_SIP_VERSION, 0, 0, 0);
}
EXPORT_SYMBOL_GPL(sip_smc_get_sip_version);
int sip_smc_set_suspend_mode(u32 ctrl, u32 config1, u32 config2)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_SUSPEND_MODE, ctrl, config1, config2);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_smc_set_suspend_mode);
struct arm_smccc_res sip_smc_get_suspend_info(u32 info)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_SUSPEND_MODE, info, 0, 0);
return res;
}
EXPORT_SYMBOL_GPL(sip_smc_get_suspend_info);
int sip_smc_virtual_poweroff(void)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(PSCI_FN_NATIVE(1_0, SYSTEM_SUSPEND), 0, 0, 0);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_smc_virtual_poweroff);
int sip_smc_remotectl_config(u32 func, u32 data)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_REMOTECTL_CFG, func, data, 0);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_smc_remotectl_config);
u32 sip_smc_secure_reg_read(u32 addr_phy)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_ACCESS_REG, 0, addr_phy, SECURE_REG_RD);
if (res.a0)
pr_err("%s error: %d, addr phy: 0x%x\n",
__func__, (int)res.a0, addr_phy);
return res.a1;
}
EXPORT_SYMBOL_GPL(sip_smc_secure_reg_read);
int sip_smc_secure_reg_write(u32 addr_phy, u32 val)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_ACCESS_REG, val, addr_phy, SECURE_REG_WR);
if (res.a0)
pr_err("%s error: %d, addr phy: 0x%x\n",
__func__, (int)res.a0, addr_phy);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_smc_secure_reg_write);
static void *sip_map(phys_addr_t start, size_t size)
{
struct page **pages;
phys_addr_t page_start;
unsigned int page_count;
pgprot_t prot;
unsigned int i;
void *vaddr;
if (!pfn_valid(__phys_to_pfn(start)))
return ioremap(start, size);
page_start = start - offset_in_page(start);
page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
prot = pgprot_noncached(PAGE_KERNEL);
pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
if (!pages) {
pr_err("%s: Failed to allocate array for %u pages\n",
__func__, page_count);
return NULL;
}
for (i = 0; i < page_count; i++)
pages[i] = phys_to_page(page_start + i * PAGE_SIZE);
vaddr = vmap(pages, page_count, VM_MAP, prot);
kfree(pages);
/*
* Since vmap() uses page granularity, we must add the offset
* into the page here, to get the byte granularity address
* into the mapping to represent the actual "start" location.
*/
return vaddr + offset_in_page(start);
}
struct arm_smccc_res sip_smc_request_share_mem(u32 page_num,
share_page_type_t page_type)
{
struct arm_smccc_res res;
unsigned long share_mem_phy;
res = __invoke_sip_fn_smc(SIP_SHARE_MEM, page_num, page_type, 0);
if (IS_SIP_ERROR(res.a0))
goto error;
share_mem_phy = res.a1;
res.a1 = (unsigned long)sip_map(share_mem_phy, SIZE_PAGE(page_num));
error:
return res;
}
EXPORT_SYMBOL_GPL(sip_smc_request_share_mem);
struct arm_smccc_res sip_smc_mcu_el3fiq(u32 arg0, u32 arg1, u32 arg2)
{
return __invoke_sip_fn_smc(SIP_MCU_EL3FIQ_CFG, arg0, arg1, arg2);
}
EXPORT_SYMBOL_GPL(sip_smc_mcu_el3fiq);
struct arm_smccc_res sip_smc_vpu_reset(u32 arg0, u32 arg1, u32 arg2)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(PSCI_SIP_VPU_RESET, arg0, arg1, arg2);
return res;
}
EXPORT_SYMBOL_GPL(sip_smc_vpu_reset);
struct arm_smccc_res sip_smc_bus_config(u32 arg0, u32 arg1, u32 arg2)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_BUS_CFG, arg0, arg1, arg2);
return res;
}
EXPORT_SYMBOL_GPL(sip_smc_bus_config);
struct dram_addrmap_info *sip_smc_get_dram_map(void)
{
struct arm_smccc_res res;
static struct dram_addrmap_info *map;
if (map)
return map;
/* Request share memory size 4KB */
res = sip_smc_request_share_mem(1, SHARE_PAGE_TYPE_DDR_ADDRMAP);
if (res.a0 != 0) {
pr_err("no ATF memory for init\n");
return NULL;
}
map = (struct dram_addrmap_info *)res.a1;
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR_ADDRMAP, 0,
ROCKCHIP_SIP_CONFIG_DRAM_ADDRMAP_GET);
if (res.a0) {
pr_err("rockchip_sip_config_dram_init error:%lx\n", res.a0);
map = NULL;
return NULL;
}
return map;
}
EXPORT_SYMBOL_GPL(sip_smc_get_dram_map);
struct arm_smccc_res sip_smc_lastlog_request(void)
{
struct arm_smccc_res res;
void __iomem *addr1, *addr2;
res = __invoke_sip_fn_smc(SIP_LAST_LOG, local_clock(), 0, 0);
if (IS_SIP_ERROR(res.a0))
return res;
addr1 = sip_map(res.a1, res.a3);
if (!addr1) {
pr_err("%s: share memory buffer0 ioremap failed\n", __func__);
res.a0 = SIP_RET_INVALID_ADDRESS;
return res;
}
addr2 = sip_map(res.a2, res.a3);
if (!addr2) {
pr_err("%s: share memory buffer1 ioremap failed\n", __func__);
res.a0 = SIP_RET_INVALID_ADDRESS;
return res;
}
res.a1 = (unsigned long)addr1;
res.a2 = (unsigned long)addr2;
return res;
}
EXPORT_SYMBOL_GPL(sip_smc_lastlog_request);
int sip_smc_amp_config(u32 sub_func_id, u32 arg1, u32 arg2, u32 arg3)
{
struct arm_smccc_res res;
arm_smccc_smc(RK_SIP_AMP_CFG, sub_func_id, arg1, arg2, arg3,
0, 0, 0, &res);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_smc_amp_config);
struct arm_smccc_res sip_smc_get_amp_info(u32 sub_func_id, u32 arg1)
{
struct arm_smccc_res res;
arm_smccc_smc(RK_SIP_AMP_CFG, sub_func_id, arg1, 0, 0, 0, 0, 0, &res);
return res;
}
EXPORT_SYMBOL_GPL(sip_smc_get_amp_info);
void __iomem *sip_hdcp_request_share_memory(int id)
{
static void __iomem *base;
struct arm_smccc_res res;
if (id < 0 || id >= MAX_DEVICE) {
pr_err("%s: invalid device id\n", __func__);
return NULL;
}
if (!base) {
/* request page share memory */
res = sip_smc_request_share_mem(2, SHARE_PAGE_TYPE_HDCP);
if (IS_SIP_ERROR(res.a0))
return NULL;
base = (void __iomem *)res.a1;
}
return base + id * 1024;
}
EXPORT_SYMBOL_GPL(sip_hdcp_request_share_memory);
struct arm_smccc_res sip_hdcp_config(u32 arg0, u32 arg1, u32 arg2)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_HDCP_CONFIG, arg0, arg1, arg2);
return res;
}
EXPORT_SYMBOL_GPL(sip_hdcp_config);
/************************** fiq debugger **************************************/
/*
* AArch32 is not allowed to call SMC64(ATF framework does not support), so we
* don't change SIP_UARTDBG_FN to SIP_UARTDBG_CFG64 even when cpu is AArch32
* mode. Let ATF support SIP_UARTDBG_CFG, and we just initialize SIP_UARTDBG_FN
* depends on compile option(CONFIG_ARM or CONFIG_ARM64).
*/
#ifdef CONFIG_ARM64
#define SIP_UARTDBG_FN SIP_UARTDBG_CFG64
#else
#define SIP_UARTDBG_FN SIP_UARTDBG_CFG
static int firmware_64_32bit;
#endif
static int fiq_sip_enabled;
static int fiq_target_cpu;
static phys_addr_t ft_fiq_mem_phy;
static void __iomem *ft_fiq_mem_base;
static sip_fiq_debugger_uart_irq_tf_cb_t sip_fiq_debugger_uart_irq_tf;
static struct pt_regs fiq_pt_regs;
int sip_fiq_debugger_is_enabled(void)
{
return fiq_sip_enabled;
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_is_enabled);
static void sip_fiq_debugger_get_pt_regs(void *reg_base,
unsigned long sp_el1)
{
__maybe_unused struct sm_nsec_ctx *nsec_ctx = reg_base;
__maybe_unused struct gp_regs_ctx *gp_regs = reg_base;
#ifdef CONFIG_ARM64
/*
* 64-bit ATF + 64-bit kernel
*/
/* copy cpu context: x0 ~ spsr_el3 */
memcpy(&fiq_pt_regs, reg_base, 8 * 31);
/* copy pstate: spsr_el3 */
memcpy(&fiq_pt_regs.pstate, reg_base + 0x110, 8);
fiq_pt_regs.sp = sp_el1;
/* copy pc: elr_el3 */
memcpy(&fiq_pt_regs.pc, reg_base + 0x118, 8);
#else
if (firmware_64_32bit == FIRMWARE_ATF_64BIT) {
/*
* 64-bit ATF + 32-bit kernel
*/
fiq_pt_regs.ARM_r0 = gp_regs->x0;
fiq_pt_regs.ARM_r1 = gp_regs->x1;
fiq_pt_regs.ARM_r2 = gp_regs->x2;
fiq_pt_regs.ARM_r3 = gp_regs->x3;
fiq_pt_regs.ARM_r4 = gp_regs->x4;
fiq_pt_regs.ARM_r5 = gp_regs->x5;
fiq_pt_regs.ARM_r6 = gp_regs->x6;
fiq_pt_regs.ARM_r7 = gp_regs->x7;
fiq_pt_regs.ARM_r8 = gp_regs->x8;
fiq_pt_regs.ARM_r9 = gp_regs->x9;
fiq_pt_regs.ARM_r10 = gp_regs->x10;
fiq_pt_regs.ARM_fp = gp_regs->x11;
fiq_pt_regs.ARM_ip = gp_regs->x12;
fiq_pt_regs.ARM_sp = gp_regs->x19; /* aarch32 svc_r13 */
fiq_pt_regs.ARM_lr = gp_regs->x18; /* aarch32 svc_r14 */
fiq_pt_regs.ARM_cpsr = gp_regs->spsr_el3;
fiq_pt_regs.ARM_pc = gp_regs->elr_el3;
} else {
/*
* 32-bit tee firmware + 32-bit kernel
*/
fiq_pt_regs.ARM_r0 = nsec_ctx->r0;
fiq_pt_regs.ARM_r1 = nsec_ctx->r1;
fiq_pt_regs.ARM_r2 = nsec_ctx->r2;
fiq_pt_regs.ARM_r3 = nsec_ctx->r3;
fiq_pt_regs.ARM_r4 = nsec_ctx->r4;
fiq_pt_regs.ARM_r5 = nsec_ctx->r5;
fiq_pt_regs.ARM_r6 = nsec_ctx->r6;
fiq_pt_regs.ARM_r7 = nsec_ctx->r7;
fiq_pt_regs.ARM_r8 = nsec_ctx->r8;
fiq_pt_regs.ARM_r9 = nsec_ctx->r9;
fiq_pt_regs.ARM_r10 = nsec_ctx->r10;
fiq_pt_regs.ARM_fp = nsec_ctx->r11;
fiq_pt_regs.ARM_ip = nsec_ctx->r12;
fiq_pt_regs.ARM_sp = nsec_ctx->svc_sp;
fiq_pt_regs.ARM_lr = nsec_ctx->svc_lr;
fiq_pt_regs.ARM_cpsr = nsec_ctx->mon_spsr;
/*
* 'nsec_ctx->mon_lr' is not the fiq break point's PC, because it will
* be override as 'psci_fiq_debugger_uart_irq_tf_cb' for optee-os to
* jump to fiq_debugger handler.
*
* As 'nsec_ctx->und_lr' is not used for kernel, so optee-os uses it to
* deliver fiq break point's PC.
*
*/
fiq_pt_regs.ARM_pc = nsec_ctx->und_lr;
}
#endif
}
static void sip_fiq_debugger_uart_irq_tf_cb(unsigned long sp_el1,
unsigned long offset,
unsigned long cpu)
{
char *cpu_context;
/* calling fiq handler */
if (ft_fiq_mem_base) {
cpu_context = (char *)ft_fiq_mem_base + offset;
sip_fiq_debugger_get_pt_regs(cpu_context, sp_el1);
sip_fiq_debugger_uart_irq_tf(&fiq_pt_regs, cpu);
}
/* fiq handler done, return to EL3(then EL3 return to EL1 entry) */
__invoke_sip_fn_smc(SIP_UARTDBG_FN, 0, 0, UARTDBG_CFG_OSHDL_TO_OS);
}
int sip_fiq_debugger_uart_irq_tf_init(u32 irq_id, sip_fiq_debugger_uart_irq_tf_cb_t callback_fn)
{
struct arm_smccc_res res;
fiq_target_cpu = 0;
/* init fiq debugger callback */
sip_fiq_debugger_uart_irq_tf = callback_fn;
res = __invoke_sip_fn_smc(SIP_UARTDBG_FN, irq_id,
(unsigned long)sip_fiq_debugger_uart_irq_tf_cb,
UARTDBG_CFG_INIT);
if (IS_SIP_ERROR(res.a0)) {
pr_err("%s error: %d\n", __func__, (int)res.a0);
return res.a0;
}
/* share memory ioremap */
if (!ft_fiq_mem_base) {
ft_fiq_mem_phy = res.a1;
ft_fiq_mem_base = sip_map(ft_fiq_mem_phy,
FIQ_UARTDBG_SHARE_MEM_SIZE);
if (!ft_fiq_mem_base) {
pr_err("%s: share memory ioremap failed\n", __func__);
return -ENOMEM;
}
}
fiq_sip_enabled = 1;
return SIP_RET_SUCCESS;
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_uart_irq_tf_init);
static ulong cpu_logical_map_mpidr(u32 cpu)
{
#ifdef MODULE
/* Empirically, local "cpu_logical_map()" for rockchip platforms */
ulong mpidr = read_cpuid_mpidr();
if (mpidr & MPIDR_MT_BITMASK) {
/* 0x100, 0x200, 0x300, 0x400 ... */
mpidr = (cpu & 0xff) << 8;
} else {
if (cpu < 4)
/* 0x00, 0x01, 0x02, 0x03 */
mpidr = cpu;
else if (cpu < 8)
/* 0x100, 0x101, 0x102, 0x103 */
mpidr = 0x100 | (cpu - 4);
else
pr_err("Unsupported map cpu: %d\n", cpu);
}
return mpidr;
#else
return cpu_logical_map(cpu);
#endif
}
ulong sip_cpu_logical_map_mpidr(u32 cpu)
{
return cpu_logical_map_mpidr(cpu);
}
EXPORT_SYMBOL_GPL(sip_cpu_logical_map_mpidr);
int sip_fiq_debugger_switch_cpu(u32 cpu)
{
struct arm_smccc_res res;
fiq_target_cpu = cpu;
res = __invoke_sip_fn_smc(SIP_UARTDBG_FN, cpu_logical_map_mpidr(cpu),
0, UARTDBG_CFG_OSHDL_CPUSW);
return res.a0;
}
int sip_fiq_debugger_sdei_switch_cpu(u32 cur_cpu, u32 target_cpu, u32 flag)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_SDEI_FIQ_DBG_SWITCH_CPU,
cur_cpu, target_cpu, flag);
return res.a0;
}
int sip_fiq_debugger_sdei_get_event_id(u32 *fiq, u32 *sw_cpu, u32 *flag)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_SDEI_FIQ_DBG_GET_EVENT_ID,
0, 0, 0);
*fiq = res.a1;
*sw_cpu = res.a2;
if (flag)
*flag = res.a3;
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_switch_cpu);
void sip_fiq_debugger_enable_debug(bool enable)
{
unsigned long val;
val = enable ? UARTDBG_CFG_OSHDL_DEBUG_ENABLE :
UARTDBG_CFG_OSHDL_DEBUG_DISABLE;
__invoke_sip_fn_smc(SIP_UARTDBG_FN, 0, 0, val);
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_enable_debug);
int sip_fiq_debugger_set_print_port(u32 port_phyaddr, u32 baudrate)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_UARTDBG_FN, port_phyaddr, baudrate,
UARTDBG_CFG_PRINT_PORT);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_set_print_port);
int sip_fiq_debugger_request_share_memory(void)
{
struct arm_smccc_res res;
/* request page share memory */
res = sip_smc_request_share_mem(FIQ_UARTDBG_PAGE_NUMS,
SHARE_PAGE_TYPE_UARTDBG);
if (IS_SIP_ERROR(res.a0))
return res.a0;
return SIP_RET_SUCCESS;
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_request_share_memory);
int sip_fiq_debugger_get_target_cpu(void)
{
return fiq_target_cpu;
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_get_target_cpu);
void sip_fiq_debugger_enable_fiq(bool enable, uint32_t tgt_cpu)
{
u32 en;
fiq_target_cpu = tgt_cpu;
en = enable ? UARTDBG_CFG_FIQ_ENABEL : UARTDBG_CFG_FIQ_DISABEL;
__invoke_sip_fn_smc(SIP_UARTDBG_FN, tgt_cpu, 0, en);
}
EXPORT_SYMBOL_GPL(sip_fiq_debugger_enable_fiq);
int sip_fiq_control(u32 sub_func, u32 irq, unsigned long data)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(RK_SIP_FIQ_CTRL,
sub_func, irq, data);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_fiq_control);
int sip_wdt_config(u32 sub_func, u32 arg1, u32 arg2, u32 arg3)
{
struct arm_smccc_res res;
arm_smccc_smc(SIP_WDT_CFG, sub_func, arg1, arg2, arg3,
0, 0, 0, &res);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_wdt_config);
int sip_hdmirx_config(u32 sub_func, u32 arg1, u32 arg2, u32 arg3)
{
struct arm_smccc_res res;
arm_smccc_smc(SIP_HDMIRX_CFG, sub_func, arg1, arg2, arg3,
0, 0, 0, &res);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_hdmirx_config);
int sip_hdcpkey_init(u32 hdcp_id)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(TRUSTED_OS_HDCPKEY_INIT, hdcp_id, 0, 0);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_hdcpkey_init);
int sip_smc_mcu_config(unsigned long mcu_id,
unsigned long func,
unsigned long arg2)
{
struct arm_smccc_res res;
res = __invoke_sip_fn_smc(SIP_MCU_CFG, mcu_id, func, arg2);
return res.a0;
}
EXPORT_SYMBOL_GPL(sip_smc_mcu_config);
/******************************************************************************/
#ifdef CONFIG_ARM
static __init int sip_firmware_init(void)
{
struct arm_smccc_res res;
if (!psci_smp_available())
return 0;
/*
* OP-TEE works on kernel 3.10 and 4.4 and we have different sip
* implement. We should tell OP-TEE the current rockchip sip version.
*/
res = __invoke_sip_fn_smc(SIP_SIP_VERSION, SIP_IMPLEMENT_V2,
SECURE_REG_WR, 0);
if (IS_SIP_ERROR(res.a0))
pr_err("%s: set rockchip sip version v2 failed\n", __func__);
/*
* Currently, we support:
*
* 1. 64-bit ATF + 64-bit kernel;
* 2. 64-bit ATF + 32-bit kernel;
* 3. 32-bit TEE + 32-bit kernel;
*
* We need to detect which case of above and record in firmware_64_32bit
* We get info from cpuid and compare with all supported ARMv7 cpu.
*/
switch (read_cpuid_part()) {
case ARM_CPU_PART_CORTEX_A7:
case ARM_CPU_PART_CORTEX_A8:
case ARM_CPU_PART_CORTEX_A9:
case ARM_CPU_PART_CORTEX_A12:
case ARM_CPU_PART_CORTEX_A15:
case ARM_CPU_PART_CORTEX_A17:
firmware_64_32bit = FIRMWARE_TEE_32BIT;
break;
default:
firmware_64_32bit = FIRMWARE_ATF_64BIT;
break;
}
return 0;
}
arch_initcall(sip_firmware_init);
#endif
MODULE_DESCRIPTION("Rockchip SIP Call");
MODULE_LICENSE("GPL");