android13/kernel-5.10/drivers/gpu/drm/rockchip/rk618/rk618_dsi.c

1196 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018 Rockchip Electronics Co. Ltd.
*
* Author: Wyon Bi <bivvy.bi@rock-chips.com>
*/
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/mfd/rk618.h>
#include <drm/drm_drv.h>
#include <drm/drm_of.h>
#include <drm/drm_atomic.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_panel.h>
#include <drm/drm_probe_helper.h>
#include <video/of_display_timing.h>
#include <video/mipi_display.h>
#include <video/videomode.h>
#include <asm/unaligned.h>
#include "../rockchip_drm_drv.h"
#define HOSTREG(x) ((x) + 0x1000)
#define DSI_VERSION HOSTREG(0x0000)
#define DSI_PWR_UP HOSTREG(0x0004)
#define SHUTDOWNZ BIT(0)
#define POWER_UP BIT(0)
#define RESET 0
#define DSI_CLKMGR_CFG HOSTREG(0x0008)
#define TO_CLK_DIVIDSION(x) UPDATE(x, 15, 8)
#define TX_ESC_CLK_DIVIDSION(x) UPDATE(x, 7, 0)
#define DSI_DPI_CFG HOSTREG(0x000c)
#define EN18_LOOSELY BIT(10)
#define COLORM_ACTIVE_LOW BIT(9)
#define SHUTD_ACTIVE_LOW BIT(8)
#define HSYNC_ACTIVE_LOW BIT(7)
#define VSYNC_ACTIVE_LOW BIT(6)
#define DATAEN_ACTIVE_LOW BIT(5)
#define DPI_COLOR_CODING(x) UPDATE(x, 4, 2)
#define DPI_VID(x) UPDATE(x, 1, 0)
#define DSI_PCKHDL_CFG HOSTREG(0x0018)
#define GEN_VID_RX(x) UPDATE(x, 6, 5)
#define EN_CRC_RX BIT(4)
#define EN_ECC_RX BIT(3)
#define EN_BTA BIT(2)
#define EN_EOTP_RX BIT(1)
#define EN_EOTP_TX BIT(0)
#define DSI_VID_MODE_CFG HOSTREG(0x001c)
#define LPCMDEN BIT(12)
#define FRAME_BTA_ACK BIT(11)
#define EN_NULL_PKT BIT(10)
#define EN_MULTI_PKT BIT(9)
#define EN_LP_HFP BIT(8)
#define EN_LP_HBP BIT(7)
#define EN_LP_VACT BIT(6)
#define EN_LP_VFP BIT(5)
#define EN_LP_VBP BIT(4)
#define EN_LP_VSA BIT(3)
#define VID_MODE_TYPE(x) UPDATE(x, 2, 1)
#define EN_VIDEO_MODE BIT(0)
#define DSI_VID_PKT_CFG HOSTREG(0x0020)
#define NULL_PKT_SIZE(x) UPDATE(x, 30, 21)
#define NUM_CHUNKS(x) UPDATE(x, 20, 11)
#define VID_PKT_SIZE(x) UPDATE(x, 10, 0)
#define DSI_CMD_MODE_CFG HOSTREG(0x0024)
#define TEAR_FX_EN BIT(14)
#define ACK_RQST_EN BIT(13)
#define DCS_LW_TX BIT(12)
#define GEN_LW_TX BIT(11)
#define MAX_RD_PKT_SIZE BIT(10)
#define DCS_SR_0P_TX BIT(9)
#define DCS_SW_1P_TX BIT(8)
#define DCS_SW_0P_TX BIT(7)
#define GEN_SR_2P_TX BIT(6)
#define GEN_SR_1P_TX BIT(5)
#define GEN_SR_0P_TX BIT(4)
#define GEN_SW_2P_TX BIT(3)
#define GEN_SW_1P_TX BIT(2)
#define GEN_SW_0P_TX BIT(1)
#define EN_CMD_MODE BIT(0)
#define DSI_TMR_LINE_CFG HOSTREG(0x0028)
#define HLINE_TIME(x) UPDATE(x, 31, 18)
#define HBP_TIME(x) UPDATE(x, 17, 9)
#define HSA_TIME(x) UPDATE(x, 8, 0)
#define DSI_VTIMING_CFG HOSTREG(0x002c)
#define V_ACTIVE_LINES(x) UPDATE(x, 26, 16)
#define VFP_LINES(x) UPDATE(x, 15, 10)
#define VBP_LINES(x) UPDATE(x, 9, 4)
#define VSA_LINES(x) UPDATE(x, 3, 0)
#define DSI_PHY_TMR_CFG HOSTREG(0x0030)
#define PHY_HS2LP_TIME(x) UPDATE(x, 31, 24)
#define PHY_LP2HS_TIME(x) UPDATE(x, 23, 16)
#define MAX_RD_TIME(x) UPDATE(x, 14, 0)
#define DSI_GEN_HDR HOSTREG(0x0034)
#define DSI_GEN_PLD_DATA HOSTREG(0x0038)
#define DSI_GEN_PKT_STATUS HOSTREG(0x003c)
#define GEN_RD_CMD_BUSY BIT(6)
#define GEN_PLD_R_FULL BIT(5)
#define GEN_PLD_R_EMPTY BIT(4)
#define GEN_PLD_W_FULL BIT(3)
#define GEN_PLD_W_EMPTY BIT(2)
#define GEN_CMD_FULL BIT(1)
#define GEN_CMD_EMPTY BIT(0)
#define DSI_TO_CNT_CFG HOSTREG(0x0040)
#define LPRX_TO_CNT(x) UPDATE(x, 31, 16)
#define HSTX_TO_CNT(x) UPDATE(x, 15, 0)
#define DSI_INT_ST0 HOSTREG(0x0044)
#define DSI_INT_ST1 HOSTREG(0x0048)
#define DSI_INT_MSK0 HOSTREG(0x004c)
#define DSI_INT_MSK1 HOSTREG(0x0050)
#define DSI_PHY_RSTZ HOSTREG(0x0054)
#define PHY_ENABLECLK BIT(2)
#define DSI_PHY_IF_CFG HOSTREG(0x0058)
#define PHY_STOP_WAIT_TIME(x) UPDATE(x, 9, 2)
#define N_LANES(x) UPDATE(x, 1, 0)
#define DSI_PHY_IF_CTRL HOSTREG(0x005c)
#define PHY_TX_TRIGGERS(x) UPDATE(x, 8, 5)
#define PHY_TXEXITULPSLAN BIT(4)
#define PHY_TXREQULPSLAN BIT(3)
#define PHY_TXEXITULPSCLK BIT(2)
#define PHY_RXREQULPSCLK BIT(1)
#define PHY_TXREQUESCLKHS BIT(0)
#define DSI_PHY_STATUS HOSTREG(0x0060)
#define ULPSACTIVENOT3LANE BIT(12)
#define PHYSTOPSTATE3LANE BIT(11)
#define ULPSACTIVENOT2LANE BIT(10)
#define PHYSTOPSTATE2LANE BIT(9)
#define ULPSACTIVENOT1LANE BIT(8)
#define PHYSTOPSTATE1LANE BIT(7)
#define RXULPSESC0LANE BIT(6)
#define ULPSACTIVENOT0LANE BIT(5)
#define PHYSTOPSTATE0LANE BIT(4)
#define PHYULPSACTIVENOTCLK BIT(3)
#define PHYSTOPSTATECLKLANE BIT(2)
#define PHYSTOPSTATELANE (PHYSTOPSTATE0LANE | PHYSTOPSTATECLKLANE)
#define PHYDIRECTION BIT(1)
#define PHYLOCK BIT(0)
#define DSI_LP_CMD_TIM HOSTREG(0x0070)
#define OUTVACT_LPCMD_TIME(x) UPDATE(x, 15, 8)
#define INVACT_LPCMD_TIME(x) UPDATE(x, 7, 0)
#define DSI_MAX_REGISTER DSI_LP_CMD_TIM
#define PHYREG(x) ((x) + 0x0c00)
#define MIPI_PHY_REG0 PHYREG(0x0000)
#define LANE_EN_MASK GENMASK(6, 2)
#define LANE_EN_CK BIT(6)
#define MIPI_PHY_REG1 PHYREG(0x0004)
#define REG_DA_PPFC BIT(4)
#define REG_DA_SYNCRST BIT(2)
#define REG_DA_LDOPD BIT(1)
#define REG_DA_PLLPD BIT(0)
#define MIPI_PHY_REG3 PHYREG(0x000c)
#define REG_FBDIV_HI_MASK GENMASK(5, 5)
#define REG_FBDIV_HI(x) UPDATE(x, 5, 5)
#define REG_PREDIV_MASK GENMASK(4, 0)
#define REG_PREDIV(x) UPDATE(x, 4, 0)
#define MIPI_PHY_REG4 PHYREG(0x0010)
#define REG_FBDIV_LO_MASK GENMASK(7, 0)
#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
#define MIPI_PHY_REG5 PHYREG(0x0014)
#define MIPI_PHY_REG6 PHYREG(0x0018)
#define MIPI_PHY_REG7 PHYREG(0x001c)
#define MIPI_PHY_REG9 PHYREG(0x0024)
#define MIPI_PHY_REG20 PHYREG(0x0080)
#define REG_DIG_RSTN BIT(0)
#define MIPI_PHY_MAX_REGISTER PHYREG(0x0348)
#define THS_SETTLE_OFFSET 0x00
#define THS_SETTLE_MASK GENMASK(3, 0)
#define THS_SETTLE(x) UPDATE(x, 3, 0)
#define TLPX_OFFSET 0x14
#define TLPX_MASK GENMASK(5, 0)
#define TLPX(x) UPDATE(x, 5, 0)
#define THS_PREPARE_OFFSET 0x18
#define THS_PREPARE_MASK GENMASK(6, 0)
#define THS_PREPARE(x) UPDATE(x, 6, 0)
#define THS_ZERO_OFFSET 0x1c
#define THS_ZERO_MASK GENMASK(5, 0)
#define THS_ZERO(x) UPDATE(x, 5, 0)
#define THS_TRAIL_OFFSET 0x20
#define THS_TRAIL_MASK GENMASK(6, 0)
#define THS_TRAIL(x) UPDATE(x, 6, 0)
#define THS_EXIT_OFFSET 0x24
#define THS_EXIT_MASK GENMASK(4, 0)
#define THS_EXIT(x) UPDATE(x, 4, 0)
#define TCLK_POST_OFFSET 0x28
#define TCLK_POST_MASK GENMASK(3, 0)
#define TCLK_POST(x) UPDATE(x, 3, 0)
#define TWAKUP_HI_OFFSET 0x30
#define TWAKUP_HI_MASK GENMASK(1, 0)
#define TWAKUP_HI(x) UPDATE(x, 1, 0)
#define TWAKUP_LO_OFFSET 0x34
#define TWAKUP_LO_MASK GENMASK(7, 0)
#define TWAKUP_LO(x) UPDATE(x, 7, 0)
#define TCLK_PRE_OFFSET 0x38
#define TCLK_PRE_MASK GENMASK(3, 0)
#define TCLK_PRE(x) UPDATE(x, 3, 0)
#define TTA_GO_OFFSET 0x40
#define TTA_GO_MASK GENMASK(5, 0)
#define TTA_GO(x) UPDATE(x, 5, 0)
#define TTA_SURE_OFFSET 0x44
#define TTA_SURE_MASK GENMASK(5, 0)
#define TTA_SURE(x) UPDATE(x, 5, 0)
#define TTA_WAIT_OFFSET 0x48
#define TTA_WAIT_MASK GENMASK(5, 0)
#define TTA_WAIT(x) UPDATE(x, 5, 0)
#define PSEC_PER_NSEC 1000L
#define PSEC_PER_SEC 1000000000000LL
struct mipi_dphy {
struct regmap *regmap;
u8 prediv;
u16 fbdiv;
unsigned int rate;
};
struct rk618_dsi {
struct drm_bridge base;
struct drm_connector connector;
struct drm_display_mode mode;
struct drm_panel *panel;
struct mipi_dsi_host host;
struct mipi_dphy phy;
unsigned int channel;
unsigned int lanes;
enum mipi_dsi_pixel_format format;
unsigned long mode_flags;
struct device *dev;
struct rk618 *parent;
struct regmap *regmap;
struct clk *clock;
struct rockchip_drm_sub_dev sub_dev;
};
enum {
NON_BURST_MODE_SYNC_PULSE,
NON_BURST_MODE_SYNC_EVENT,
BURST_MODE,
};
enum {
PIXEL_COLOR_CODING_16BIT_1,
PIXEL_COLOR_CODING_16BIT_2,
PIXEL_COLOR_CODING_16BIT_3,
PIXEL_COLOR_CODING_18BIT_1,
PIXEL_COLOR_CODING_18BIT_2,
PIXEL_COLOR_CODING_24BIT,
};
static inline struct rk618_dsi *bridge_to_dsi(struct drm_bridge *b)
{
return container_of(b, struct rk618_dsi, base);
}
static inline struct rk618_dsi *connector_to_dsi(struct drm_connector *c)
{
return container_of(c, struct rk618_dsi, connector);
}
static inline struct rk618_dsi *host_to_dsi(struct mipi_dsi_host *h)
{
return container_of(h, struct rk618_dsi, host);
}
static inline bool is_clk_lane(u32 offset)
{
if (offset == 0x100)
return true;
return false;
}
static void rk618_dsi_set_hs_clk(struct rk618_dsi *dsi)
{
const struct drm_display_mode *mode = &dsi->mode;
struct mipi_dphy *phy = &dsi->phy;
struct device *dev = dsi->dev;
u32 fout, fref, prediv, fbdiv;
u32 min_delta = UINT_MAX;
unsigned int value;
if (!of_property_read_u32(dev->of_node, "rockchip,lane-rate", &value)) {
fout = value * USEC_PER_SEC;
} else {
int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
unsigned int lanes = dsi->lanes;
u64 bandwidth;
bandwidth = (u64)mode->clock * 1000 * bpp;
do_div(bandwidth, lanes);
bandwidth = div_u64(bandwidth * 10, 9);
bandwidth = div_u64(bandwidth, USEC_PER_SEC);
bandwidth = bandwidth * USEC_PER_SEC;
fout = bandwidth;
}
if (fout > 1000000000UL)
fout = 1000000000UL;
fref = clk_get_rate(dsi->parent->clkin);
for (prediv = 1; prediv <= 12; prediv++) {
u64 tmp;
u32 delta;
if (fref % prediv)
continue;
tmp = (u64)fout * prediv;
do_div(tmp, fref);
fbdiv = tmp;
if (fbdiv < 12 || fbdiv > 511)
continue;
if (fbdiv == 15)
continue;
tmp = (u64)fbdiv * fref;
do_div(tmp, prediv);
delta = abs(fout - tmp);
if (!delta) {
phy->rate = tmp;
phy->prediv = prediv;
phy->fbdiv = fbdiv;
break;
} else if (delta < min_delta) {
phy->rate = tmp;
phy->prediv = prediv;
phy->fbdiv = fbdiv;
min_delta = delta;
}
}
}
static void rk618_dsi_phy_power_off(struct rk618_dsi *dsi)
{
struct mipi_dphy *phy = &dsi->phy;
regmap_update_bits(phy->regmap, MIPI_PHY_REG0, LANE_EN_MASK, 0);
regmap_update_bits(phy->regmap, MIPI_PHY_REG1,
REG_DA_LDOPD | REG_DA_PLLPD,
REG_DA_LDOPD | REG_DA_PLLPD);
}
static void rk618_dsi_phy_power_on(struct rk618_dsi *dsi, u32 txclkesc)
{
struct mipi_dphy *phy = &dsi->phy;
u32 offset, value, index;
const struct {
unsigned int rate;
u8 ths_settle;
u8 ths_zero;
u8 ths_trail;
} timing_table[] = {
{ 110000000, 0x00, 0x03, 0x0c},
{ 150000000, 0x01, 0x04, 0x0d},
{ 200000000, 0x02, 0x04, 0x11},
{ 250000000, 0x03, 0x05, 0x14},
{ 300000000, 0x04, 0x06, 0x18},
{ 400000000, 0x05, 0x07, 0x1d},
{ 500000000, 0x06, 0x08, 0x23},
{ 600000000, 0x07, 0x0a, 0x29},
{ 700000000, 0x08, 0x0b, 0x31},
{ 800000000, 0x09, 0x0c, 0x34},
{1000000000, 0x0a, 0x0f, 0x40},
};
u32 Ttxbyteclkhs, UI, Ttxddrclkhs, Ttxclkesc;
u32 Tlpx, Ths_exit, Tclk_post, Tclk_pre, Ths_prepare;
u32 Tta_go, Tta_sure, Tta_wait;
Ttxbyteclkhs = div_u64(PSEC_PER_SEC, phy->rate / 8);
UI = Ttxddrclkhs = div_u64(PSEC_PER_SEC, phy->rate);
Ttxclkesc = div_u64(PSEC_PER_SEC, txclkesc);
regmap_update_bits(phy->regmap, MIPI_PHY_REG3, REG_FBDIV_HI_MASK |
REG_PREDIV_MASK, REG_FBDIV_HI(phy->fbdiv >> 8) |
REG_PREDIV(phy->prediv));
regmap_update_bits(phy->regmap, MIPI_PHY_REG4,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(phy->fbdiv));
regmap_update_bits(phy->regmap, MIPI_PHY_REG1,
REG_DA_LDOPD | REG_DA_PLLPD, 0);
regmap_update_bits(phy->regmap, MIPI_PHY_REG0, LANE_EN_MASK,
LANE_EN_CK | GENMASK(dsi->lanes - 1 + 2, 2));
regmap_update_bits(phy->regmap, MIPI_PHY_REG1,
REG_DA_SYNCRST, REG_DA_SYNCRST);
udelay(1);
regmap_update_bits(phy->regmap, MIPI_PHY_REG1, REG_DA_SYNCRST, 0);
regmap_update_bits(phy->regmap, MIPI_PHY_REG20, REG_DIG_RSTN, 0);
udelay(1);
regmap_update_bits(phy->regmap, MIPI_PHY_REG20,
REG_DIG_RSTN, REG_DIG_RSTN);
/* XXX */
regmap_write(phy->regmap, MIPI_PHY_REG6, 0x11);
regmap_write(phy->regmap, MIPI_PHY_REG7, 0x11);
regmap_write(phy->regmap, MIPI_PHY_REG9, 0xcc);
if (phy->rate < 800000000)
regmap_update_bits(phy->regmap, MIPI_PHY_REG1,
REG_DA_PPFC, REG_DA_PPFC);
else
regmap_write(phy->regmap, MIPI_PHY_REG5, 0x30);
for (index = 0; index < ARRAY_SIZE(timing_table); index++)
if (phy->rate <= timing_table[index].rate)
break;
if (index == ARRAY_SIZE(timing_table))
--index;
for (offset = 0x100; offset <= 0x300; offset += 0x80) {
regmap_update_bits(phy->regmap,
PHYREG(offset + THS_SETTLE_OFFSET),
THS_SETTLE_MASK,
THS_SETTLE(timing_table[index].ths_settle));
/*
* The value of counter for HS Tlpx Time
* Tlpx = Tpin_txbyteclkhs * value
*/
Tlpx = 60 * PSEC_PER_NSEC;
value = DIV_ROUND_UP(Tlpx, Ttxbyteclkhs);
Tlpx = Ttxbyteclkhs * value;
regmap_update_bits(phy->regmap,
PHYREG(offset + TLPX_OFFSET),
TLPX_MASK, TLPX(value));
/*
* The value of counter for HS Ths-prepare
* For clock lane, Ths-prepare(38ns~95ns)
* For data lane, Ths-prepare(40ns+4UI~85ns+6UI)
* Ths-prepare = Ttxddrclkhs * value
*/
if (is_clk_lane(offset))
Ths_prepare = 65 * PSEC_PER_NSEC;
else
Ths_prepare = 65 * PSEC_PER_NSEC + 4 * UI;
value = DIV_ROUND_UP(Ths_prepare, Ttxddrclkhs);
regmap_update_bits(phy->regmap,
PHYREG(offset + THS_PREPARE_OFFSET),
THS_PREPARE_MASK, THS_PREPARE(value));
regmap_update_bits(phy->regmap,
PHYREG(offset + THS_ZERO_OFFSET),
THS_ZERO_MASK,
THS_ZERO(timing_table[index].ths_zero));
regmap_update_bits(phy->regmap,
PHYREG(offset + THS_TRAIL_OFFSET),
THS_TRAIL_MASK,
THS_TRAIL(timing_table[index].ths_trail));
/*
* The value of counter for HS Ths-exit
* Ths-exit = Tpin_txbyteclkhs * value
*/
Ths_exit = 120 * PSEC_PER_NSEC;
value = DIV_ROUND_UP(Ths_exit, Ttxbyteclkhs);
regmap_update_bits(phy->regmap,
PHYREG(offset + THS_EXIT_OFFSET),
THS_EXIT_MASK, THS_EXIT(value));
/*
* The value of counter for HS Tclk-post
* Tclk-post = Ttxbyteclkhs * value
*/
Tclk_post = 70 * PSEC_PER_NSEC + 52 * UI;
value = DIV_ROUND_UP(Tclk_post, Ttxbyteclkhs);
regmap_update_bits(phy->regmap,
PHYREG(offset + TCLK_POST_OFFSET),
TCLK_POST_MASK, TCLK_POST(value));
/*
* The value of counter for HS Twakup
* Twakup for ulpm,
* Twakup = Tpin_sys_clk * value
*/
regmap_update_bits(phy->regmap,
PHYREG(offset + TWAKUP_HI_OFFSET),
TWAKUP_HI_MASK, TWAKUP_HI(0x3));
regmap_update_bits(phy->regmap,
PHYREG(offset + TWAKUP_LO_OFFSET),
TWAKUP_LO_MASK, TWAKUP_LO(0xff));
/*
* The value of counter for HS Tclk-pre
* Tclk-pre for clock lane
* Tclk-pre = Tpin_txbyteclkhs * value
*/
Tclk_pre = 8 * UI;
value = DIV_ROUND_UP(Tclk_pre, Ttxbyteclkhs);
regmap_update_bits(phy->regmap,
PHYREG(offset + TCLK_PRE_OFFSET),
TCLK_PRE_MASK, TCLK_PRE(value));
/*
* The value of counter for HS Tta-go
* Tta-go for turnaround
* Tta-go = Ttxclkesc * value
*/
Tta_go = 4 * Tlpx;
value = DIV_ROUND_UP(Tta_go, Ttxclkesc);
regmap_update_bits(phy->regmap,
PHYREG(offset + TTA_GO_OFFSET),
TTA_GO_MASK, TTA_GO(value));
/*
* The value of counter for HS Tta-sure
* Tta-sure for turnaround
* Tta-sure = Ttxclkesc * value
*/
Tta_sure = 2 * Tlpx;
value = DIV_ROUND_UP(Tta_sure, Ttxclkesc);
regmap_update_bits(phy->regmap,
PHYREG(offset + TTA_SURE_OFFSET),
TTA_SURE_MASK, TTA_SURE(value));
/*
* The value of counter for HS Tta-wait
* Tta-wait for turnaround
* Interval from receiving ppi turnaround request to
* sending esc request.
* Tta-wait = Ttxclkesc * value
*/
Tta_wait = 5 * Tlpx;
value = DIV_ROUND_UP(Tta_wait, Ttxclkesc);
regmap_update_bits(phy->regmap,
PHYREG(offset + TTA_WAIT_OFFSET),
TTA_WAIT_MASK, TTA_WAIT(value));
}
}
static int rk618_dsi_pre_enable(struct rk618_dsi *dsi)
{
struct drm_display_mode *mode = &dsi->mode;
u32 esc_clk_div, txclkesc;
u32 lanebyteclk, dpipclk;
u32 hsw, hbp, vsw, vfp, vbp;
u32 hsa_time, hbp_time, hline_time;
u32 value;
int ret;
rk618_dsi_set_hs_clk(dsi);
regmap_update_bits(dsi->regmap, DSI_PWR_UP, SHUTDOWNZ, RESET);
/* Configuration of the internal clock dividers */
esc_clk_div = DIV_ROUND_UP(dsi->phy.rate >> 3, 20000000);
txclkesc = dsi->phy.rate >> 3 / esc_clk_div;
value = TO_CLK_DIVIDSION(10) | TX_ESC_CLK_DIVIDSION(esc_clk_div);
regmap_write(dsi->regmap, DSI_CLKMGR_CFG, value);
/* The DPI interface configuration */
value = DPI_VID(dsi->channel);
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
value |= VSYNC_ACTIVE_LOW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
value |= HSYNC_ACTIVE_LOW;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB666:
value |= DPI_COLOR_CODING(PIXEL_COLOR_CODING_18BIT_2);
break;
case MIPI_DSI_FMT_RGB666_PACKED:
value |= DPI_COLOR_CODING(PIXEL_COLOR_CODING_18BIT_1);
value |= EN18_LOOSELY;
break;
case MIPI_DSI_FMT_RGB565:
value |= DPI_COLOR_CODING(PIXEL_COLOR_CODING_16BIT_1);
break;
case MIPI_DSI_FMT_RGB888:
default:
value |= DPI_COLOR_CODING(PIXEL_COLOR_CODING_24BIT);
break;
}
regmap_write(dsi->regmap, DSI_DPI_CFG, value);
/* Packet handler configuration */
value = GEN_VID_RX(dsi->channel) | EN_CRC_RX | EN_ECC_RX | EN_BTA;
if (!(dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET))
value |= EN_EOTP_TX;
regmap_write(dsi->regmap, DSI_PCKHDL_CFG, value);
/* Video mode configuration */
value = EN_LP_VACT | EN_LP_VBP | EN_LP_VFP | EN_LP_VSA;
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP))
value |= EN_LP_HFP;
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP))
value |= EN_LP_HBP;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
value |= VID_MODE_TYPE(BURST_MODE);
else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
value |= VID_MODE_TYPE(NON_BURST_MODE_SYNC_PULSE);
else
value |= VID_MODE_TYPE(NON_BURST_MODE_SYNC_EVENT);
regmap_write(dsi->regmap, DSI_VID_MODE_CFG, value);
/* Video packet configuration */
regmap_write(dsi->regmap, DSI_VID_PKT_CFG,
VID_PKT_SIZE(mode->hdisplay));
/* Timeout timers configuration */
regmap_write(dsi->regmap, DSI_TO_CNT_CFG,
LPRX_TO_CNT(1000) | HSTX_TO_CNT(1000));
hsw = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
vsw = mode->vsync_end - mode->vsync_start;
vfp = mode->vsync_start - mode->vdisplay;
vbp = mode->vtotal - mode->vsync_end;
/* Line timing configuration */
lanebyteclk = (dsi->phy.rate >> 3) / USEC_PER_SEC;
dpipclk = mode->clock / USEC_PER_MSEC;
hline_time = DIV_ROUND_UP(mode->htotal * lanebyteclk, dpipclk);
hbp_time = DIV_ROUND_UP(hbp * lanebyteclk, dpipclk);
hsa_time = DIV_ROUND_UP(hsw * lanebyteclk, dpipclk);
regmap_write(dsi->regmap, DSI_TMR_LINE_CFG, HLINE_TIME(hline_time) |
HBP_TIME(hbp_time) | HSA_TIME(hsa_time));
/* Vertical timing configuration */
regmap_write(dsi->regmap, DSI_VTIMING_CFG,
V_ACTIVE_LINES(mode->vdisplay) | VFP_LINES(vfp) |
VBP_LINES(vbp) | VSA_LINES(vsw));
/* D-PHY interface configuration */
value = N_LANES(dsi->lanes - 1) | PHY_STOP_WAIT_TIME(0x20);
regmap_write(dsi->regmap, DSI_PHY_IF_CFG, value);
/* D-PHY timing configuration */
value = PHY_HS2LP_TIME(20) | PHY_LP2HS_TIME(16) | MAX_RD_TIME(10000);
regmap_write(dsi->regmap, DSI_PHY_TMR_CFG, value);
/* enables the D-PHY Clock Lane Module */
regmap_update_bits(dsi->regmap, DSI_PHY_RSTZ,
PHY_ENABLECLK, PHY_ENABLECLK);
regmap_write(dsi->regmap, DSI_INT_MSK0, 0);
regmap_write(dsi->regmap, DSI_INT_MSK1, 0);
regmap_update_bits(dsi->regmap, DSI_VID_MODE_CFG, EN_VIDEO_MODE, 0);
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG,
EN_CMD_MODE, EN_CMD_MODE);
rk618_dsi_phy_power_on(dsi, txclkesc);
/* wait for the PHY to acquire lock */
ret = regmap_read_poll_timeout(dsi->regmap, DSI_PHY_STATUS,
value, value & PHYLOCK, 50, 1000);
if (ret) {
dev_err(dsi->dev, "PHY is not locked\n");
return ret;
}
/* wait for the lane go to the stop state */
ret = regmap_read_poll_timeout(dsi->regmap, DSI_PHY_STATUS,
value, value & PHYSTOPSTATELANE,
50, 1000);
if (ret) {
dev_err(dsi->dev, "lane module is not in stop state\n");
return ret;
}
regmap_update_bits(dsi->regmap, DSI_PWR_UP, SHUTDOWNZ, POWER_UP);
return 0;
}
static void rk618_dsi_enable(struct rk618_dsi *dsi)
{
/* controls the D-PHY PPI txrequestclkhs signal */
regmap_update_bits(dsi->regmap, DSI_PHY_IF_CTRL,
PHY_TXREQUESCLKHS, PHY_TXREQUESCLKHS);
/* enables the DPI Video mode transmission */
regmap_update_bits(dsi->regmap, DSI_PWR_UP, SHUTDOWNZ, RESET);
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, EN_CMD_MODE, 0);
regmap_update_bits(dsi->regmap, DSI_VID_MODE_CFG,
EN_VIDEO_MODE, EN_VIDEO_MODE);
regmap_update_bits(dsi->regmap, DSI_PWR_UP, SHUTDOWNZ, POWER_UP);
dev_info(dsi->dev, "final DSI-Link bandwidth: %lu x %d Mbps\n",
dsi->phy.rate / USEC_PER_SEC, dsi->lanes);
}
static void rk618_dsi_disable(struct rk618_dsi *dsi)
{
/* enables the Command mode protocol for transmissions */
regmap_update_bits(dsi->regmap, DSI_PWR_UP, SHUTDOWNZ, RESET);
regmap_update_bits(dsi->regmap, DSI_PHY_IF_CTRL, PHY_TXREQUESCLKHS, 0);
regmap_update_bits(dsi->regmap, DSI_VID_MODE_CFG, EN_VIDEO_MODE, 0);
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG,
EN_CMD_MODE, EN_CMD_MODE);
regmap_update_bits(dsi->regmap, DSI_PWR_UP, SHUTDOWNZ, POWER_UP);
}
static void rk618_dsi_post_disable(struct rk618_dsi *dsi)
{
regmap_update_bits(dsi->regmap, DSI_PWR_UP, SHUTDOWNZ, RESET);
regmap_update_bits(dsi->regmap, DSI_PHY_RSTZ, PHY_ENABLECLK, 0);
rk618_dsi_phy_power_off(dsi);
}
static struct drm_encoder *
rk618_dsi_connector_best_encoder(struct drm_connector *connector)
{
struct rk618_dsi *dsi = connector_to_dsi(connector);
return dsi->base.encoder;
}
static int rk618_dsi_connector_get_modes(struct drm_connector *connector)
{
struct rk618_dsi *dsi = connector_to_dsi(connector);
return drm_panel_get_modes(dsi->panel, connector);
}
static const struct drm_connector_helper_funcs
rk618_dsi_connector_helper_funcs = {
.get_modes = rk618_dsi_connector_get_modes,
.best_encoder = rk618_dsi_connector_best_encoder,
};
static enum drm_connector_status
rk618_dsi_connector_detect(struct drm_connector *connector, bool force)
{
return connector_status_connected;
}
static void rk618_dsi_connector_destroy(struct drm_connector *connector)
{
drm_connector_cleanup(connector);
}
static const struct drm_connector_funcs rk618_dsi_connector_funcs = {
.detect = rk618_dsi_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = rk618_dsi_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static void rk618_dsi_bridge_enable(struct drm_bridge *bridge)
{
struct rk618_dsi *dsi = bridge_to_dsi(bridge);
clk_prepare_enable(dsi->clock);
rk618_dsi_pre_enable(dsi);
drm_panel_prepare(dsi->panel);
rk618_dsi_enable(dsi);
drm_panel_enable(dsi->panel);
}
static void rk618_dsi_bridge_disable(struct drm_bridge *bridge)
{
struct rk618_dsi *dsi = bridge_to_dsi(bridge);
drm_panel_disable(dsi->panel);
rk618_dsi_disable(dsi);
drm_panel_unprepare(dsi->panel);
rk618_dsi_post_disable(dsi);
clk_disable_unprepare(dsi->clock);
}
static void rk618_dsi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct rk618_dsi *dsi = bridge_to_dsi(bridge);
if (bridge->driver_private)
drm_mode_copy(&dsi->mode, bridge->driver_private);
else
drm_mode_copy(&dsi->mode, adj);
}
static int rk618_dsi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct rk618_dsi *dsi = bridge_to_dsi(bridge);
struct drm_connector *connector = &dsi->connector;
struct drm_device *drm = bridge->dev;
int ret;
ret = drm_connector_init(drm, connector, &rk618_dsi_connector_funcs,
DRM_MODE_CONNECTOR_DSI);
if (ret) {
dev_err(dsi->dev, "Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(connector, &rk618_dsi_connector_helper_funcs);
drm_connector_attach_encoder(connector, bridge->encoder);
dsi->sub_dev.connector = &dsi->connector;
dsi->sub_dev.of_node = dsi->dev->of_node;
rockchip_drm_register_sub_dev(&dsi->sub_dev);
return 0;
}
static void rk618_dsi_bridge_detach(struct drm_bridge *bridge)
{
struct rk618_dsi *dsi = bridge_to_dsi(bridge);
rockchip_drm_unregister_sub_dev(&dsi->sub_dev);
}
static const struct drm_bridge_funcs rk618_dsi_bridge_funcs = {
.attach = rk618_dsi_bridge_attach,
.detach = rk618_dsi_bridge_detach,
.mode_set = rk618_dsi_bridge_mode_set,
.enable = rk618_dsi_bridge_enable,
.disable = rk618_dsi_bridge_disable,
};
static ssize_t rk618_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct rk618_dsi *dsi = host_to_dsi(host);
struct mipi_dsi_packet packet;
u32 value, mask;
int ret;
if (msg->flags & MIPI_DSI_MSG_USE_LPM)
regmap_update_bits(dsi->regmap, DSI_PHY_IF_CTRL,
PHY_TXREQUESCLKHS, 0);
else
regmap_update_bits(dsi->regmap, DSI_PHY_IF_CTRL,
PHY_TXREQUESCLKHS, PHY_TXREQUESCLKHS);
switch (msg->type) {
case MIPI_DSI_DCS_SHORT_WRITE:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, DCS_SW_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_SW_0P_TX : 0);
break;
case MIPI_DSI_DCS_SHORT_WRITE_PARAM:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, DCS_SW_1P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_SW_1P_TX : 0);
break;
case MIPI_DSI_DCS_LONG_WRITE:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, DCS_LW_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_LW_TX : 0);
break;
case MIPI_DSI_DCS_READ:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, DCS_SR_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_SR_0P_TX : 0);
break;
case MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG,
MAX_RD_PKT_SIZE,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
MAX_RD_PKT_SIZE : 0);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, GEN_SW_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SW_0P_TX : 0);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, GEN_SW_1P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SW_1P_TX : 0);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, GEN_SW_2P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SW_2P_TX : 0);
break;
case MIPI_DSI_GENERIC_LONG_WRITE:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, GEN_LW_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_LW_TX : 0);
break;
case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, GEN_SR_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SR_0P_TX : 0);
break;
case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, GEN_SR_1P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SR_1P_TX : 0);
break;
case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM:
regmap_update_bits(dsi->regmap, DSI_CMD_MODE_CFG, GEN_SR_2P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SR_2P_TX : 0);
break;
default:
return -EINVAL;
}
/* create a packet to the DSI protocol */
ret = mipi_dsi_create_packet(&packet, msg);
if (ret) {
dev_err(dsi->dev, "failed to create packet: %d\n", ret);
return ret;
}
/* Send payload */
while (packet.payload_length >= 4) {
mask = GEN_PLD_W_FULL;
ret = regmap_read_poll_timeout(dsi->regmap, DSI_GEN_PKT_STATUS,
value, !(value & mask),
50, 1000);
if (ret) {
dev_err(dsi->dev, "Write payload FIFO is full\n");
return ret;
}
value = get_unaligned_le32(packet.payload);
regmap_write(dsi->regmap, DSI_GEN_PLD_DATA, value);
packet.payload += 4;
packet.payload_length -= 4;
}
value = 0;
switch (packet.payload_length) {
case 3:
value |= packet.payload[2] << 16;
/* Fall through */
case 2:
value |= packet.payload[1] << 8;
/* Fall through */
case 1:
value |= packet.payload[0];
regmap_write(dsi->regmap, DSI_GEN_PLD_DATA, value);
break;
}
mask = GEN_CMD_FULL;
ret = regmap_read_poll_timeout(dsi->regmap, DSI_GEN_PKT_STATUS,
value, !(value & mask), 50, 1000);
if (ret) {
dev_err(dsi->dev, "Command FIFO is full\n");
return ret;
}
/* Send packet header */
value = get_unaligned_le32(packet.header);
regmap_write(dsi->regmap, DSI_GEN_HDR, value);
mask = GEN_PLD_W_EMPTY | GEN_CMD_EMPTY;
ret = regmap_read_poll_timeout(dsi->regmap, DSI_GEN_PKT_STATUS,
value, (value & mask) == mask, 50, 1000);
if (ret) {
dev_err(dsi->dev, "Write payload FIFO is not empty\n");
return ret;
}
if (msg->rx_len) {
u8 *payload = msg->rx_buf;
u16 length;
mask = GEN_RD_CMD_BUSY;
ret = regmap_read_poll_timeout(dsi->regmap, DSI_GEN_PKT_STATUS,
value, !(value & mask),
50, 1000);
if (ret) {
dev_err(dsi->dev,
"entire response is not stored in the FIFO\n");
return ret;
}
/* Receive payload */
for (length = msg->rx_len; length; length -= 4) {
mask = GEN_PLD_R_EMPTY;
ret = regmap_read_poll_timeout(dsi->regmap,
DSI_GEN_PKT_STATUS,
value, !(value & mask),
50, 1000);
if (ret) {
dev_err(dsi->dev,
"Read payload FIFO is empty\n");
return ret;
}
regmap_read(dsi->regmap, DSI_GEN_PLD_DATA, &value);
switch (length) {
case 3:
payload[2] = (value >> 16) & 0xff;
/* Fall through */
case 2:
payload[1] = (value >> 8) & 0xff;
/* Fall through */
case 1:
payload[0] = value & 0xff;
return length;
}
payload[0] = (value >> 0) & 0xff;
payload[1] = (value >> 8) & 0xff;
payload[2] = (value >> 16) & 0xff;
payload[3] = (value >> 24) & 0xff;
payload += 4;
}
}
return packet.payload_length;
}
static int rk618_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct rk618_dsi *dsi = host_to_dsi(host);
if (device->lanes < 1 || device->lanes > 4)
return -EINVAL;
dsi->lanes = device->lanes;
dsi->channel = device->channel;
dsi->format = device->format;
dsi->mode_flags = device->mode_flags;
dsi->panel = of_drm_find_panel(device->dev.of_node);
if (!dsi->panel)
return -EPROBE_DEFER;
return 0;
}
static int rk618_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
return 0;
}
static const struct mipi_dsi_host_ops rk618_dsi_host_ops = {
.attach = rk618_dsi_host_attach,
.detach = rk618_dsi_host_detach,
.transfer = rk618_dsi_host_transfer,
};
static bool rk618_dsi_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case DSI_VERSION ... DSI_MAX_REGISTER:
return true;
default:
return false;
}
}
static const struct regmap_config rk618_dsi_host_regmap_config = {
.name = "dsi",
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = DSI_MAX_REGISTER,
.reg_format_endian = REGMAP_ENDIAN_NATIVE,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
.readable_reg = rk618_dsi_readable_reg,
};
static bool rk618_dsi_phy_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case MIPI_PHY_REG0 ... MIPI_PHY_MAX_REGISTER:
return true;
default:
return false;
}
}
static const struct regmap_config rk618_dsi_phy_regmap_config = {
.name = "dphy",
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = MIPI_PHY_MAX_REGISTER,
.reg_format_endian = REGMAP_ENDIAN_NATIVE,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
.readable_reg = rk618_dsi_phy_readable_reg,
};
static int rk618_dsi_probe(struct platform_device *pdev)
{
struct rk618 *rk618 = dev_get_drvdata(pdev->dev.parent);
struct device *dev = &pdev->dev;
struct rk618_dsi *dsi;
int ret;
if (!of_device_is_available(dev->of_node))
return -ENODEV;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->dev = dev;
dsi->parent = rk618;
platform_set_drvdata(pdev, dsi);
dsi->clock = devm_clk_get(dev, "dsi");
if (IS_ERR(dsi->clock)) {
ret = PTR_ERR(dsi->clock);
dev_err(dev, "failed to get dsi clock: %d\n", ret);
return ret;
}
dsi->regmap = devm_regmap_init_i2c(rk618->client,
&rk618_dsi_host_regmap_config);
if (IS_ERR(dsi->regmap)) {
ret = PTR_ERR(dsi->regmap);
dev_err(dev, "failed to allocate host register map: %d\n", ret);
return ret;
}
dsi->phy.regmap = devm_regmap_init_i2c(rk618->client,
&rk618_dsi_phy_regmap_config);
if (IS_ERR(dsi->phy.regmap)) {
ret = PTR_ERR(dsi->phy.regmap);
dev_err(dev, "failed to allocate phy register map: %d\n", ret);
return ret;
}
dsi->base.funcs = &rk618_dsi_bridge_funcs;
dsi->base.of_node = dev->of_node;
drm_bridge_add(&dsi->base);
dsi->host.dev = dev;
dsi->host.ops = &rk618_dsi_host_ops;
ret = mipi_dsi_host_register(&dsi->host);
if (ret) {
drm_bridge_remove(&dsi->base);
dev_err(dev, "failed to register host: %d\n", ret);
return ret;
}
return 0;
}
static int rk618_dsi_remove(struct platform_device *pdev)
{
struct rk618_dsi *dsi = platform_get_drvdata(pdev);
mipi_dsi_host_unregister(&dsi->host);
drm_bridge_remove(&dsi->base);
return 0;
}
static const struct of_device_id rk618_dsi_of_match[] = {
{ .compatible = "rockchip,rk618-dsi", },
{},
};
MODULE_DEVICE_TABLE(of, rk618_dsi_of_match);
static struct platform_driver rk618_dsi_driver = {
.driver = {
.name = "rk618-dsi",
.of_match_table = of_match_ptr(rk618_dsi_of_match),
},
.probe = rk618_dsi_probe,
.remove = rk618_dsi_remove,
};
module_platform_driver(rk618_dsi_driver);
MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip RK618 MIPI-DSI driver");
MODULE_LICENSE("GPL v2");