android13/kernel-5.10/drivers/gpu/drm/rockchip/rk628/rk628_dsi.c

1393 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 Rockchip Electronics Co. Ltd.
*
* Author: Wyon Bi <bivvy.bi@rock-chips.com>
*/
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/mfd/rk628.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <video/of_display_timing.h>
#include <video/mipi_display.h>
#include <video/videomode.h>
#include <asm/unaligned.h>
#define DSI_VERSION 0x0000
#define DSI_PWR_UP 0x0004
#define RESET 0
#define POWER_UP BIT(0)
#define DSI_CLKMGR_CFG 0x0008
#define TO_CLK_DIVISION(x) UPDATE(x, 15, 8)
#define TX_ESC_CLK_DIVISION(x) UPDATE(x, 7, 0)
#define DSI_DPI_VCID 0x000c
#define DPI_VID(x) UPDATE(x, 1, 0)
#define DSI_DPI_COLOR_CODING 0x0010
#define LOOSELY18_EN BIT(8)
#define DPI_COLOR_CODING(x) UPDATE(x, 3, 0)
#define DSI_DPI_CFG_POL 0x0014
#define COLORM_ACTIVE_LOW BIT(4)
#define SHUTD_ACTIVE_LOW BIT(3)
#define HSYNC_ACTIVE_LOW BIT(2)
#define VSYNC_ACTIVE_LOW BIT(1)
#define DATAEN_ACTIVE_LOW BIT(0)
#define DSI_DPI_LP_CMD_TIM 0x0018
#define OUTVACT_LPCMD_TIME(x) UPDATE(x, 23, 16)
#define INVACT_LPCMD_TIME(x) UPDATE(x, 7, 0)
#define DSI_PCKHDL_CFG 0x002c
#define CRC_RX_EN BIT(4)
#define ECC_RX_EN BIT(3)
#define BTA_EN BIT(2)
#define EOTP_RX_EN BIT(1)
#define EOTP_TX_EN BIT(0)
#define DSI_GEN_VCID 0x0030
#define DSI_MODE_CFG 0x0034
#define CMD_VIDEO_MODE(x) UPDATE(x, 0, 0)
#define DSI_VID_MODE_CFG 0x0038
#define VPG_EN BIT(16)
#define LP_CMD_EN BIT(15)
#define FRAME_BTA_ACK_EN BIT(14)
#define LP_HFP_EN BIT(13)
#define LP_HBP_EN BIT(12)
#define LP_VACT_EN BIT(11)
#define LP_VFP_EN BIT(10)
#define LP_VBP_EN BIT(9)
#define LP_VSA_EN BIT(8)
#define VID_MODE_TYPE(x) UPDATE(x, 1, 0)
#define DSI_VID_PKT_SIZE 0x003c
#define VID_PKT_SIZE(x) UPDATE(x, 13, 0)
#define DSI_VID_NUM_CHUNKS 0x0040
#define DSI_VID_NULL_SIZE 0x0044
#define DSI_VID_HSA_TIME 0x0048
#define VID_HSA_TIME(x) UPDATE(x, 11, 0)
#define DSI_VID_HBP_TIME 0x004c
#define VID_HBP_TIME(x) UPDATE(x, 11, 0)
#define DSI_VID_HLINE_TIME 0x0050
#define VID_HLINE_TIME(x) UPDATE(x, 14, 0)
#define DSI_VID_VSA_LINES 0x0054
#define VSA_LINES(x) UPDATE(x, 9, 0)
#define DSI_VID_VBP_LINES 0x0058
#define VBP_LINES(x) UPDATE(x, 9, 0)
#define DSI_VID_VFP_LINES 0x005c
#define VFP_LINES(x) UPDATE(x, 9, 0)
#define DSI_VID_VACTIVE_LINES 0x0060
#define V_ACTIVE_LINES(x) UPDATE(x, 13, 0)
#define DSI_EDPI_CMD_SIZE 0x0064
#define EDPI_ALLOWED_CMD_SIZE(x) UPDATE(x, 15, 0)
#define DSI_CMD_MODE_CFG 0x0068
#define MAX_RD_PKT_SIZE BIT(24)
#define DCS_LW_TX BIT(19)
#define DCS_SR_0P_TX BIT(18)
#define DCS_SW_1P_TX BIT(17)
#define DCS_SW_0P_TX BIT(16)
#define GEN_LW_TX BIT(14)
#define GEN_SR_2P_TX BIT(13)
#define GEN_SR_1P_TX BIT(12)
#define GEN_SR_0P_TX BIT(11)
#define GEN_SW_2P_TX BIT(10)
#define GEN_SW_1P_TX BIT(9)
#define GEN_SW_0P_TX BIT(8)
#define ACK_RQST_EN BIT(1)
#define TEAR_FX_EN BIT(0)
#define DSI_GEN_HDR 0x006c
#define GEN_WC_MSBYTE(x) UPDATE(x, 23, 16)
#define GEN_WC_LSBYTE(x) UPDATE(x, 15, 8)
#define GEN_VC(x) UPDATE(x, 7, 6)
#define GEN_DT(x) UPDATE(x, 5, 0)
#define DSI_GEN_PLD_DATA 0x0070
#define DSI_CMD_PKT_STATUS 0x0074
#define GEN_RD_CMD_BUSY BIT(6)
#define GEN_PLD_R_FULL BIT(5)
#define GEN_PLD_R_EMPTY BIT(4)
#define GEN_PLD_W_FULL BIT(3)
#define GEN_PLD_W_EMPTY BIT(2)
#define GEN_CMD_FULL BIT(1)
#define GEN_CMD_EMPTY BIT(0)
#define DSI_TO_CNT_CFG 0x0078
#define HSTX_TO_CNT(x) UPDATE(x, 31, 16)
#define LPRX_TO_CNT(x) UPDATE(x, 15, 0)
#define DSI_HS_RD_TO_CNT 0x007c
#define HS_RD_TO_CNT(x) UPDATE(x, 15, 0)
#define DSI_LP_RD_TO_CNT 0x0080
#define LP_RD_TO_CNT(x) UPDATE(x, 15, 0)
#define DSI_HS_WR_TO_CNT 0x0084
#define HS_WR_TO_CNT(x) UPDATE(x, 15, 0)
#define DSI_LP_WR_TO_CNT 0x0088
#define LP_WR_TO_CNT(x) UPDATE(x, 15, 0)
#define DSI_BTA_TO_CNT 0x008c
#define BTA_TO_CNT(x) UPDATE(x, 15, 0)
#define DSI_SDF_3D 0x0090
#define DSI_LPCLK_CTRL 0x0094
#define AUTO_CLKLANE_CTRL BIT(1)
#define PHY_TXREQUESTCLKHS BIT(0)
#define DSI_PHY_TMR_LPCLK_CFG 0x0098
#define PHY_CLKHS2LP_TIME(x) UPDATE(x, 25, 16)
#define PHY_CLKLP2HS_TIME(x) UPDATE(x, 9, 0)
#define DSI_PHY_TMR_CFG 0x009c
#define PHY_HS2LP_TIME(x) UPDATE(x, 31, 24)
#define PHY_LP2HS_TIME(x) UPDATE(x, 23, 16)
#define MAX_RD_TIME(x) UPDATE(x, 14, 0)
#define DSI_PHY_RSTZ 0x00a0
#define PHY_FORCEPLL BIT(3)
#define PHY_ENABLECLK BIT(2)
#define PHY_RSTZ BIT(1)
#define PHY_SHUTDOWNZ BIT(0)
#define DSI_PHY_IF_CFG 0x00a4
#define PHY_STOP_WAIT_TIME(x) UPDATE(x, 15, 8)
#define N_LANES(x) UPDATE(x, 1, 0)
#define DSI_PHY_STATUS 0x00b0
#define PHY_STOPSTATE3LANE BIT(11)
#define PHY_STOPSTATE2LANE BIT(9)
#define PHY_STOPSTATE1LANE BIT(7)
#define PHY_STOPSTATE0LANE BIT(4)
#define PHY_STOPSTATECLKLANE BIT(2)
#define PHY_LOCK BIT(0)
#define PHY_STOPSTATELANE (PHY_STOPSTATE0LANE | \
PHY_STOPSTATECLKLANE)
#define DSI_INT_ST0 0x00bc
#define DSI_INT_ST1 0x00c0
#define DSI_INT_MSK0 0x00c4
#define DSI_INT_MSK1 0x00c8
#define DSI_INT_FORCE0 0x00d8
#define DSI_INT_FORCE1 0x00dc
#define DSI_MAX_REGISTER DSI_INT_FORCE1
/* Test Code: 0x44 (HS RX Control of Lane 0) */
#define HSFREQRANGE(x) UPDATE(x, 6, 1)
enum dpi_color_coding {
DPI_COLOR_CODING_16BIT_1,
DPI_COLOR_CODING_16BIT_2,
DPI_COLOR_CODING_16BIT_3,
DPI_COLOR_CODING_18BIT_1,
DPI_COLOR_CODING_18BIT_2,
DPI_COLOR_CODING_24BIT,
};
enum vid_mode_type {
VID_MODE_TYPE_NON_BURST_SYNC_PULSES,
VID_MODE_TYPE_NON_BURST_SYNC_EVENTS,
VID_MODE_TYPE_BURST,
};
enum operation_mode {
VIDEO_MODE,
COMMAND_MODE,
};
struct rk628_dsi_data {
u32 reg_base;
u8 id;
};
struct rk628_dsi {
struct drm_bridge base;
struct drm_connector connector;
struct drm_display_mode mode;
struct drm_panel *panel;
struct device *dev;
struct rk628 *parent;
struct mipi_dsi_host host;
struct phy *phy;
struct clk *pclk;
struct clk *cfgclk;
struct reset_control *rst;
struct regmap *grf;
struct regmap *regmap;
struct regmap *testif;
struct regmap_config config;
struct regmap_access_table rd_table;
struct regmap_range range;
int irq;
u32 reg_base;
u8 id;
struct rk628_dsi *master;
struct rk628_dsi *slave;
unsigned int lane_mbps;
u32 channel;
u32 lanes;
u32 format;
unsigned long mode_flags;
};
static inline struct rk628_dsi *bridge_to_dsi(struct drm_bridge *b)
{
return container_of(b, struct rk628_dsi, base);
}
static inline struct rk628_dsi *host_to_dsi(struct mipi_dsi_host *h)
{
return container_of(h, struct rk628_dsi, host);
}
static inline struct rk628_dsi *connector_to_dsi(struct drm_connector *c)
{
return container_of(c, struct rk628_dsi, connector);
}
static inline void dsi_write(struct rk628_dsi *dsi, u32 reg, u32 val)
{
regmap_write(dsi->regmap, dsi->reg_base + reg, val);
}
static inline u32 dsi_read(struct rk628_dsi *dsi, u32 reg)
{
u32 val;
regmap_read(dsi->regmap, dsi->reg_base + reg, &val);
return val;
}
static inline void dsi_update_bits(struct rk628_dsi *dsi, u32 reg, u32 mask,
u32 val)
{
u32 orig, tmp;
orig = dsi_read(dsi, reg);
tmp = orig & ~mask;
tmp |= val & mask;
dsi_write(dsi, reg, tmp);
}
static inline void dpishutdn_assert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
DPISHUTDN, 1);
}
static inline void dpishutdn_deassert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
DPISHUTDN, 0);
}
static int genif_wait_w_pld_fifo_not_full(struct rk628_dsi *dsi)
{
u32 sts;
int ret;
ret = regmap_read_poll_timeout(dsi->regmap,
dsi->reg_base + DSI_CMD_PKT_STATUS,
sts, !(sts & GEN_PLD_W_FULL),
0, 1000);
if (ret < 0) {
dev_err(dsi->dev, "generic write payload fifo is full\n");
return ret;
}
return 0;
}
static int genif_wait_cmd_fifo_not_full(struct rk628_dsi *dsi)
{
u32 sts;
int ret;
ret = regmap_read_poll_timeout(dsi->regmap,
dsi->reg_base + DSI_CMD_PKT_STATUS,
sts, !(sts & GEN_CMD_FULL),
0, 1000);
if (ret < 0) {
dev_err(dsi->dev, "generic write cmd fifo is full\n");
return ret;
}
return 0;
}
static int genif_wait_write_fifo_empty(struct rk628_dsi *dsi)
{
u32 sts;
u32 mask;
int ret;
mask = GEN_CMD_EMPTY | GEN_PLD_W_EMPTY;
ret = regmap_read_poll_timeout(dsi->regmap,
dsi->reg_base + DSI_CMD_PKT_STATUS,
sts, (sts & mask) == mask,
0, 1000);
if (ret < 0) {
dev_err(dsi->dev, "generic write fifo is full\n");
return ret;
}
return 0;
}
static inline void testif_testclk_assert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
PHY_TESTCLK, PHY_TESTCLK);
udelay(1);
}
static inline void testif_testclk_deassert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
PHY_TESTCLK, 0);
udelay(1);
}
static inline void testif_testclr_assert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
PHY_TESTCLR, PHY_TESTCLR);
udelay(1);
}
static inline void testif_testclr_deassert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
PHY_TESTCLR, 0);
udelay(1);
}
static inline void testif_testen_assert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
PHY_TESTEN, PHY_TESTEN);
udelay(1);
}
static inline void testif_testen_deassert(struct rk628_dsi *dsi)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
PHY_TESTEN, 0);
udelay(1);
}
static inline void testif_set_data(struct rk628_dsi *dsi, u8 data)
{
regmap_update_bits(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
PHY_TESTDIN_MASK, PHY_TESTDIN(data));
udelay(1);
}
static inline u8 testif_get_data(struct rk628_dsi *dsi)
{
u32 data = 0;
regmap_read(dsi->grf, dsi->id ?
GRF_DPHY1_STATUS : GRF_DPHY0_STATUS, &data);
return data >> PHY_TESTDOUT_SHIFT;
}
static void testif_test_code_write(struct rk628_dsi *dsi, u8 test_code)
{
testif_testclk_assert(dsi);
testif_set_data(dsi, test_code);
testif_testen_assert(dsi);
testif_testclk_deassert(dsi);
testif_testen_deassert(dsi);
}
static void testif_test_data_write(struct rk628_dsi *dsi, u8 test_data)
{
testif_testclk_deassert(dsi);
testif_set_data(dsi, test_data);
testif_testclk_assert(dsi);
}
static int testif_write(void *context, unsigned int reg, unsigned int value)
{
struct rk628_dsi *dsi = context;
u8 monitor_data;
testif_test_code_write(dsi, reg);
testif_test_data_write(dsi, value);
monitor_data = testif_get_data(dsi);
dev_dbg(dsi->dev,
"test_code=0x%02x, test_data=0x%02x, monitor_data=0x%02x\n",
reg, value, monitor_data);
return 0;
}
static int testif_read(void *context, unsigned int reg, unsigned int *value)
{
struct rk628_dsi *dsi = context;
testif_test_code_write(dsi, reg);
*value = testif_get_data(dsi);
testif_test_data_write(dsi, *value);
return 0;
}
static inline void mipi_dphy_enableclk_assert(struct rk628_dsi *dsi)
{
dsi_update_bits(dsi, DSI_PHY_RSTZ, PHY_ENABLECLK, PHY_ENABLECLK);
udelay(1);
}
static inline void mipi_dphy_enableclk_deassert(struct rk628_dsi *dsi)
{
dsi_update_bits(dsi, DSI_PHY_RSTZ, PHY_ENABLECLK, 0);
udelay(1);
}
static inline void mipi_dphy_shutdownz_assert(struct rk628_dsi *dsi)
{
dsi_update_bits(dsi, DSI_PHY_RSTZ, PHY_SHUTDOWNZ, 0);
udelay(1);
}
static inline void mipi_dphy_shutdownz_deassert(struct rk628_dsi *dsi)
{
dsi_update_bits(dsi, DSI_PHY_RSTZ, PHY_SHUTDOWNZ, PHY_SHUTDOWNZ);
udelay(1);
}
static inline void mipi_dphy_rstz_assert(struct rk628_dsi *dsi)
{
dsi_update_bits(dsi, DSI_PHY_RSTZ, PHY_RSTZ, 0);
udelay(1);
}
static inline void mipi_dphy_rstz_deassert(struct rk628_dsi *dsi)
{
dsi_update_bits(dsi, DSI_PHY_RSTZ, PHY_RSTZ, PHY_RSTZ);
udelay(1);
}
static void mipi_dphy_init(struct rk628_dsi *dsi)
{
const struct {
unsigned long max_lane_mbps;
u8 hsfreqrange;
} hsfreqrange_table[] = {
{ 90, 0x00}, { 100, 0x10}, { 110, 0x20}, { 130, 0x01},
{ 140, 0x11}, { 150, 0x21}, { 170, 0x02}, { 180, 0x12},
{ 200, 0x22}, { 220, 0x03}, { 240, 0x13}, { 250, 0x23},
{ 270, 0x04}, { 300, 0x14}, { 330, 0x05}, { 360, 0x15},
{ 400, 0x25}, { 450, 0x06}, { 500, 0x16}, { 550, 0x07},
{ 600, 0x17}, { 650, 0x08}, { 700, 0x18}, { 750, 0x09},
{ 800, 0x19}, { 850, 0x29}, { 900, 0x39}, { 950, 0x0a},
{1000, 0x1a}, {1050, 0x2a}, {1100, 0x3a}, {1150, 0x0b},
{1200, 0x1b}, {1250, 0x2b}, {1300, 0x3b}, {1350, 0x0c},
{1400, 0x1c}, {1450, 0x2c}, {1500, 0x3c}
};
u8 hsfreqrange;
unsigned int index;
for (index = 0; index < ARRAY_SIZE(hsfreqrange_table); index++)
if (dsi->lane_mbps <= hsfreqrange_table[index].max_lane_mbps)
break;
if (index == ARRAY_SIZE(hsfreqrange_table))
--index;
hsfreqrange = hsfreqrange_table[index].hsfreqrange;
regmap_write(dsi->testif, 0x44, HSFREQRANGE(hsfreqrange));
}
static int mipi_dphy_power_on(struct rk628_dsi *dsi)
{
unsigned int val, mask;
int ret;
mipi_dphy_enableclk_deassert(dsi);
mipi_dphy_shutdownz_assert(dsi);
mipi_dphy_rstz_assert(dsi);
testif_testclr_assert(dsi);
/* Set all REQUEST inputs to zero */
regmap_write(dsi->grf, dsi->id ?
GRF_MIPI_TX1_CON : GRF_MIPI_TX0_CON,
FORCETXSTOPMODE(0) | FORCERXMODE(0));
udelay(1);
testif_testclr_deassert(dsi);
mipi_dphy_init(dsi);
mipi_dphy_enableclk_assert(dsi);
mipi_dphy_shutdownz_deassert(dsi);
mipi_dphy_rstz_deassert(dsi);
usleep_range(1500, 2000);
phy_power_on(dsi->phy);
ret = regmap_read_poll_timeout(dsi->regmap, dsi->reg_base + DSI_PHY_STATUS,
val, val & PHY_LOCK, 0, 1000);
if (ret < 0) {
dev_err(dsi->dev, "PHY is not locked\n");
return ret;
}
usleep_range(100, 200);
mask = PHY_STOPSTATELANE;
ret = regmap_read_poll_timeout(dsi->regmap, dsi->reg_base + DSI_PHY_STATUS,
val, (val & mask) == mask,
0, 1000);
if (ret < 0) {
dev_err(dsi->dev, "lane module is not in stop state\n");
return ret;
}
udelay(10);
return 0;
}
static void mipi_dphy_power_off(struct rk628_dsi *dsi)
{
dsi_write(dsi, DSI_PHY_RSTZ, 0);
phy_power_off(dsi->phy);
}
static int rk628_dsi_turn_on_peripheral(struct rk628_dsi *dsi)
{
dpishutdn_assert(dsi);
udelay(20);
dpishutdn_deassert(dsi);
return 0;
}
static int rk628_dsi_shutdown_peripheral(struct rk628_dsi *dsi)
{
dpishutdn_deassert(dsi);
udelay(20);
dpishutdn_assert(dsi);
return 0;
}
static int rk628_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct rk628_dsi *dsi = host_to_dsi(host);
if (device->lanes < 1 || device->lanes > 8)
return -EINVAL;
dsi->lanes = device->lanes;
dsi->channel = device->channel;
dsi->format = device->format;
dsi->mode_flags = device->mode_flags;
dsi->panel = of_drm_find_panel(device->dev.of_node);
if (!dsi->panel)
return -EPROBE_DEFER;
if (dsi->lanes > 4) {
struct device *d = bus_find_device_by_name(&platform_bus_type,
NULL, "rk628-dsi1");
struct rk628_dsi *slave;
if (!d)
return -EPROBE_DEFER;
slave = dev_get_drvdata(d);
if (!slave)
return -EPROBE_DEFER;
dsi->slave = slave;
dsi->lanes /= 2;
slave->master = dsi;
slave->lanes = dsi->lanes;
slave->channel = dsi->channel;
slave->format = dsi->format;
slave->mode_flags = dsi->mode_flags;
}
return 0;
}
static int rk628_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
return 0;
}
static int rk628_dsi_read_from_fifo(struct rk628_dsi *dsi,
const struct mipi_dsi_msg *msg)
{
u8 *payload = msg->rx_buf;
unsigned int vrefresh = drm_mode_vrefresh(&dsi->mode);
u16 length;
u32 val;
int ret;
ret = regmap_read_poll_timeout(dsi->regmap,
dsi->reg_base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_RD_CMD_BUSY),
0, DIV_ROUND_UP(1000000, vrefresh));
if (ret) {
dev_err(dsi->dev, "entire response isn't stored in the FIFO\n");
return ret;
}
/* Receive payload */
for (length = msg->rx_len; length; length -= 4) {
ret = regmap_read_poll_timeout(dsi->regmap,
dsi->reg_base + DSI_CMD_PKT_STATUS,
val, !(val & GEN_PLD_R_EMPTY),
0, 1000);
if (ret) {
dev_err(dsi->dev, "Read payload FIFO is empty\n");
return ret;
}
val = dsi_read(dsi, DSI_GEN_PLD_DATA);
switch (length) {
case 3:
payload[2] = (val >> 16) & 0xff;
/* fallthrough */
case 2:
payload[1] = (val >> 8) & 0xff;
/* fallthrough */
case 1:
payload[0] = val & 0xff;
return 0;
}
payload[0] = (val >> 0) & 0xff;
payload[1] = (val >> 8) & 0xff;
payload[2] = (val >> 16) & 0xff;
payload[3] = (val >> 24) & 0xff;
payload += 4;
}
return 0;
}
static ssize_t rk628_dsi_transfer(struct rk628_dsi *dsi,
const struct mipi_dsi_msg *msg)
{
struct mipi_dsi_packet packet;
int ret;
u32 val;
if (msg->flags & MIPI_DSI_MSG_REQ_ACK)
dsi_update_bits(dsi, DSI_CMD_MODE_CFG,
ACK_RQST_EN, ACK_RQST_EN);
if (msg->flags & MIPI_DSI_MSG_USE_LPM) {
dsi_update_bits(dsi, DSI_VID_MODE_CFG, LP_CMD_EN, LP_CMD_EN);
} else {
dsi_update_bits(dsi, DSI_VID_MODE_CFG, LP_CMD_EN, 0);
dsi_update_bits(dsi, DSI_LPCLK_CTRL,
PHY_TXREQUESTCLKHS, PHY_TXREQUESTCLKHS);
}
switch (msg->type) {
case MIPI_DSI_SHUTDOWN_PERIPHERAL:
return rk628_dsi_shutdown_peripheral(dsi);
case MIPI_DSI_TURN_ON_PERIPHERAL:
return rk628_dsi_turn_on_peripheral(dsi);
case MIPI_DSI_DCS_SHORT_WRITE:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, DCS_SW_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_SW_0P_TX : 0);
break;
case MIPI_DSI_DCS_SHORT_WRITE_PARAM:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, DCS_SW_1P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_SW_1P_TX : 0);
break;
case MIPI_DSI_DCS_LONG_WRITE:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, DCS_LW_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_LW_TX : 0);
break;
case MIPI_DSI_DCS_READ:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, DCS_SR_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
DCS_SR_0P_TX : 0);
break;
case MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, MAX_RD_PKT_SIZE,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
MAX_RD_PKT_SIZE : 0);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, GEN_SW_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SW_0P_TX : 0);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, GEN_SW_1P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SW_1P_TX : 0);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, GEN_SW_2P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SW_2P_TX : 0);
break;
case MIPI_DSI_GENERIC_LONG_WRITE:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, GEN_LW_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_LW_TX : 0);
break;
case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, GEN_SR_0P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SR_0P_TX : 0);
break;
case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, GEN_SR_1P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SR_1P_TX : 0);
break;
case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM:
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, GEN_SR_2P_TX,
msg->flags & MIPI_DSI_MSG_USE_LPM ?
GEN_SR_2P_TX : 0);
break;
default:
return -EINVAL;
}
/* create a packet to the DSI protocol */
ret = mipi_dsi_create_packet(&packet, msg);
if (ret) {
dev_err(dsi->dev, "failed to create packet: %d\n", ret);
return ret;
}
/* Send payload */
while (packet.payload_length >= 4) {
/*
* Alternatively, you can always keep the FIFO
* nearly full by monitoring the FIFO state until
* it is not full, and then writea single word of data.
* This solution is more resource consuming
* but it simultaneously avoids FIFO starvation,
* making it possible to use FIFO sizes smaller than
* the amount of data of the longest packet to be written.
*/
ret = genif_wait_w_pld_fifo_not_full(dsi);
if (ret)
return ret;
val = get_unaligned_le32(packet.payload);
dsi_write(dsi, DSI_GEN_PLD_DATA, val);
packet.payload += 4;
packet.payload_length -= 4;
}
val = 0;
switch (packet.payload_length) {
case 3:
val |= packet.payload[2] << 16;
/* fallthrough */
case 2:
val |= packet.payload[1] << 8;
/* fallthrough */
case 1:
val |= packet.payload[0];
dsi_write(dsi, DSI_GEN_PLD_DATA, val);
break;
}
ret = genif_wait_cmd_fifo_not_full(dsi);
if (ret)
return ret;
/* Send packet header */
val = get_unaligned_le32(packet.header);
dsi_write(dsi, DSI_GEN_HDR, val);
ret = genif_wait_write_fifo_empty(dsi);
if (ret)
return ret;
if (msg->rx_len) {
ret = rk628_dsi_read_from_fifo(dsi, msg);
if (ret < 0)
return ret;
}
if (dsi->slave)
rk628_dsi_transfer(dsi->slave, msg);
return msg->tx_len;
}
static ssize_t rk628_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct rk628_dsi *dsi = host_to_dsi(host);
return rk628_dsi_transfer(dsi, msg);
}
static const struct mipi_dsi_host_ops rk628_dsi_host_ops = {
.attach = rk628_dsi_host_attach,
.detach = rk628_dsi_host_detach,
.transfer = rk628_dsi_host_transfer,
};
static struct drm_encoder *
rk628_dsi_connector_best_encoder(struct drm_connector *connector)
{
struct rk628_dsi *dsi = connector_to_dsi(connector);
return dsi->base.encoder;
}
static int rk628_dsi_connector_get_modes(struct drm_connector *connector)
{
struct rk628_dsi *dsi = connector_to_dsi(connector);
return drm_panel_get_modes(dsi->panel, connector);
}
static struct drm_connector_helper_funcs rk628_dsi_connector_helper_funcs = {
.get_modes = rk628_dsi_connector_get_modes,
.best_encoder = rk628_dsi_connector_best_encoder,
};
static void rk628_dsi_drm_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
static const struct drm_connector_funcs rk628_dsi_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = rk628_dsi_drm_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static void rk628_dsi_set_vid_mode(struct rk628_dsi *dsi)
{
struct drm_display_mode *mode = &dsi->mode;
unsigned int lanebyteclk = (dsi->lane_mbps * USEC_PER_MSEC) >> 3;
unsigned int dpipclk = mode->clock;
u32 hline, hsa, hbp, hline_time, hsa_time, hbp_time;
u32 vactive, vsa, vfp, vbp;
u32 val;
val = LP_HFP_EN | LP_HBP_EN | LP_VACT_EN | LP_VFP_EN | LP_VBP_EN |
LP_VSA_EN;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP)
val &= ~LP_HFP_EN;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP)
val &= ~LP_HBP_EN;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
val |= VID_MODE_TYPE_BURST;
else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
val |= VID_MODE_TYPE_NON_BURST_SYNC_PULSES;
else
val |= VID_MODE_TYPE_NON_BURST_SYNC_EVENTS;
dsi_write(dsi, DSI_VID_MODE_CFG, val);
if (dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)
dsi_update_bits(dsi, DSI_LPCLK_CTRL,
AUTO_CLKLANE_CTRL, AUTO_CLKLANE_CTRL);
dsi_write(dsi, DSI_VID_PKT_SIZE, VID_PKT_SIZE(mode->hdisplay));
vactive = mode->vdisplay;
vsa = mode->vsync_end - mode->vsync_start;
vfp = mode->vsync_start - mode->vdisplay;
vbp = mode->vtotal - mode->vsync_end;
hsa = mode->hsync_end - mode->hsync_start;
hbp = mode->htotal - mode->hsync_end;
hline = mode->htotal;
hline_time = DIV_ROUND_CLOSEST_ULL(hline * lanebyteclk, dpipclk);
dsi_write(dsi, DSI_VID_HLINE_TIME, VID_HLINE_TIME(hline_time));
hsa_time = DIV_ROUND_CLOSEST_ULL(hsa * lanebyteclk, dpipclk);
dsi_write(dsi, DSI_VID_HSA_TIME, VID_HSA_TIME(hsa_time));
hbp_time = DIV_ROUND_CLOSEST_ULL(hbp * lanebyteclk, dpipclk);
dsi_write(dsi, DSI_VID_HBP_TIME, VID_HBP_TIME(hbp_time));
dsi_write(dsi, DSI_VID_VACTIVE_LINES, vactive);
dsi_write(dsi, DSI_VID_VSA_LINES, vsa);
dsi_write(dsi, DSI_VID_VFP_LINES, vfp);
dsi_write(dsi, DSI_VID_VBP_LINES, vbp);
dsi_write(dsi, DSI_MODE_CFG, CMD_VIDEO_MODE(VIDEO_MODE));
}
static void rk628_dsi_set_cmd_mode(struct rk628_dsi *dsi)
{
struct drm_display_mode *mode = &dsi->mode;
dsi_update_bits(dsi, DSI_CMD_MODE_CFG, DCS_LW_TX, 0);
dsi_write(dsi, DSI_EDPI_CMD_SIZE,
EDPI_ALLOWED_CMD_SIZE(mode->hdisplay));
dsi_write(dsi, DSI_MODE_CFG, CMD_VIDEO_MODE(COMMAND_MODE));
}
static void rk628_dsi_disable(struct rk628_dsi *dsi)
{
dsi_write(dsi, DSI_PWR_UP, RESET);
dsi_write(dsi, DSI_LPCLK_CTRL, 0);
dsi_write(dsi, DSI_EDPI_CMD_SIZE, 0);
dsi_write(dsi, DSI_MODE_CFG, CMD_VIDEO_MODE(COMMAND_MODE));
dsi_write(dsi, DSI_PWR_UP, POWER_UP);
if (dsi->slave)
rk628_dsi_disable(dsi->slave);
}
static void rk628_dsi_post_disable(struct rk628_dsi *dsi)
{
dsi_write(dsi, DSI_INT_MSK0, 0);
dsi_write(dsi, DSI_INT_MSK1, 0);
dsi_write(dsi, DSI_PWR_UP, RESET);
mipi_dphy_power_off(dsi);
clk_disable_unprepare(dsi->cfgclk);
clk_disable_unprepare(dsi->pclk);
if (dsi->slave)
rk628_dsi_post_disable(dsi->slave);
}
static unsigned int rk628_dsi_get_lane_rate(struct rk628_dsi *dsi)
{
struct device *dev = dsi->dev;
const struct drm_display_mode *mode = &dsi->mode;
unsigned int max_lane_rate = 1500;
unsigned int lane_rate;
unsigned int value;
int bpp, lanes;
/* optional override of the desired bandwidth */
if (!of_property_read_u32(dev->of_node, "rockchip,lane-rate", &value))
return value;
bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
if (bpp < 0)
bpp = 24;
lanes = dsi->slave ? dsi->lanes * 2 : dsi->lanes;
lane_rate = mode->clock / 1000 * bpp / lanes;
lane_rate = DIV_ROUND_UP(lane_rate * 5, 4);
if (lane_rate > max_lane_rate)
lane_rate = max_lane_rate;
return lane_rate;
}
static void rk628_dsi_pre_enable(struct rk628_dsi *dsi)
{
u32 val;
clk_prepare_enable(dsi->pclk);
clk_prepare_enable(dsi->cfgclk);
reset_control_assert(dsi->rst);
usleep_range(20, 40);
reset_control_deassert(dsi->rst);
usleep_range(20, 40);
dsi_write(dsi, DSI_PWR_UP, RESET);
dsi_write(dsi, DSI_MODE_CFG, CMD_VIDEO_MODE(COMMAND_MODE));
val = DIV_ROUND_UP(dsi->lane_mbps >> 3, 20);
dsi_write(dsi, DSI_CLKMGR_CFG,
TO_CLK_DIVISION(10) | TX_ESC_CLK_DIVISION(val));
val = CRC_RX_EN | ECC_RX_EN | BTA_EN | EOTP_TX_EN;
if (dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET)
val &= ~EOTP_TX_EN;
dsi_write(dsi, DSI_PCKHDL_CFG, val);
dsi_write(dsi, DSI_TO_CNT_CFG, HSTX_TO_CNT(1000) | LPRX_TO_CNT(1000));
dsi_write(dsi, DSI_BTA_TO_CNT, 0xd00);
dsi_write(dsi, DSI_PHY_TMR_CFG,
PHY_HS2LP_TIME(0x14) | PHY_LP2HS_TIME(0x10) |
MAX_RD_TIME(10000));
dsi_write(dsi, DSI_PHY_TMR_LPCLK_CFG,
PHY_CLKHS2LP_TIME(0x40) | PHY_CLKLP2HS_TIME(0x40));
dsi_write(dsi, DSI_PHY_IF_CFG,
PHY_STOP_WAIT_TIME(0x20) | N_LANES(dsi->lanes - 1));
mipi_dphy_power_on(dsi);
dsi_write(dsi, DSI_PWR_UP, POWER_UP);
dsi_write(dsi, DSI_INT_MSK0, 0x1fffff);
dsi_write(dsi, DSI_INT_MSK1, 0x1f7f);
if (dsi->slave)
rk628_dsi_pre_enable(dsi->slave);
}
static void rk628_dsi_enable(struct rk628_dsi *dsi)
{
struct drm_display_mode *mode = &dsi->mode;
u32 val;
dsi_write(dsi, DSI_PWR_UP, RESET);
switch (dsi->format) {
case MIPI_DSI_FMT_RGB666:
val = DPI_COLOR_CODING(DPI_COLOR_CODING_18BIT_2) | LOOSELY18_EN;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
val = DPI_COLOR_CODING(DPI_COLOR_CODING_18BIT_1);
break;
case MIPI_DSI_FMT_RGB565:
val = DPI_COLOR_CODING(DPI_COLOR_CODING_16BIT_1);
break;
case MIPI_DSI_FMT_RGB888:
default:
val = DPI_COLOR_CODING(DPI_COLOR_CODING_24BIT);
break;
}
dsi_write(dsi, DSI_DPI_COLOR_CODING, val);
val = 0;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
val |= VSYNC_ACTIVE_LOW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
val |= HSYNC_ACTIVE_LOW;
dsi_write(dsi, DSI_DPI_CFG_POL, val);
dsi_write(dsi, DSI_DPI_VCID, DPI_VID(dsi->channel));
dsi_write(dsi, DSI_DPI_LP_CMD_TIM,
OUTVACT_LPCMD_TIME(4) | INVACT_LPCMD_TIME(4));
dsi_update_bits(dsi, DSI_LPCLK_CTRL,
PHY_TXREQUESTCLKHS, PHY_TXREQUESTCLKHS);
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO)
rk628_dsi_set_vid_mode(dsi);
else
rk628_dsi_set_cmd_mode(dsi);
dsi_write(dsi, DSI_PWR_UP, POWER_UP);
if (dsi->slave)
rk628_dsi_enable(dsi->slave);
}
static void rk628_dsi_bridge_enable(struct drm_bridge *bridge)
{
struct rk628_dsi *dsi = bridge_to_dsi(bridge);
unsigned int rate = rk628_dsi_get_lane_rate(dsi);
int bus_width;
int ret;
regmap_update_bits(dsi->grf, GRF_SYSTEM_CON0, SW_OUTPUT_MODE_MASK,
SW_OUTPUT_MODE(OUTPUT_MODE_DSI));
regmap_update_bits(dsi->grf, GRF_POST_PROC_CON, SW_SPLIT_EN,
dsi->slave ? SW_SPLIT_EN : 0);
bus_width = rate << 8;
if (dsi->slave)
bus_width |= COMBTXPHY_MODULEA_EN | COMBTXPHY_MODULEB_EN;
else if (dsi->id)
bus_width |= COMBTXPHY_MODULEB_EN;
else
bus_width |= COMBTXPHY_MODULEA_EN;
phy_set_bus_width(dsi->phy, bus_width);
ret = phy_set_mode(dsi->phy, PHY_MODE_MIPI_DPHY);
if (ret) {
dev_err(dsi->dev, "failed to set phy mode: %d\n", ret);
return;
}
dsi->lane_mbps = phy_get_bus_width(dsi->phy);
if (dsi->slave)
dsi->slave->lane_mbps = dsi->lane_mbps;
rk628_dsi_pre_enable(dsi);
drm_panel_prepare(dsi->panel);
rk628_dsi_enable(dsi);
drm_panel_enable(dsi->panel);
dev_info(dsi->dev, "final DSI-Link bandwidth: %u x %d Mbps\n",
dsi->lane_mbps, dsi->slave ? dsi->lanes * 2 : dsi->lanes);
}
static void rk628_dsi_bridge_disable(struct drm_bridge *bridge)
{
struct rk628_dsi *dsi = bridge_to_dsi(bridge);
drm_panel_disable(dsi->panel);
rk628_dsi_disable(dsi);
drm_panel_unprepare(dsi->panel);
rk628_dsi_post_disable(dsi);
}
static void rk628_dsi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct rk628_dsi *dsi = bridge_to_dsi(bridge);
drm_mode_copy(&dsi->mode, adj);
if (dsi->slave) {
dsi->mode.hdisplay /= 2;
drm_mode_copy(&dsi->slave->mode, &dsi->mode);
}
}
static int rk628_dsi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct rk628_dsi *dsi = bridge_to_dsi(bridge);
struct drm_connector *connector = &dsi->connector;
struct drm_device *drm = bridge->dev;
int ret;
if (!dsi->panel)
return -EPROBE_DEFER;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
return 0;
ret = drm_connector_init(drm, connector, &rk628_dsi_connector_funcs,
DRM_MODE_CONNECTOR_DSI);
if (ret) {
dev_err(dsi->dev, "Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(connector, &rk628_dsi_connector_helper_funcs);
drm_connector_attach_encoder(connector, bridge->encoder);
return 0;
}
static const struct drm_bridge_funcs rk628_dsi_bridge_funcs = {
.attach = rk628_dsi_bridge_attach,
.mode_set = rk628_dsi_bridge_mode_set,
.enable = rk628_dsi_bridge_enable,
.disable = rk628_dsi_bridge_disable,
};
static irqreturn_t rk628_dsi_irq_handler(int irq, void *dev_id)
{
struct rk628_dsi *dsi = dev_id;
u32 int_st0, int_st1;
int_st0 = dsi_read(dsi, DSI_INT_ST0);
int_st1 = dsi_read(dsi, DSI_INT_ST1);
if (!int_st0 && !int_st1)
return IRQ_NONE;
dev_info(dsi->dev, "int_st0=0x%08x, int_st1=0x%08x\n",
int_st0, int_st1);
return IRQ_HANDLED;
}
static const struct regmap_config testif_regmap_config = {
.name = "phy",
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x97,
.cache_type = REGCACHE_RBTREE,
.reg_write = testif_write,
.reg_read = testif_read,
};
static bool rk628_dsi_register_volatile(struct device *dev, unsigned int reg)
{
reg &= 0xffff;
switch (reg) {
case DSI_GEN_HDR:
case DSI_GEN_PLD_DATA:
case DSI_CMD_PKT_STATUS:
case DSI_PHY_STATUS:
case DSI_INT_ST0:
case DSI_INT_ST1:
case DSI_INT_FORCE0:
case DSI_INT_FORCE1:
return true;
default:
return false;
}
}
static int rk628_dsi_probe(struct platform_device *pdev)
{
struct rk628 *rk628 = dev_get_drvdata(pdev->dev.parent);
struct device *dev = &pdev->dev;
struct rk628_dsi *dsi;
const struct rk628_dsi_data *data = of_device_get_match_data(dev);
char name[8];
int ret;
if (!of_device_is_available(dev->of_node))
return -ENODEV;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->dev = dev;
dsi->parent = rk628;
dsi->grf = rk628->grf;
dsi->reg_base = data->reg_base;
dsi->id = data->id;
platform_set_drvdata(pdev, dsi);
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0)
return dsi->irq;
dsi->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(dsi->pclk)) {
ret = PTR_ERR(dsi->pclk);
dev_err(dev, "failed to get pclk: %d\n", ret);
return ret;
}
dsi->cfgclk = devm_clk_get(dev, "cfg");
if (IS_ERR(dsi->cfgclk)) {
ret = PTR_ERR(dsi->cfgclk);
dev_err(dev, "failed to get cfg clk: %d\n", ret);
return ret;
}
dsi->rst = of_reset_control_get(dev->of_node, NULL);
if (IS_ERR(dsi->rst)) {
ret = PTR_ERR(dsi->rst);
dev_err(dev, "failed to get reset control: %d\n", ret);
return ret;
}
dsi->phy = devm_of_phy_get(dev, dev->of_node, NULL);
if (IS_ERR(dsi->phy)) {
ret = PTR_ERR(dsi->phy);
dev_err(dev, "failed to get phy: %d\n", ret);
return ret;
}
sprintf(name, "dsi%d", dsi->id);
dsi->config.name = name;
dsi->config.reg_bits = 32;
dsi->config.val_bits = 32;
dsi->config.reg_stride = 4;
dsi->config.cache_type = REGCACHE_RBTREE;
dsi->config.max_register = dsi->reg_base + DSI_MAX_REGISTER;
dsi->config.reg_format_endian = REGMAP_ENDIAN_LITTLE;
dsi->config.val_format_endian = REGMAP_ENDIAN_LITTLE;
dsi->config.volatile_reg = rk628_dsi_register_volatile;
dsi->range.range_min = dsi->reg_base + DSI_VERSION;
dsi->range.range_max = dsi->reg_base + DSI_MAX_REGISTER;
dsi->rd_table.yes_ranges = &dsi->range;
dsi->rd_table.n_yes_ranges = 1;
dsi->config.rd_table = &dsi->rd_table;
dsi->regmap = devm_regmap_init_i2c(rk628->client, &dsi->config);
if (IS_ERR(dsi->regmap)) {
ret = PTR_ERR(dsi->regmap);
dev_err(dev, "failed to allocate register map: %d\n", ret);
return ret;
}
dsi->testif = devm_regmap_init(dev, NULL, dsi, &testif_regmap_config);
if (IS_ERR(dsi->testif)) {
ret = PTR_ERR(dsi->testif);
dev_err(dev, "failed to create testif regmap: %d\n", ret);
return ret;
}
ret = devm_request_threaded_irq(dev, dsi->irq, NULL,
rk628_dsi_irq_handler, IRQF_ONESHOT,
dev_name(dev), dsi);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
return ret;
}
dsi->base.funcs = &rk628_dsi_bridge_funcs;
dsi->base.of_node = dev->of_node;
drm_bridge_add(&dsi->base);
dsi->host.ops = &rk628_dsi_host_ops;
dsi->host.dev = dev;
ret = mipi_dsi_host_register(&dsi->host);
if (ret) {
drm_bridge_remove(&dsi->base);
dev_err(dev, "Failed to register MIPI host: %d\n", ret);
return ret;
}
return 0;
}
static int rk628_dsi_remove(struct platform_device *pdev)
{
struct rk628_dsi *dsi = platform_get_drvdata(pdev);
mipi_dsi_host_unregister(&dsi->host);
drm_bridge_remove(&dsi->base);
return 0;
}
static const struct rk628_dsi_data rk628_dsi0_data = {
.reg_base = 0x50000,
.id = 0,
};
static const struct rk628_dsi_data rk628_dsi1_data = {
.reg_base = 0x60000,
.id = 1,
};
static const struct of_device_id rk628_dsi_of_match[] = {
{ .compatible = "rockchip,rk628-dsi0", .data = &rk628_dsi0_data },
{ .compatible = "rockchip,rk628-dsi1", .data = &rk628_dsi1_data },
{}
};
MODULE_DEVICE_TABLE(of, rk628_dsi_of_match);
static struct platform_driver rk628_dsi_driver = {
.driver = {
.name = "rk628-dsi",
.of_match_table = of_match_ptr(rk628_dsi_of_match),
},
.probe = rk628_dsi_probe,
.remove = rk628_dsi_remove,
};
module_platform_driver(rk628_dsi_driver);
MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip RK628 MIPI-DSI driver");
MODULE_LICENSE("GPL v2");