1235 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1235 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright(c) 2015 - 2020 Intel Corporation.
 | |
|  *
 | |
|  * This file is provided under a dual BSD/GPLv2 license.  When using or
 | |
|  * redistributing this file, you may do so under either license.
 | |
|  *
 | |
|  * GPL LICENSE SUMMARY
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * BSD LICENSE
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *  - Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  - Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *  - Neither the name of Intel Corporation nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  */
 | |
| #include <linux/topology.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/numa.h>
 | |
| 
 | |
| #include "hfi.h"
 | |
| #include "affinity.h"
 | |
| #include "sdma.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| struct hfi1_affinity_node_list node_affinity = {
 | |
| 	.list = LIST_HEAD_INIT(node_affinity.list),
 | |
| 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
 | |
| };
 | |
| 
 | |
| /* Name of IRQ types, indexed by enum irq_type */
 | |
| static const char * const irq_type_names[] = {
 | |
| 	"SDMA",
 | |
| 	"RCVCTXT",
 | |
| 	"NETDEVCTXT",
 | |
| 	"GENERAL",
 | |
| 	"OTHER",
 | |
| };
 | |
| 
 | |
| /* Per NUMA node count of HFI devices */
 | |
| static unsigned int *hfi1_per_node_cntr;
 | |
| 
 | |
| static inline void init_cpu_mask_set(struct cpu_mask_set *set)
 | |
| {
 | |
| 	cpumask_clear(&set->mask);
 | |
| 	cpumask_clear(&set->used);
 | |
| 	set->gen = 0;
 | |
| }
 | |
| 
 | |
| /* Increment generation of CPU set if needed */
 | |
| static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
 | |
| {
 | |
| 	if (cpumask_equal(&set->mask, &set->used)) {
 | |
| 		/*
 | |
| 		 * We've used up all the CPUs, bump up the generation
 | |
| 		 * and reset the 'used' map
 | |
| 		 */
 | |
| 		set->gen++;
 | |
| 		cpumask_clear(&set->used);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
 | |
| {
 | |
| 	if (cpumask_empty(&set->used) && set->gen) {
 | |
| 		set->gen--;
 | |
| 		cpumask_copy(&set->used, &set->mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
 | |
| static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!diff || !set)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	_cpu_mask_set_gen_inc(set);
 | |
| 
 | |
| 	/* Find out CPUs left in CPU mask */
 | |
| 	cpumask_andnot(diff, &set->mask, &set->used);
 | |
| 
 | |
| 	cpu = cpumask_first(diff);
 | |
| 	if (cpu >= nr_cpu_ids) /* empty */
 | |
| 		cpu = -EINVAL;
 | |
| 	else
 | |
| 		cpumask_set_cpu(cpu, &set->used);
 | |
| 
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
 | |
| {
 | |
| 	if (!set)
 | |
| 		return;
 | |
| 
 | |
| 	cpumask_clear_cpu(cpu, &set->used);
 | |
| 	_cpu_mask_set_gen_dec(set);
 | |
| }
 | |
| 
 | |
| /* Initialize non-HT cpu cores mask */
 | |
| void init_real_cpu_mask(void)
 | |
| {
 | |
| 	int possible, curr_cpu, i, ht;
 | |
| 
 | |
| 	cpumask_clear(&node_affinity.real_cpu_mask);
 | |
| 
 | |
| 	/* Start with cpu online mask as the real cpu mask */
 | |
| 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
 | |
| 	 */
 | |
| 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
 | |
| 	ht = cpumask_weight(topology_sibling_cpumask(
 | |
| 				cpumask_first(&node_affinity.real_cpu_mask)));
 | |
| 	/*
 | |
| 	 * Step 1.  Skip over the first N HT siblings and use them as the
 | |
| 	 * "real" cores.  Assumes that HT cores are not enumerated in
 | |
| 	 * succession (except in the single core case).
 | |
| 	 */
 | |
| 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
 | |
| 	for (i = 0; i < possible / ht; i++)
 | |
| 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
 | |
| 	/*
 | |
| 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
 | |
| 	 * skip any gaps.
 | |
| 	 */
 | |
| 	for (; i < possible; i++) {
 | |
| 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
 | |
| 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int node_affinity_init(void)
 | |
| {
 | |
| 	int node;
 | |
| 	struct pci_dev *dev = NULL;
 | |
| 	const struct pci_device_id *ids = hfi1_pci_tbl;
 | |
| 
 | |
| 	cpumask_clear(&node_affinity.proc.used);
 | |
| 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
 | |
| 
 | |
| 	node_affinity.proc.gen = 0;
 | |
| 	node_affinity.num_core_siblings =
 | |
| 				cpumask_weight(topology_sibling_cpumask(
 | |
| 					cpumask_first(&node_affinity.proc.mask)
 | |
| 					));
 | |
| 	node_affinity.num_possible_nodes = num_possible_nodes();
 | |
| 	node_affinity.num_online_nodes = num_online_nodes();
 | |
| 	node_affinity.num_online_cpus = num_online_cpus();
 | |
| 
 | |
| 	/*
 | |
| 	 * The real cpu mask is part of the affinity struct but it has to be
 | |
| 	 * initialized early. It is needed to calculate the number of user
 | |
| 	 * contexts in set_up_context_variables().
 | |
| 	 */
 | |
| 	init_real_cpu_mask();
 | |
| 
 | |
| 	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
 | |
| 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
 | |
| 	if (!hfi1_per_node_cntr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while (ids->vendor) {
 | |
| 		dev = NULL;
 | |
| 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
 | |
| 			node = pcibus_to_node(dev->bus);
 | |
| 			if (node < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			hfi1_per_node_cntr[node]++;
 | |
| 		}
 | |
| 		ids++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * Invalid PCI NUMA node information found, note it, and populate
 | |
| 	 * our database 1:1.
 | |
| 	 */
 | |
| 	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
 | |
| 	pr_err("HFI: System BIOS may need to be upgraded\n");
 | |
| 	for (node = 0; node < node_affinity.num_possible_nodes; node++)
 | |
| 		hfi1_per_node_cntr[node] = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void node_affinity_destroy(struct hfi1_affinity_node *entry)
 | |
| {
 | |
| 	free_percpu(entry->comp_vect_affinity);
 | |
| 	kfree(entry);
 | |
| }
 | |
| 
 | |
| void node_affinity_destroy_all(void)
 | |
| {
 | |
| 	struct list_head *pos, *q;
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 
 | |
| 	mutex_lock(&node_affinity.lock);
 | |
| 	list_for_each_safe(pos, q, &node_affinity.list) {
 | |
| 		entry = list_entry(pos, struct hfi1_affinity_node,
 | |
| 				   list);
 | |
| 		list_del(pos);
 | |
| 		node_affinity_destroy(entry);
 | |
| 	}
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| 	kfree(hfi1_per_node_cntr);
 | |
| }
 | |
| 
 | |
| static struct hfi1_affinity_node *node_affinity_allocate(int node)
 | |
| {
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 
 | |
| 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 | |
| 	if (!entry)
 | |
| 		return NULL;
 | |
| 	entry->node = node;
 | |
| 	entry->comp_vect_affinity = alloc_percpu(u16);
 | |
| 	INIT_LIST_HEAD(&entry->list);
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It appends an entry to the list.
 | |
|  * It *must* be called with node_affinity.lock held.
 | |
|  */
 | |
| static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
 | |
| {
 | |
| 	list_add_tail(&entry->list, &node_affinity.list);
 | |
| }
 | |
| 
 | |
| /* It must be called with node_affinity.lock held */
 | |
| static struct hfi1_affinity_node *node_affinity_lookup(int node)
 | |
| {
 | |
| 	struct list_head *pos;
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 
 | |
| 	list_for_each(pos, &node_affinity.list) {
 | |
| 		entry = list_entry(pos, struct hfi1_affinity_node, list);
 | |
| 		if (entry->node == node)
 | |
| 			return entry;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
 | |
| 				u16 __percpu *comp_vect_affinity)
 | |
| {
 | |
| 	int curr_cpu;
 | |
| 	u16 cntr;
 | |
| 	u16 prev_cntr;
 | |
| 	int ret_cpu;
 | |
| 
 | |
| 	if (!possible_cpumask) {
 | |
| 		ret_cpu = -EINVAL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (!comp_vect_affinity) {
 | |
| 		ret_cpu = -EINVAL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	ret_cpu = cpumask_first(possible_cpumask);
 | |
| 	if (ret_cpu >= nr_cpu_ids) {
 | |
| 		ret_cpu = -EINVAL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
 | |
| 	for_each_cpu(curr_cpu, possible_cpumask) {
 | |
| 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
 | |
| 
 | |
| 		if (cntr < prev_cntr) {
 | |
| 			ret_cpu = curr_cpu;
 | |
| 			prev_cntr = cntr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
 | |
| 
 | |
| fail:
 | |
| 	return ret_cpu;
 | |
| }
 | |
| 
 | |
| static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
 | |
| 				    u16 __percpu *comp_vect_affinity)
 | |
| {
 | |
| 	int curr_cpu;
 | |
| 	int max_cpu;
 | |
| 	u16 cntr;
 | |
| 	u16 prev_cntr;
 | |
| 
 | |
| 	if (!possible_cpumask)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!comp_vect_affinity)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	max_cpu = cpumask_first(possible_cpumask);
 | |
| 	if (max_cpu >= nr_cpu_ids)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
 | |
| 	for_each_cpu(curr_cpu, possible_cpumask) {
 | |
| 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
 | |
| 
 | |
| 		if (cntr > prev_cntr) {
 | |
| 			max_cpu = curr_cpu;
 | |
| 			prev_cntr = cntr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
 | |
| 
 | |
| 	return max_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Non-interrupt CPUs are used first, then interrupt CPUs.
 | |
|  * Two already allocated cpu masks must be passed.
 | |
|  */
 | |
| static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
 | |
| 				  struct hfi1_affinity_node *entry,
 | |
| 				  cpumask_var_t non_intr_cpus,
 | |
| 				  cpumask_var_t available_cpus)
 | |
| 	__must_hold(&node_affinity.lock)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct cpu_mask_set *set = dd->comp_vect;
 | |
| 
 | |
| 	lockdep_assert_held(&node_affinity.lock);
 | |
| 	if (!non_intr_cpus) {
 | |
| 		cpu = -1;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (!available_cpus) {
 | |
| 		cpu = -1;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Available CPUs for pinning completion vectors */
 | |
| 	_cpu_mask_set_gen_inc(set);
 | |
| 	cpumask_andnot(available_cpus, &set->mask, &set->used);
 | |
| 
 | |
| 	/* Available CPUs without SDMA engine interrupts */
 | |
| 	cpumask_andnot(non_intr_cpus, available_cpus,
 | |
| 		       &entry->def_intr.used);
 | |
| 
 | |
| 	/* If there are non-interrupt CPUs available, use them first */
 | |
| 	if (!cpumask_empty(non_intr_cpus))
 | |
| 		cpu = cpumask_first(non_intr_cpus);
 | |
| 	else /* Otherwise, use interrupt CPUs */
 | |
| 		cpu = cpumask_first(available_cpus);
 | |
| 
 | |
| 	if (cpu >= nr_cpu_ids) { /* empty */
 | |
| 		cpu = -1;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	cpumask_set_cpu(cpu, &set->used);
 | |
| 
 | |
| fail:
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
 | |
| {
 | |
| 	struct cpu_mask_set *set = dd->comp_vect;
 | |
| 
 | |
| 	if (cpu < 0)
 | |
| 		return;
 | |
| 
 | |
| 	cpu_mask_set_put(set, cpu);
 | |
| }
 | |
| 
 | |
| /* _dev_comp_vect_mappings_destroy() is reentrant */
 | |
| static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int i, cpu;
 | |
| 
 | |
| 	if (!dd->comp_vect_mappings)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 | |
| 		cpu = dd->comp_vect_mappings[i];
 | |
| 		_dev_comp_vect_cpu_put(dd, cpu);
 | |
| 		dd->comp_vect_mappings[i] = -1;
 | |
| 		hfi1_cdbg(AFFINITY,
 | |
| 			  "[%s] Release CPU %d from completion vector %d",
 | |
| 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
 | |
| 	}
 | |
| 
 | |
| 	kfree(dd->comp_vect_mappings);
 | |
| 	dd->comp_vect_mappings = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function creates the table for looking up CPUs for completion vectors.
 | |
|  * num_comp_vectors needs to have been initilized before calling this function.
 | |
|  */
 | |
| static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
 | |
| 					  struct hfi1_affinity_node *entry)
 | |
| 	__must_hold(&node_affinity.lock)
 | |
| {
 | |
| 	int i, cpu, ret;
 | |
| 	cpumask_var_t non_intr_cpus;
 | |
| 	cpumask_var_t available_cpus;
 | |
| 
 | |
| 	lockdep_assert_held(&node_affinity.lock);
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
 | |
| 		free_cpumask_var(non_intr_cpus);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
 | |
| 					 sizeof(*dd->comp_vect_mappings),
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!dd->comp_vect_mappings) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
 | |
| 		dd->comp_vect_mappings[i] = -1;
 | |
| 
 | |
| 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 | |
| 		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
 | |
| 					     available_cpus);
 | |
| 		if (cpu < 0) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		dd->comp_vect_mappings[i] = cpu;
 | |
| 		hfi1_cdbg(AFFINITY,
 | |
| 			  "[%s] Completion Vector %d -> CPU %d",
 | |
| 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
 | |
| 	}
 | |
| 
 | |
| 	free_cpumask_var(available_cpus);
 | |
| 	free_cpumask_var(non_intr_cpus);
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	free_cpumask_var(available_cpus);
 | |
| 	free_cpumask_var(non_intr_cpus);
 | |
| 	_dev_comp_vect_mappings_destroy(dd);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 
 | |
| 	mutex_lock(&node_affinity.lock);
 | |
| 	entry = node_affinity_lookup(dd->node);
 | |
| 	if (!entry) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	ret = _dev_comp_vect_mappings_create(dd, entry);
 | |
| unlock:
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	_dev_comp_vect_mappings_destroy(dd);
 | |
| }
 | |
| 
 | |
| int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
 | |
| {
 | |
| 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
 | |
| 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
 | |
| 
 | |
| 	if (!dd->comp_vect_mappings)
 | |
| 		return -EINVAL;
 | |
| 	if (comp_vect >= dd->comp_vect_possible_cpus)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return dd->comp_vect_mappings[comp_vect];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It assumes dd->comp_vect_possible_cpus is available.
 | |
|  */
 | |
| static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
 | |
| 					struct hfi1_affinity_node *entry,
 | |
| 					bool first_dev_init)
 | |
| 	__must_hold(&node_affinity.lock)
 | |
| {
 | |
| 	int i, j, curr_cpu;
 | |
| 	int possible_cpus_comp_vect = 0;
 | |
| 	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
 | |
| 
 | |
| 	lockdep_assert_held(&node_affinity.lock);
 | |
| 	/*
 | |
| 	 * If there's only one CPU available for completion vectors, then
 | |
| 	 * there will only be one completion vector available. Othewise,
 | |
| 	 * the number of completion vector available will be the number of
 | |
| 	 * available CPUs divide it by the number of devices in the
 | |
| 	 * local NUMA node.
 | |
| 	 */
 | |
| 	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
 | |
| 		possible_cpus_comp_vect = 1;
 | |
| 		dd_dev_warn(dd,
 | |
| 			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
 | |
| 	} else {
 | |
| 		possible_cpus_comp_vect +=
 | |
| 			cpumask_weight(&entry->comp_vect_mask) /
 | |
| 				       hfi1_per_node_cntr[dd->node];
 | |
| 
 | |
| 		/*
 | |
| 		 * If the completion vector CPUs available doesn't divide
 | |
| 		 * evenly among devices, then the first device device to be
 | |
| 		 * initialized gets an extra CPU.
 | |
| 		 */
 | |
| 		if (first_dev_init &&
 | |
| 		    cpumask_weight(&entry->comp_vect_mask) %
 | |
| 		    hfi1_per_node_cntr[dd->node] != 0)
 | |
| 			possible_cpus_comp_vect++;
 | |
| 	}
 | |
| 
 | |
| 	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
 | |
| 
 | |
| 	/* Reserving CPUs for device completion vector */
 | |
| 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 | |
| 		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
 | |
| 						entry->comp_vect_affinity);
 | |
| 		if (curr_cpu < 0)
 | |
| 			goto fail;
 | |
| 
 | |
| 		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
 | |
| 	}
 | |
| 
 | |
| 	hfi1_cdbg(AFFINITY,
 | |
| 		  "[%s] Completion vector affinity CPU set(s) %*pbl",
 | |
| 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
 | |
| 		  cpumask_pr_args(dev_comp_vect_mask));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	for (j = 0; j < i; j++)
 | |
| 		per_cpu_affinity_put_max(&entry->comp_vect_mask,
 | |
| 					 entry->comp_vect_affinity);
 | |
| 
 | |
| 	return curr_cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It assumes dd->comp_vect_possible_cpus is available.
 | |
|  */
 | |
| static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
 | |
| 					     struct hfi1_affinity_node *entry)
 | |
| 	__must_hold(&node_affinity.lock)
 | |
| {
 | |
| 	int i, cpu;
 | |
| 
 | |
| 	lockdep_assert_held(&node_affinity.lock);
 | |
| 	if (!dd->comp_vect_possible_cpus)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
 | |
| 		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
 | |
| 					       entry->comp_vect_affinity);
 | |
| 		/* Clearing CPU in device completion vector cpu mask */
 | |
| 		if (cpu >= 0)
 | |
| 			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
 | |
| 	}
 | |
| 
 | |
| 	dd->comp_vect_possible_cpus = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt affinity.
 | |
|  *
 | |
|  * non-rcv avail gets a default mask that
 | |
|  * starts as possible cpus with threads reset
 | |
|  * and each rcv avail reset.
 | |
|  *
 | |
|  * rcv avail gets node relative 1 wrapping back
 | |
|  * to the node relative 1 as necessary.
 | |
|  *
 | |
|  */
 | |
| int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 	const struct cpumask *local_mask;
 | |
| 	int curr_cpu, possible, i, ret;
 | |
| 	bool new_entry = false;
 | |
| 
 | |
| 	local_mask = cpumask_of_node(dd->node);
 | |
| 	if (cpumask_first(local_mask) >= nr_cpu_ids)
 | |
| 		local_mask = topology_core_cpumask(0);
 | |
| 
 | |
| 	mutex_lock(&node_affinity.lock);
 | |
| 	entry = node_affinity_lookup(dd->node);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is the first time this NUMA node's affinity is used,
 | |
| 	 * create an entry in the global affinity structure and initialize it.
 | |
| 	 */
 | |
| 	if (!entry) {
 | |
| 		entry = node_affinity_allocate(dd->node);
 | |
| 		if (!entry) {
 | |
| 			dd_dev_err(dd,
 | |
| 				   "Unable to allocate global affinity node\n");
 | |
| 			ret = -ENOMEM;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		new_entry = true;
 | |
| 
 | |
| 		init_cpu_mask_set(&entry->def_intr);
 | |
| 		init_cpu_mask_set(&entry->rcv_intr);
 | |
| 		cpumask_clear(&entry->comp_vect_mask);
 | |
| 		cpumask_clear(&entry->general_intr_mask);
 | |
| 		/* Use the "real" cpu mask of this node as the default */
 | |
| 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
 | |
| 			    local_mask);
 | |
| 
 | |
| 		/* fill in the receive list */
 | |
| 		possible = cpumask_weight(&entry->def_intr.mask);
 | |
| 		curr_cpu = cpumask_first(&entry->def_intr.mask);
 | |
| 
 | |
| 		if (possible == 1) {
 | |
| 			/* only one CPU, everyone will use it */
 | |
| 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
 | |
| 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The general/control context will be the first CPU in
 | |
| 			 * the default list, so it is removed from the default
 | |
| 			 * list and added to the general interrupt list.
 | |
| 			 */
 | |
| 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
 | |
| 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
 | |
| 			curr_cpu = cpumask_next(curr_cpu,
 | |
| 						&entry->def_intr.mask);
 | |
| 
 | |
| 			/*
 | |
| 			 * Remove the remaining kernel receive queues from
 | |
| 			 * the default list and add them to the receive list.
 | |
| 			 */
 | |
| 			for (i = 0;
 | |
| 			     i < (dd->n_krcv_queues - 1) *
 | |
| 				  hfi1_per_node_cntr[dd->node];
 | |
| 			     i++) {
 | |
| 				cpumask_clear_cpu(curr_cpu,
 | |
| 						  &entry->def_intr.mask);
 | |
| 				cpumask_set_cpu(curr_cpu,
 | |
| 						&entry->rcv_intr.mask);
 | |
| 				curr_cpu = cpumask_next(curr_cpu,
 | |
| 							&entry->def_intr.mask);
 | |
| 				if (curr_cpu >= nr_cpu_ids)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If there ends up being 0 CPU cores leftover for SDMA
 | |
| 			 * engines, use the same CPU cores as general/control
 | |
| 			 * context.
 | |
| 			 */
 | |
| 			if (cpumask_weight(&entry->def_intr.mask) == 0)
 | |
| 				cpumask_copy(&entry->def_intr.mask,
 | |
| 					     &entry->general_intr_mask);
 | |
| 		}
 | |
| 
 | |
| 		/* Determine completion vector CPUs for the entire node */
 | |
| 		cpumask_and(&entry->comp_vect_mask,
 | |
| 			    &node_affinity.real_cpu_mask, local_mask);
 | |
| 		cpumask_andnot(&entry->comp_vect_mask,
 | |
| 			       &entry->comp_vect_mask,
 | |
| 			       &entry->rcv_intr.mask);
 | |
| 		cpumask_andnot(&entry->comp_vect_mask,
 | |
| 			       &entry->comp_vect_mask,
 | |
| 			       &entry->general_intr_mask);
 | |
| 
 | |
| 		/*
 | |
| 		 * If there ends up being 0 CPU cores leftover for completion
 | |
| 		 * vectors, use the same CPU core as the general/control
 | |
| 		 * context.
 | |
| 		 */
 | |
| 		if (cpumask_weight(&entry->comp_vect_mask) == 0)
 | |
| 			cpumask_copy(&entry->comp_vect_mask,
 | |
| 				     &entry->general_intr_mask);
 | |
| 	}
 | |
| 
 | |
| 	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (new_entry)
 | |
| 		node_affinity_add_tail(entry);
 | |
| 
 | |
| 	dd->affinity_entry = entry;
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	if (new_entry)
 | |
| 		node_affinity_destroy(entry);
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 
 | |
| 	mutex_lock(&node_affinity.lock);
 | |
| 	if (!dd->affinity_entry)
 | |
| 		goto unlock;
 | |
| 	entry = node_affinity_lookup(dd->node);
 | |
| 	if (!entry)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Free device completion vector CPUs to be used by future
 | |
| 	 * completion vectors
 | |
| 	 */
 | |
| 	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
 | |
| unlock:
 | |
| 	dd->affinity_entry = NULL;
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function updates the irq affinity hint for msix after it has been changed
 | |
|  * by the user using the /proc/irq interface. This function only accepts
 | |
|  * one cpu in the mask.
 | |
|  */
 | |
| static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
 | |
| {
 | |
| 	struct sdma_engine *sde = msix->arg;
 | |
| 	struct hfi1_devdata *dd = sde->dd;
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 	struct cpu_mask_set *set;
 | |
| 	int i, old_cpu;
 | |
| 
 | |
| 	if (cpu > num_online_cpus() || cpu == sde->cpu)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&node_affinity.lock);
 | |
| 	entry = node_affinity_lookup(dd->node);
 | |
| 	if (!entry)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	old_cpu = sde->cpu;
 | |
| 	sde->cpu = cpu;
 | |
| 	cpumask_clear(&msix->mask);
 | |
| 	cpumask_set_cpu(cpu, &msix->mask);
 | |
| 	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
 | |
| 		   msix->irq, irq_type_names[msix->type],
 | |
| 		   sde->this_idx, cpu);
 | |
| 	irq_set_affinity_hint(msix->irq, &msix->mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the new cpu in the hfi1_affinity_node and clean
 | |
| 	 * the old cpu if it is not used by any other IRQ
 | |
| 	 */
 | |
| 	set = &entry->def_intr;
 | |
| 	cpumask_set_cpu(cpu, &set->mask);
 | |
| 	cpumask_set_cpu(cpu, &set->used);
 | |
| 	for (i = 0; i < dd->msix_info.max_requested; i++) {
 | |
| 		struct hfi1_msix_entry *other_msix;
 | |
| 
 | |
| 		other_msix = &dd->msix_info.msix_entries[i];
 | |
| 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
 | |
| 			continue;
 | |
| 
 | |
| 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 	cpumask_clear_cpu(old_cpu, &set->mask);
 | |
| 	cpumask_clear_cpu(old_cpu, &set->used);
 | |
| unlock:
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| }
 | |
| 
 | |
| static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
 | |
| 				     const cpumask_t *mask)
 | |
| {
 | |
| 	int cpu = cpumask_first(mask);
 | |
| 	struct hfi1_msix_entry *msix = container_of(notify,
 | |
| 						    struct hfi1_msix_entry,
 | |
| 						    notify);
 | |
| 
 | |
| 	/* Only one CPU configuration supported currently */
 | |
| 	hfi1_update_sdma_affinity(msix, cpu);
 | |
| }
 | |
| 
 | |
| static void hfi1_irq_notifier_release(struct kref *ref)
 | |
| {
 | |
| 	/*
 | |
| 	 * This is required by affinity notifier. We don't have anything to
 | |
| 	 * free here.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
 | |
| {
 | |
| 	struct irq_affinity_notify *notify = &msix->notify;
 | |
| 
 | |
| 	notify->irq = msix->irq;
 | |
| 	notify->notify = hfi1_irq_notifier_notify;
 | |
| 	notify->release = hfi1_irq_notifier_release;
 | |
| 
 | |
| 	if (irq_set_affinity_notifier(notify->irq, notify))
 | |
| 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
 | |
| 		       notify->irq);
 | |
| }
 | |
| 
 | |
| static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
 | |
| {
 | |
| 	struct irq_affinity_notify *notify = &msix->notify;
 | |
| 
 | |
| 	if (irq_set_affinity_notifier(notify->irq, NULL))
 | |
| 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
 | |
| 		       notify->irq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function sets the irq affinity for msix.
 | |
|  * It *must* be called with node_affinity.lock held.
 | |
|  */
 | |
| static int get_irq_affinity(struct hfi1_devdata *dd,
 | |
| 			    struct hfi1_msix_entry *msix)
 | |
| {
 | |
| 	cpumask_var_t diff;
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 	struct cpu_mask_set *set = NULL;
 | |
| 	struct sdma_engine *sde = NULL;
 | |
| 	struct hfi1_ctxtdata *rcd = NULL;
 | |
| 	char extra[64];
 | |
| 	int cpu = -1;
 | |
| 
 | |
| 	extra[0] = '\0';
 | |
| 	cpumask_clear(&msix->mask);
 | |
| 
 | |
| 	entry = node_affinity_lookup(dd->node);
 | |
| 
 | |
| 	switch (msix->type) {
 | |
| 	case IRQ_SDMA:
 | |
| 		sde = (struct sdma_engine *)msix->arg;
 | |
| 		scnprintf(extra, 64, "engine %u", sde->this_idx);
 | |
| 		set = &entry->def_intr;
 | |
| 		break;
 | |
| 	case IRQ_GENERAL:
 | |
| 		cpu = cpumask_first(&entry->general_intr_mask);
 | |
| 		break;
 | |
| 	case IRQ_RCVCTXT:
 | |
| 		rcd = (struct hfi1_ctxtdata *)msix->arg;
 | |
| 		if (rcd->ctxt == HFI1_CTRL_CTXT)
 | |
| 			cpu = cpumask_first(&entry->general_intr_mask);
 | |
| 		else
 | |
| 			set = &entry->rcv_intr;
 | |
| 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
 | |
| 		break;
 | |
| 	case IRQ_NETDEVCTXT:
 | |
| 		rcd = (struct hfi1_ctxtdata *)msix->arg;
 | |
| 		set = &entry->def_intr;
 | |
| 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The general and control contexts are placed on a particular
 | |
| 	 * CPU, which is set above. Skip accounting for it. Everything else
 | |
| 	 * finds its CPU here.
 | |
| 	 */
 | |
| 	if (cpu == -1 && set) {
 | |
| 		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		cpu = cpu_mask_set_get_first(set, diff);
 | |
| 		if (cpu < 0) {
 | |
| 			free_cpumask_var(diff);
 | |
| 			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
 | |
| 			return cpu;
 | |
| 		}
 | |
| 
 | |
| 		free_cpumask_var(diff);
 | |
| 	}
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, &msix->mask);
 | |
| 	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
 | |
| 		    msix->irq, irq_type_names[msix->type],
 | |
| 		    extra, cpu);
 | |
| 	irq_set_affinity_hint(msix->irq, &msix->mask);
 | |
| 
 | |
| 	if (msix->type == IRQ_SDMA) {
 | |
| 		sde->cpu = cpu;
 | |
| 		hfi1_setup_sdma_notifier(msix);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&node_affinity.lock);
 | |
| 	ret = get_irq_affinity(dd, msix);
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
 | |
| 			   struct hfi1_msix_entry *msix)
 | |
| {
 | |
| 	struct cpu_mask_set *set = NULL;
 | |
| 	struct hfi1_ctxtdata *rcd;
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 
 | |
| 	mutex_lock(&node_affinity.lock);
 | |
| 	entry = node_affinity_lookup(dd->node);
 | |
| 
 | |
| 	switch (msix->type) {
 | |
| 	case IRQ_SDMA:
 | |
| 		set = &entry->def_intr;
 | |
| 		hfi1_cleanup_sdma_notifier(msix);
 | |
| 		break;
 | |
| 	case IRQ_GENERAL:
 | |
| 		/* Don't do accounting for general contexts */
 | |
| 		break;
 | |
| 	case IRQ_RCVCTXT:
 | |
| 		rcd = (struct hfi1_ctxtdata *)msix->arg;
 | |
| 		/* Don't do accounting for control contexts */
 | |
| 		if (rcd->ctxt != HFI1_CTRL_CTXT)
 | |
| 			set = &entry->rcv_intr;
 | |
| 		break;
 | |
| 	case IRQ_NETDEVCTXT:
 | |
| 		rcd = (struct hfi1_ctxtdata *)msix->arg;
 | |
| 		set = &entry->def_intr;
 | |
| 		break;
 | |
| 	default:
 | |
| 		mutex_unlock(&node_affinity.lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (set) {
 | |
| 		cpumask_andnot(&set->used, &set->used, &msix->mask);
 | |
| 		_cpu_mask_set_gen_dec(set);
 | |
| 	}
 | |
| 
 | |
| 	irq_set_affinity_hint(msix->irq, NULL);
 | |
| 	cpumask_clear(&msix->mask);
 | |
| 	mutex_unlock(&node_affinity.lock);
 | |
| }
 | |
| 
 | |
| /* This should be called with node_affinity.lock held */
 | |
| static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
 | |
| 				struct hfi1_affinity_node_list *affinity)
 | |
| {
 | |
| 	int possible, curr_cpu, i;
 | |
| 	uint num_cores_per_socket = node_affinity.num_online_cpus /
 | |
| 					affinity->num_core_siblings /
 | |
| 						node_affinity.num_online_nodes;
 | |
| 
 | |
| 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
 | |
| 	if (affinity->num_core_siblings > 0) {
 | |
| 		/* Removing other siblings not needed for now */
 | |
| 		possible = cpumask_weight(hw_thread_mask);
 | |
| 		curr_cpu = cpumask_first(hw_thread_mask);
 | |
| 		for (i = 0;
 | |
| 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
 | |
| 		     i++)
 | |
| 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
 | |
| 
 | |
| 		for (; i < possible; i++) {
 | |
| 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
 | |
| 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
 | |
| 		}
 | |
| 
 | |
| 		/* Identifying correct HW threads within physical cores */
 | |
| 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
 | |
| 				   num_cores_per_socket *
 | |
| 				   node_affinity.num_online_nodes *
 | |
| 				   hw_thread_no);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int hfi1_get_proc_affinity(int node)
 | |
| {
 | |
| 	int cpu = -1, ret, i;
 | |
| 	struct hfi1_affinity_node *entry;
 | |
| 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
 | |
| 	const struct cpumask *node_mask,
 | |
| 		*proc_mask = current->cpus_ptr;
 | |
| 	struct hfi1_affinity_node_list *affinity = &node_affinity;
 | |
| 	struct cpu_mask_set *set = &affinity->proc;
 | |
| 
 | |
| 	/*
 | |
| 	 * check whether process/context affinity has already
 | |
| 	 * been set
 | |
| 	 */
 | |
| 	if (current->nr_cpus_allowed == 1) {
 | |
| 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
 | |
| 			  current->pid, current->comm,
 | |
| 			  cpumask_pr_args(proc_mask));
 | |
| 		/*
 | |
| 		 * Mark the pre-set CPU as used. This is atomic so we don't
 | |
| 		 * need the lock
 | |
| 		 */
 | |
| 		cpu = cpumask_first(proc_mask);
 | |
| 		cpumask_set_cpu(cpu, &set->used);
 | |
| 		goto done;
 | |
| 	} else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
 | |
| 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
 | |
| 			  current->pid, current->comm,
 | |
| 			  cpumask_pr_args(proc_mask));
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The process does not have a preset CPU affinity so find one to
 | |
| 	 * recommend using the following algorithm:
 | |
| 	 *
 | |
| 	 * For each user process that is opening a context on HFI Y:
 | |
| 	 *  a) If all cores are filled, reinitialize the bitmask
 | |
| 	 *  b) Fill real cores first, then HT cores (First set of HT
 | |
| 	 *     cores on all physical cores, then second set of HT core,
 | |
| 	 *     and, so on) in the following order:
 | |
| 	 *
 | |
| 	 *     1. Same NUMA node as HFI Y and not running an IRQ
 | |
| 	 *        handler
 | |
| 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
 | |
| 	 *     3. Different NUMA node to HFI Y and not running an IRQ
 | |
| 	 *        handler
 | |
| 	 *     4. Different NUMA node to HFI Y and running an IRQ
 | |
| 	 *        handler
 | |
| 	 *  c) Mark core as filled in the bitmask. As user processes are
 | |
| 	 *     done, clear cores from the bitmask.
 | |
| 	 */
 | |
| 
 | |
| 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
 | |
| 	if (!ret)
 | |
| 		goto done;
 | |
| 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
 | |
| 	if (!ret)
 | |
| 		goto free_diff;
 | |
| 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
 | |
| 	if (!ret)
 | |
| 		goto free_hw_thread_mask;
 | |
| 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
 | |
| 	if (!ret)
 | |
| 		goto free_available_mask;
 | |
| 
 | |
| 	mutex_lock(&affinity->lock);
 | |
| 	/*
 | |
| 	 * If we've used all available HW threads, clear the mask and start
 | |
| 	 * overloading.
 | |
| 	 */
 | |
| 	_cpu_mask_set_gen_inc(set);
 | |
| 
 | |
| 	/*
 | |
| 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
 | |
| 	 * interrupt handler mask.
 | |
| 	 */
 | |
| 	entry = node_affinity_lookup(node);
 | |
| 	if (entry) {
 | |
| 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
 | |
| 					  &entry->def_intr.mask :
 | |
| 					  &entry->def_intr.used));
 | |
| 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
 | |
| 						    &entry->rcv_intr.mask :
 | |
| 						    &entry->rcv_intr.used));
 | |
| 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
 | |
| 	}
 | |
| 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
 | |
| 		  cpumask_pr_args(intrs_mask));
 | |
| 
 | |
| 	cpumask_copy(hw_thread_mask, &set->mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * If HT cores are enabled, identify which HW threads within the
 | |
| 	 * physical cores should be used.
 | |
| 	 */
 | |
| 	if (affinity->num_core_siblings > 0) {
 | |
| 		for (i = 0; i < affinity->num_core_siblings; i++) {
 | |
| 			find_hw_thread_mask(i, hw_thread_mask, affinity);
 | |
| 
 | |
| 			/*
 | |
| 			 * If there's at least one available core for this HW
 | |
| 			 * thread number, stop looking for a core.
 | |
| 			 *
 | |
| 			 * diff will always be not empty at least once in this
 | |
| 			 * loop as the used mask gets reset when
 | |
| 			 * (set->mask == set->used) before this loop.
 | |
| 			 */
 | |
| 			cpumask_andnot(diff, hw_thread_mask, &set->used);
 | |
| 			if (!cpumask_empty(diff))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
 | |
| 		  cpumask_pr_args(hw_thread_mask));
 | |
| 
 | |
| 	node_mask = cpumask_of_node(node);
 | |
| 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
 | |
| 		  cpumask_pr_args(node_mask));
 | |
| 
 | |
| 	/* Get cpumask of available CPUs on preferred NUMA */
 | |
| 	cpumask_and(available_mask, hw_thread_mask, node_mask);
 | |
| 	cpumask_andnot(available_mask, available_mask, &set->used);
 | |
| 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
 | |
| 		  cpumask_pr_args(available_mask));
 | |
| 
 | |
| 	/*
 | |
| 	 * At first, we don't want to place processes on the same
 | |
| 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
 | |
| 	 * handlers are used.
 | |
| 	 *
 | |
| 	 * 1) If diff is not empty, then there are CPUs not running
 | |
| 	 *    non-interrupt handlers available, so diff gets copied
 | |
| 	 *    over to available_mask.
 | |
| 	 * 2) If diff is empty, then all CPUs not running interrupt
 | |
| 	 *    handlers are taken, so available_mask contains all
 | |
| 	 *    available CPUs running interrupt handlers.
 | |
| 	 * 3) If available_mask is empty, then all CPUs on the
 | |
| 	 *    preferred NUMA node are taken, so other NUMA nodes are
 | |
| 	 *    used for process assignments using the same method as
 | |
| 	 *    the preferred NUMA node.
 | |
| 	 */
 | |
| 	cpumask_andnot(diff, available_mask, intrs_mask);
 | |
| 	if (!cpumask_empty(diff))
 | |
| 		cpumask_copy(available_mask, diff);
 | |
| 
 | |
| 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
 | |
| 	if (cpumask_empty(available_mask)) {
 | |
| 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
 | |
| 		/* Excluding preferred NUMA cores */
 | |
| 		cpumask_andnot(available_mask, available_mask, node_mask);
 | |
| 		hfi1_cdbg(PROC,
 | |
| 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
 | |
| 			  cpumask_pr_args(available_mask));
 | |
| 
 | |
| 		/*
 | |
| 		 * At first, we don't want to place processes on the same
 | |
| 		 * CPUs as interrupt handlers.
 | |
| 		 */
 | |
| 		cpumask_andnot(diff, available_mask, intrs_mask);
 | |
| 		if (!cpumask_empty(diff))
 | |
| 			cpumask_copy(available_mask, diff);
 | |
| 	}
 | |
| 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
 | |
| 		  cpumask_pr_args(available_mask));
 | |
| 
 | |
| 	cpu = cpumask_first(available_mask);
 | |
| 	if (cpu >= nr_cpu_ids) /* empty */
 | |
| 		cpu = -1;
 | |
| 	else
 | |
| 		cpumask_set_cpu(cpu, &set->used);
 | |
| 
 | |
| 	mutex_unlock(&affinity->lock);
 | |
| 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
 | |
| 
 | |
| 	free_cpumask_var(intrs_mask);
 | |
| free_available_mask:
 | |
| 	free_cpumask_var(available_mask);
 | |
| free_hw_thread_mask:
 | |
| 	free_cpumask_var(hw_thread_mask);
 | |
| free_diff:
 | |
| 	free_cpumask_var(diff);
 | |
| done:
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| void hfi1_put_proc_affinity(int cpu)
 | |
| {
 | |
| 	struct hfi1_affinity_node_list *affinity = &node_affinity;
 | |
| 	struct cpu_mask_set *set = &affinity->proc;
 | |
| 
 | |
| 	if (cpu < 0)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&affinity->lock);
 | |
| 	cpu_mask_set_put(set, cpu);
 | |
| 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
 | |
| 	mutex_unlock(&affinity->lock);
 | |
| }
 |