2036 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2036 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright(c) 2015 - 2020 Intel Corporation.
 | |
|  *
 | |
|  * This file is provided under a dual BSD/GPLv2 license.  When using or
 | |
|  * redistributing this file, you may do so under either license.
 | |
|  *
 | |
|  * GPL LICENSE SUMMARY
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * BSD LICENSE
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *  - Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  - Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *  - Neither the name of Intel Corporation nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/pci.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/xarray.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/printk.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/numa.h>
 | |
| #include <rdma/rdma_vt.h>
 | |
| 
 | |
| #include "hfi.h"
 | |
| #include "device.h"
 | |
| #include "common.h"
 | |
| #include "trace.h"
 | |
| #include "mad.h"
 | |
| #include "sdma.h"
 | |
| #include "debugfs.h"
 | |
| #include "verbs.h"
 | |
| #include "aspm.h"
 | |
| #include "affinity.h"
 | |
| #include "vnic.h"
 | |
| #include "exp_rcv.h"
 | |
| #include "netdev.h"
 | |
| 
 | |
| #undef pr_fmt
 | |
| #define pr_fmt(fmt) DRIVER_NAME ": " fmt
 | |
| 
 | |
| /*
 | |
|  * min buffers we want to have per context, after driver
 | |
|  */
 | |
| #define HFI1_MIN_USER_CTXT_BUFCNT 7
 | |
| 
 | |
| #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
 | |
| #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
 | |
| 
 | |
| #define NUM_IB_PORTS 1
 | |
| 
 | |
| /*
 | |
|  * Number of user receive contexts we are configured to use (to allow for more
 | |
|  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
 | |
|  */
 | |
| int num_user_contexts = -1;
 | |
| module_param_named(num_user_contexts, num_user_contexts, int, 0444);
 | |
| MODULE_PARM_DESC(
 | |
| 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
 | |
| 
 | |
| uint krcvqs[RXE_NUM_DATA_VL];
 | |
| int krcvqsset;
 | |
| module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
 | |
| MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
 | |
| 
 | |
| /* computed based on above array */
 | |
| unsigned long n_krcvqs;
 | |
| 
 | |
| static unsigned hfi1_rcvarr_split = 25;
 | |
| module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
 | |
| 
 | |
| static uint eager_buffer_size = (8 << 20); /* 8MB */
 | |
| module_param(eager_buffer_size, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
 | |
| 
 | |
| static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
 | |
| module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
 | |
| 
 | |
| static uint hfi1_hdrq_entsize = 32;
 | |
| module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
 | |
| MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
 | |
| 
 | |
| unsigned int user_credit_return_threshold = 33;	/* default is 33% */
 | |
| module_param(user_credit_return_threshold, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
 | |
| 
 | |
| DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
 | |
| 
 | |
| static int hfi1_create_kctxt(struct hfi1_devdata *dd,
 | |
| 			     struct hfi1_pportdata *ppd)
 | |
| {
 | |
| 	struct hfi1_ctxtdata *rcd;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Control context has to be always 0 */
 | |
| 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
 | |
| 
 | |
| 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
 | |
| 	if (ret < 0) {
 | |
| 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the kernel context flags here and now because they use
 | |
| 	 * default values for all receive side memories.  User contexts will
 | |
| 	 * be handled as they are created.
 | |
| 	 */
 | |
| 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
 | |
| 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
 | |
| 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
 | |
| 		HFI1_CAP_KGET(DMA_RTAIL);
 | |
| 
 | |
| 	/* Control context must use DMA_RTAIL */
 | |
| 	if (rcd->ctxt == HFI1_CTRL_CTXT)
 | |
| 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
 | |
| 	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
 | |
| 				handle_receive_interrupt_dma_rtail :
 | |
| 				handle_receive_interrupt_nodma_rtail;
 | |
| 
 | |
| 	hfi1_set_seq_cnt(rcd, 1);
 | |
| 
 | |
| 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
 | |
| 	if (!rcd->sc) {
 | |
| 		dd_dev_err(dd, "Kernel send context allocation failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	hfi1_init_ctxt(rcd->sc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the receive context array and one or more kernel contexts
 | |
|  */
 | |
| int hfi1_create_kctxts(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	u16 i;
 | |
| 	int ret;
 | |
| 
 | |
| 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
 | |
| 			       GFP_KERNEL, dd->node);
 | |
| 	if (!dd->rcd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 | |
| 		ret = hfi1_create_kctxt(dd, dd->pport);
 | |
| 		if (ret)
 | |
| 			goto bail;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| bail:
 | |
| 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
 | |
| 		hfi1_free_ctxt(dd->rcd[i]);
 | |
| 
 | |
| 	/* All the contexts should be freed, free the array */
 | |
| 	kfree(dd->rcd);
 | |
| 	dd->rcd = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper routines for the receive context reference count (rcd and uctxt).
 | |
|  */
 | |
| static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
 | |
| {
 | |
| 	kref_init(&rcd->kref);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_rcd_free - When reference is zero clean up.
 | |
|  * @kref: pointer to an initialized rcd data structure
 | |
|  *
 | |
|  */
 | |
| static void hfi1_rcd_free(struct kref *kref)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct hfi1_ctxtdata *rcd =
 | |
| 		container_of(kref, struct hfi1_ctxtdata, kref);
 | |
| 
 | |
| 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
 | |
| 	rcd->dd->rcd[rcd->ctxt] = NULL;
 | |
| 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
 | |
| 
 | |
| 	hfi1_free_ctxtdata(rcd->dd, rcd);
 | |
| 
 | |
| 	kfree(rcd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_rcd_put - decrement reference for rcd
 | |
|  * @rcd: pointer to an initialized rcd data structure
 | |
|  *
 | |
|  * Use this to put a reference after the init.
 | |
|  */
 | |
| int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
 | |
| {
 | |
| 	if (rcd)
 | |
| 		return kref_put(&rcd->kref, hfi1_rcd_free);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_rcd_get - increment reference for rcd
 | |
|  * @rcd: pointer to an initialized rcd data structure
 | |
|  *
 | |
|  * Use this to get a reference after the init.
 | |
|  *
 | |
|  * Return : reflect kref_get_unless_zero(), which returns non-zero on
 | |
|  * increment, otherwise 0.
 | |
|  */
 | |
| int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
 | |
| {
 | |
| 	return kref_get_unless_zero(&rcd->kref);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * allocate_rcd_index - allocate an rcd index from the rcd array
 | |
|  * @dd: pointer to a valid devdata structure
 | |
|  * @rcd: rcd data structure to assign
 | |
|  * @index: pointer to index that is allocated
 | |
|  *
 | |
|  * Find an empty index in the rcd array, and assign the given rcd to it.
 | |
|  * If the array is full, we are EBUSY.
 | |
|  *
 | |
|  */
 | |
| static int allocate_rcd_index(struct hfi1_devdata *dd,
 | |
| 			      struct hfi1_ctxtdata *rcd, u16 *index)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u16 ctxt;
 | |
| 
 | |
| 	spin_lock_irqsave(&dd->uctxt_lock, flags);
 | |
| 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
 | |
| 		if (!dd->rcd[ctxt])
 | |
| 			break;
 | |
| 
 | |
| 	if (ctxt < dd->num_rcv_contexts) {
 | |
| 		rcd->ctxt = ctxt;
 | |
| 		dd->rcd[ctxt] = rcd;
 | |
| 		hfi1_rcd_init(rcd);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 | |
| 
 | |
| 	if (ctxt >= dd->num_rcv_contexts)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	*index = ctxt;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
 | |
|  * array
 | |
|  * @dd: pointer to a valid devdata structure
 | |
|  * @ctxt: the index of an possilbe rcd
 | |
|  *
 | |
|  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
 | |
|  * ctxt index is valid.
 | |
|  *
 | |
|  * The caller is responsible for making the _put().
 | |
|  *
 | |
|  */
 | |
| struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
 | |
| 						 u16 ctxt)
 | |
| {
 | |
| 	if (ctxt < dd->num_rcv_contexts)
 | |
| 		return hfi1_rcd_get_by_index(dd, ctxt);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_rcd_get_by_index
 | |
|  * @dd: pointer to a valid devdata structure
 | |
|  * @ctxt: the index of an possilbe rcd
 | |
|  *
 | |
|  * We need to protect access to the rcd array.  If access is needed to
 | |
|  * one or more index, get the protecting spinlock and then increment the
 | |
|  * kref.
 | |
|  *
 | |
|  * The caller is responsible for making the _put().
 | |
|  *
 | |
|  */
 | |
| struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct hfi1_ctxtdata *rcd = NULL;
 | |
| 
 | |
| 	spin_lock_irqsave(&dd->uctxt_lock, flags);
 | |
| 	if (dd->rcd[ctxt]) {
 | |
| 		rcd = dd->rcd[ctxt];
 | |
| 		if (!hfi1_rcd_get(rcd))
 | |
| 			rcd = NULL;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 | |
| 
 | |
| 	return rcd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common code for user and kernel context create and setup.
 | |
|  * NOTE: the initial kref is done here (hf1_rcd_init()).
 | |
|  */
 | |
| int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
 | |
| 			 struct hfi1_ctxtdata **context)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = ppd->dd;
 | |
| 	struct hfi1_ctxtdata *rcd;
 | |
| 	unsigned kctxt_ngroups = 0;
 | |
| 	u32 base;
 | |
| 
 | |
| 	if (dd->rcv_entries.nctxt_extra >
 | |
| 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
 | |
| 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
 | |
| 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
 | |
| 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
 | |
| 	if (rcd) {
 | |
| 		u32 rcvtids, max_entries;
 | |
| 		u16 ctxt;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = allocate_rcd_index(dd, rcd, &ctxt);
 | |
| 		if (ret) {
 | |
| 			*context = NULL;
 | |
| 			kfree(rcd);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		INIT_LIST_HEAD(&rcd->qp_wait_list);
 | |
| 		hfi1_exp_tid_group_init(rcd);
 | |
| 		rcd->ppd = ppd;
 | |
| 		rcd->dd = dd;
 | |
| 		rcd->numa_id = numa;
 | |
| 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
 | |
| 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
 | |
| 		rcd->slow_handler = handle_receive_interrupt;
 | |
| 		rcd->do_interrupt = rcd->slow_handler;
 | |
| 		rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
 | |
| 
 | |
| 		mutex_init(&rcd->exp_mutex);
 | |
| 		spin_lock_init(&rcd->exp_lock);
 | |
| 		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
 | |
| 		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
 | |
| 
 | |
| 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate the context's RcvArray entry starting point.
 | |
| 		 * We do this here because we have to take into account all
 | |
| 		 * the RcvArray entries that previous context would have
 | |
| 		 * taken and we have to account for any extra groups assigned
 | |
| 		 * to the static (kernel) or dynamic (vnic/user) contexts.
 | |
| 		 */
 | |
| 		if (ctxt < dd->first_dyn_alloc_ctxt) {
 | |
| 			if (ctxt < kctxt_ngroups) {
 | |
| 				base = ctxt * (dd->rcv_entries.ngroups + 1);
 | |
| 				rcd->rcv_array_groups++;
 | |
| 			} else {
 | |
| 				base = kctxt_ngroups +
 | |
| 					(ctxt * dd->rcv_entries.ngroups);
 | |
| 			}
 | |
| 		} else {
 | |
| 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
 | |
| 
 | |
| 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
 | |
| 				kctxt_ngroups);
 | |
| 			if (ct < dd->rcv_entries.nctxt_extra) {
 | |
| 				base += ct * (dd->rcv_entries.ngroups + 1);
 | |
| 				rcd->rcv_array_groups++;
 | |
| 			} else {
 | |
| 				base += dd->rcv_entries.nctxt_extra +
 | |
| 					(ct * dd->rcv_entries.ngroups);
 | |
| 			}
 | |
| 		}
 | |
| 		rcd->eager_base = base * dd->rcv_entries.group_size;
 | |
| 
 | |
| 		rcd->rcvhdrq_cnt = rcvhdrcnt;
 | |
| 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
 | |
| 		rcd->rhf_offset =
 | |
| 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
 | |
| 		/*
 | |
| 		 * Simple Eager buffer allocation: we have already pre-allocated
 | |
| 		 * the number of RcvArray entry groups. Each ctxtdata structure
 | |
| 		 * holds the number of groups for that context.
 | |
| 		 *
 | |
| 		 * To follow CSR requirements and maintain cacheline alignment,
 | |
| 		 * make sure all sizes and bases are multiples of group_size.
 | |
| 		 *
 | |
| 		 * The expected entry count is what is left after assigning
 | |
| 		 * eager.
 | |
| 		 */
 | |
| 		max_entries = rcd->rcv_array_groups *
 | |
| 			dd->rcv_entries.group_size;
 | |
| 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
 | |
| 		rcd->egrbufs.count = round_down(rcvtids,
 | |
| 						dd->rcv_entries.group_size);
 | |
| 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
 | |
| 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
 | |
| 				   rcd->ctxt);
 | |
| 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
 | |
| 		}
 | |
| 		hfi1_cdbg(PROC,
 | |
| 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
 | |
| 			  rcd->ctxt, rcd->egrbufs.count);
 | |
| 
 | |
| 		/*
 | |
| 		 * Allocate array that will hold the eager buffer accounting
 | |
| 		 * data.
 | |
| 		 * This will allocate the maximum possible buffer count based
 | |
| 		 * on the value of the RcvArray split parameter.
 | |
| 		 * The resulting value will be rounded down to the closest
 | |
| 		 * multiple of dd->rcv_entries.group_size.
 | |
| 		 */
 | |
| 		rcd->egrbufs.buffers =
 | |
| 			kcalloc_node(rcd->egrbufs.count,
 | |
| 				     sizeof(*rcd->egrbufs.buffers),
 | |
| 				     GFP_KERNEL, numa);
 | |
| 		if (!rcd->egrbufs.buffers)
 | |
| 			goto bail;
 | |
| 		rcd->egrbufs.rcvtids =
 | |
| 			kcalloc_node(rcd->egrbufs.count,
 | |
| 				     sizeof(*rcd->egrbufs.rcvtids),
 | |
| 				     GFP_KERNEL, numa);
 | |
| 		if (!rcd->egrbufs.rcvtids)
 | |
| 			goto bail;
 | |
| 		rcd->egrbufs.size = eager_buffer_size;
 | |
| 		/*
 | |
| 		 * The size of the buffers programmed into the RcvArray
 | |
| 		 * entries needs to be big enough to handle the highest
 | |
| 		 * MTU supported.
 | |
| 		 */
 | |
| 		if (rcd->egrbufs.size < hfi1_max_mtu) {
 | |
| 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
 | |
| 			hfi1_cdbg(PROC,
 | |
| 				  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
 | |
| 				    rcd->ctxt, rcd->egrbufs.size);
 | |
| 		}
 | |
| 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
 | |
| 
 | |
| 		/* Applicable only for statically created kernel contexts */
 | |
| 		if (ctxt < dd->first_dyn_alloc_ctxt) {
 | |
| 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
 | |
| 						    GFP_KERNEL, numa);
 | |
| 			if (!rcd->opstats)
 | |
| 				goto bail;
 | |
| 
 | |
| 			/* Initialize TID flow generations for the context */
 | |
| 			hfi1_kern_init_ctxt_generations(rcd);
 | |
| 		}
 | |
| 
 | |
| 		*context = rcd;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| bail:
 | |
| 	*context = NULL;
 | |
| 	hfi1_free_ctxt(rcd);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_free_ctxt
 | |
|  * @rcd: pointer to an initialized rcd data structure
 | |
|  *
 | |
|  * This wrapper is the free function that matches hfi1_create_ctxtdata().
 | |
|  * When a context is done being used (kernel or user), this function is called
 | |
|  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
 | |
|  * Other users of the context do a get/put sequence to make sure that the
 | |
|  * structure isn't removed while in use.
 | |
|  */
 | |
| void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
 | |
| {
 | |
| 	hfi1_rcd_put(rcd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select the largest ccti value over all SLs to determine the intra-
 | |
|  * packet gap for the link.
 | |
|  *
 | |
|  * called with cca_timer_lock held (to protect access to cca_timer
 | |
|  * array), and rcu_read_lock() (to protect access to cc_state).
 | |
|  */
 | |
| void set_link_ipg(struct hfi1_pportdata *ppd)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = ppd->dd;
 | |
| 	struct cc_state *cc_state;
 | |
| 	int i;
 | |
| 	u16 cce, ccti_limit, max_ccti = 0;
 | |
| 	u16 shift, mult;
 | |
| 	u64 src;
 | |
| 	u32 current_egress_rate; /* Mbits /sec */
 | |
| 	u64 max_pkt_time;
 | |
| 	/*
 | |
| 	 * max_pkt_time is the maximum packet egress time in units
 | |
| 	 * of the fabric clock period 1/(805 MHz).
 | |
| 	 */
 | |
| 
 | |
| 	cc_state = get_cc_state(ppd);
 | |
| 
 | |
| 	if (!cc_state)
 | |
| 		/*
 | |
| 		 * This should _never_ happen - rcu_read_lock() is held,
 | |
| 		 * and set_link_ipg() should not be called if cc_state
 | |
| 		 * is NULL.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < OPA_MAX_SLS; i++) {
 | |
| 		u16 ccti = ppd->cca_timer[i].ccti;
 | |
| 
 | |
| 		if (ccti > max_ccti)
 | |
| 			max_ccti = ccti;
 | |
| 	}
 | |
| 
 | |
| 	ccti_limit = cc_state->cct.ccti_limit;
 | |
| 	if (max_ccti > ccti_limit)
 | |
| 		max_ccti = ccti_limit;
 | |
| 
 | |
| 	cce = cc_state->cct.entries[max_ccti].entry;
 | |
| 	shift = (cce & 0xc000) >> 14;
 | |
| 	mult = (cce & 0x3fff);
 | |
| 
 | |
| 	current_egress_rate = active_egress_rate(ppd);
 | |
| 
 | |
| 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
 | |
| 
 | |
| 	src = (max_pkt_time >> shift) * mult;
 | |
| 
 | |
| 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
 | |
| 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
 | |
| 
 | |
| 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
 | |
| {
 | |
| 	struct cca_timer *cca_timer;
 | |
| 	struct hfi1_pportdata *ppd;
 | |
| 	int sl;
 | |
| 	u16 ccti_timer, ccti_min;
 | |
| 	struct cc_state *cc_state;
 | |
| 	unsigned long flags;
 | |
| 	enum hrtimer_restart ret = HRTIMER_NORESTART;
 | |
| 
 | |
| 	cca_timer = container_of(t, struct cca_timer, hrtimer);
 | |
| 	ppd = cca_timer->ppd;
 | |
| 	sl = cca_timer->sl;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	cc_state = get_cc_state(ppd);
 | |
| 
 | |
| 	if (!cc_state) {
 | |
| 		rcu_read_unlock();
 | |
| 		return HRTIMER_NORESTART;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 1) decrement ccti for SL
 | |
| 	 * 2) calculate IPG for link (set_link_ipg())
 | |
| 	 * 3) restart timer, unless ccti is at min value
 | |
| 	 */
 | |
| 
 | |
| 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
 | |
| 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
 | |
| 
 | |
| 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
 | |
| 
 | |
| 	if (cca_timer->ccti > ccti_min) {
 | |
| 		cca_timer->ccti--;
 | |
| 		set_link_ipg(ppd);
 | |
| 	}
 | |
| 
 | |
| 	if (cca_timer->ccti > ccti_min) {
 | |
| 		unsigned long nsec = 1024 * ccti_timer;
 | |
| 		/* ccti_timer is in units of 1.024 usec */
 | |
| 		hrtimer_forward_now(t, ns_to_ktime(nsec));
 | |
| 		ret = HRTIMER_RESTART;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common code for initializing the physical port structure.
 | |
|  */
 | |
| void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
 | |
| 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
 | |
| {
 | |
| 	int i;
 | |
| 	uint default_pkey_idx;
 | |
| 	struct cc_state *cc_state;
 | |
| 
 | |
| 	ppd->dd = dd;
 | |
| 	ppd->hw_pidx = hw_pidx;
 | |
| 	ppd->port = port; /* IB port number, not index */
 | |
| 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
 | |
| 	/*
 | |
| 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
 | |
| 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
 | |
| 	 */
 | |
| 	for (i = 0; i < C_VL_COUNT + 1; i++) {
 | |
| 		ppd->port_vl_xmit_wait_last[i] = 0;
 | |
| 		ppd->vl_xmit_flit_cnt[i] = 0;
 | |
| 	}
 | |
| 
 | |
| 	default_pkey_idx = 1;
 | |
| 
 | |
| 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
 | |
| 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
 | |
| 	ppd->pkeys[0] = 0x8001;
 | |
| 
 | |
| 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
 | |
| 	INIT_WORK(&ppd->link_up_work, handle_link_up);
 | |
| 	INIT_WORK(&ppd->link_down_work, handle_link_down);
 | |
| 	INIT_WORK(&ppd->freeze_work, handle_freeze);
 | |
| 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
 | |
| 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
 | |
| 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
 | |
| 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
 | |
| 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
 | |
| 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
 | |
| 
 | |
| 	mutex_init(&ppd->hls_lock);
 | |
| 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
 | |
| 
 | |
| 	ppd->qsfp_info.ppd = ppd;
 | |
| 	ppd->sm_trap_qp = 0x0;
 | |
| 	ppd->sa_qp = 0x1;
 | |
| 
 | |
| 	ppd->hfi1_wq = NULL;
 | |
| 
 | |
| 	spin_lock_init(&ppd->cca_timer_lock);
 | |
| 
 | |
| 	for (i = 0; i < OPA_MAX_SLS; i++) {
 | |
| 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
 | |
| 			     HRTIMER_MODE_REL);
 | |
| 		ppd->cca_timer[i].ppd = ppd;
 | |
| 		ppd->cca_timer[i].sl = i;
 | |
| 		ppd->cca_timer[i].ccti = 0;
 | |
| 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
 | |
| 	}
 | |
| 
 | |
| 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
 | |
| 
 | |
| 	spin_lock_init(&ppd->cc_state_lock);
 | |
| 	spin_lock_init(&ppd->cc_log_lock);
 | |
| 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
 | |
| 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
 | |
| 	if (!cc_state)
 | |
| 		goto bail;
 | |
| 	return;
 | |
| 
 | |
| bail:
 | |
| 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do initialization for device that is only needed on
 | |
|  * first detect, not on resets.
 | |
|  */
 | |
| static int loadtime_init(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * init_after_reset - re-initialize after a reset
 | |
|  * @dd: the hfi1_ib device
 | |
|  *
 | |
|  * sanity check at least some of the values after reset, and
 | |
|  * ensure no receive or transmit (explicitly, in case reset
 | |
|  * failed
 | |
|  */
 | |
| static int init_after_reset(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int i;
 | |
| 	struct hfi1_ctxtdata *rcd;
 | |
| 	/*
 | |
| 	 * Ensure chip does no sends or receives, tail updates, or
 | |
| 	 * pioavail updates while we re-initialize.  This is mostly
 | |
| 	 * for the driver data structures, not chip registers.
 | |
| 	 */
 | |
| 	for (i = 0; i < dd->num_rcv_contexts; i++) {
 | |
| 		rcd = hfi1_rcd_get_by_index(dd, i);
 | |
| 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 | |
| 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
 | |
| 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
 | |
| 		hfi1_rcd_put(rcd);
 | |
| 	}
 | |
| 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
 | |
| 	for (i = 0; i < dd->num_send_contexts; i++)
 | |
| 		sc_disable(dd->send_contexts[i].sc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void enable_chip(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct hfi1_ctxtdata *rcd;
 | |
| 	u32 rcvmask;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* enable PIO send */
 | |
| 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable kernel ctxts' receive and receive interrupt.
 | |
| 	 * Other ctxts done as user opens and initializes them.
 | |
| 	 */
 | |
| 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
 | |
| 		rcd = hfi1_rcd_get_by_index(dd, i);
 | |
| 		if (!rcd)
 | |
| 			continue;
 | |
| 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
 | |
| 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
 | |
| 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
 | |
| 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
 | |
| 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
 | |
| 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
 | |
| 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
 | |
| 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
 | |
| 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
 | |
| 		if (HFI1_CAP_IS_KSET(TID_RDMA))
 | |
| 			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
 | |
| 		hfi1_rcvctrl(dd, rcvmask, rcd);
 | |
| 		sc_enable(rcd->sc);
 | |
| 		hfi1_rcd_put(rcd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * create_workqueues - create per port workqueues
 | |
|  * @dd: the hfi1_ib device
 | |
|  */
 | |
| static int create_workqueues(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int pidx;
 | |
| 	struct hfi1_pportdata *ppd;
 | |
| 
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 		if (!ppd->hfi1_wq) {
 | |
| 			ppd->hfi1_wq =
 | |
| 				alloc_workqueue(
 | |
| 				    "hfi%d_%d",
 | |
| 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
 | |
| 				    WQ_MEM_RECLAIM,
 | |
| 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
 | |
| 				    dd->unit, pidx);
 | |
| 			if (!ppd->hfi1_wq)
 | |
| 				goto wq_error;
 | |
| 		}
 | |
| 		if (!ppd->link_wq) {
 | |
| 			/*
 | |
| 			 * Make the link workqueue single-threaded to enforce
 | |
| 			 * serialization.
 | |
| 			 */
 | |
| 			ppd->link_wq =
 | |
| 				alloc_workqueue(
 | |
| 				    "hfi_link_%d_%d",
 | |
| 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
 | |
| 				    1, /* max_active */
 | |
| 				    dd->unit, pidx);
 | |
| 			if (!ppd->link_wq)
 | |
| 				goto wq_error;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| wq_error:
 | |
| 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 		if (ppd->hfi1_wq) {
 | |
| 			destroy_workqueue(ppd->hfi1_wq);
 | |
| 			ppd->hfi1_wq = NULL;
 | |
| 		}
 | |
| 		if (ppd->link_wq) {
 | |
| 			destroy_workqueue(ppd->link_wq);
 | |
| 			ppd->link_wq = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * destroy_workqueues - destroy per port workqueues
 | |
|  * @dd: the hfi1_ib device
 | |
|  */
 | |
| static void destroy_workqueues(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int pidx;
 | |
| 	struct hfi1_pportdata *ppd;
 | |
| 
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 
 | |
| 		if (ppd->hfi1_wq) {
 | |
| 			destroy_workqueue(ppd->hfi1_wq);
 | |
| 			ppd->hfi1_wq = NULL;
 | |
| 		}
 | |
| 		if (ppd->link_wq) {
 | |
| 			destroy_workqueue(ppd->link_wq);
 | |
| 			ppd->link_wq = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * enable_general_intr() - Enable the IRQs that will be handled by the
 | |
|  * general interrupt handler.
 | |
|  * @dd: valid devdata
 | |
|  *
 | |
|  */
 | |
| static void enable_general_intr(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
 | |
| 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
 | |
| 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
 | |
| 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
 | |
| 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
 | |
| 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
 | |
| 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_init - do the actual initialization sequence on the chip
 | |
|  * @dd: the hfi1_ib device
 | |
|  * @reinit: re-initializing, so don't allocate new memory
 | |
|  *
 | |
|  * Do the actual initialization sequence on the chip.  This is done
 | |
|  * both from the init routine called from the PCI infrastructure, and
 | |
|  * when we reset the chip, or detect that it was reset internally,
 | |
|  * or it's administratively re-enabled.
 | |
|  *
 | |
|  * Memory allocation here and in called routines is only done in
 | |
|  * the first case (reinit == 0).  We have to be careful, because even
 | |
|  * without memory allocation, we need to re-write all the chip registers
 | |
|  * TIDs, etc. after the reset or enable has completed.
 | |
|  */
 | |
| int hfi1_init(struct hfi1_devdata *dd, int reinit)
 | |
| {
 | |
| 	int ret = 0, pidx, lastfail = 0;
 | |
| 	unsigned long len;
 | |
| 	u16 i;
 | |
| 	struct hfi1_ctxtdata *rcd;
 | |
| 	struct hfi1_pportdata *ppd;
 | |
| 
 | |
| 	/* Set up send low level handlers */
 | |
| 	dd->process_pio_send = hfi1_verbs_send_pio;
 | |
| 	dd->process_dma_send = hfi1_verbs_send_dma;
 | |
| 	dd->pio_inline_send = pio_copy;
 | |
| 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
 | |
| 
 | |
| 	if (is_ax(dd)) {
 | |
| 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
 | |
| 		dd->do_drop = true;
 | |
| 	} else {
 | |
| 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
 | |
| 		dd->do_drop = false;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure the link is not "up" */
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 		ppd->linkup = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (reinit)
 | |
| 		ret = init_after_reset(dd);
 | |
| 	else
 | |
| 		ret = loadtime_init(dd);
 | |
| 	if (ret)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* dd->rcd can be NULL if early initialization failed */
 | |
| 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
 | |
| 		/*
 | |
| 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
 | |
| 		 * re-init, the simplest way to handle this is to free
 | |
| 		 * existing, and re-allocate.
 | |
| 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
 | |
| 		 */
 | |
| 		rcd = hfi1_rcd_get_by_index(dd, i);
 | |
| 		if (!rcd)
 | |
| 			continue;
 | |
| 
 | |
| 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
 | |
| 		if (!lastfail)
 | |
| 			lastfail = hfi1_setup_eagerbufs(rcd);
 | |
| 		if (!lastfail)
 | |
| 			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
 | |
| 		if (lastfail) {
 | |
| 			dd_dev_err(dd,
 | |
| 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
 | |
| 			ret = lastfail;
 | |
| 		}
 | |
| 		/* enable IRQ */
 | |
| 		hfi1_rcd_put(rcd);
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate enough memory for user event notification. */
 | |
| 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
 | |
| 			 sizeof(*dd->events));
 | |
| 	dd->events = vmalloc_user(len);
 | |
| 	if (!dd->events)
 | |
| 		dd_dev_err(dd, "Failed to allocate user events page\n");
 | |
| 	/*
 | |
| 	 * Allocate a page for device and port status.
 | |
| 	 * Page will be shared amongst all user processes.
 | |
| 	 */
 | |
| 	dd->status = vmalloc_user(PAGE_SIZE);
 | |
| 	if (!dd->status)
 | |
| 		dd_dev_err(dd, "Failed to allocate dev status page\n");
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 		if (dd->status)
 | |
| 			/* Currently, we only have one port */
 | |
| 			ppd->statusp = &dd->status->port;
 | |
| 
 | |
| 		set_mtu(ppd);
 | |
| 	}
 | |
| 
 | |
| 	/* enable chip even if we have an error, so we can debug cause */
 | |
| 	enable_chip(dd);
 | |
| 
 | |
| done:
 | |
| 	/*
 | |
| 	 * Set status even if port serdes is not initialized
 | |
| 	 * so that diags will work.
 | |
| 	 */
 | |
| 	if (dd->status)
 | |
| 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
 | |
| 			HFI1_STATUS_INITTED;
 | |
| 	if (!ret) {
 | |
| 		/* enable all interrupts from the chip */
 | |
| 		enable_general_intr(dd);
 | |
| 		init_qsfp_int(dd);
 | |
| 
 | |
| 		/* chip is OK for user apps; mark it as initialized */
 | |
| 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 			ppd = dd->pport + pidx;
 | |
| 
 | |
| 			/*
 | |
| 			 * start the serdes - must be after interrupts are
 | |
| 			 * enabled so we are notified when the link goes up
 | |
| 			 */
 | |
| 			lastfail = bringup_serdes(ppd);
 | |
| 			if (lastfail)
 | |
| 				dd_dev_info(dd,
 | |
| 					    "Failed to bring up port %u\n",
 | |
| 					    ppd->port);
 | |
| 
 | |
| 			/*
 | |
| 			 * Set status even if port serdes is not initialized
 | |
| 			 * so that diags will work.
 | |
| 			 */
 | |
| 			if (ppd->statusp)
 | |
| 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
 | |
| 							HFI1_STATUS_INITTED;
 | |
| 			if (!ppd->link_speed_enabled)
 | |
| 				continue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* if ret is non-zero, we probably should do some cleanup here... */
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct hfi1_devdata *hfi1_lookup(int unit)
 | |
| {
 | |
| 	return xa_load(&hfi1_dev_table, unit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop the timers during unit shutdown, or after an error late
 | |
|  * in initialization.
 | |
|  */
 | |
| static void stop_timers(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct hfi1_pportdata *ppd;
 | |
| 	int pidx;
 | |
| 
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 		if (ppd->led_override_timer.function) {
 | |
| 			del_timer_sync(&ppd->led_override_timer);
 | |
| 			atomic_set(&ppd->led_override_timer_active, 0);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * shutdown_device - shut down a device
 | |
|  * @dd: the hfi1_ib device
 | |
|  *
 | |
|  * This is called to make the device quiet when we are about to
 | |
|  * unload the driver, and also when the device is administratively
 | |
|  * disabled.   It does not free any data structures.
 | |
|  * Everything it does has to be setup again by hfi1_init(dd, 1)
 | |
|  */
 | |
| static void shutdown_device(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct hfi1_pportdata *ppd;
 | |
| 	struct hfi1_ctxtdata *rcd;
 | |
| 	unsigned pidx;
 | |
| 	int i;
 | |
| 
 | |
| 	if (dd->flags & HFI1_SHUTDOWN)
 | |
| 		return;
 | |
| 	dd->flags |= HFI1_SHUTDOWN;
 | |
| 
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 
 | |
| 		ppd->linkup = 0;
 | |
| 		if (ppd->statusp)
 | |
| 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
 | |
| 					   HFI1_STATUS_IB_READY);
 | |
| 	}
 | |
| 	dd->flags &= ~HFI1_INITTED;
 | |
| 
 | |
| 	/* mask and clean up interrupts */
 | |
| 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
 | |
| 	msix_clean_up_interrupts(dd);
 | |
| 
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 		for (i = 0; i < dd->num_rcv_contexts; i++) {
 | |
| 			rcd = hfi1_rcd_get_by_index(dd, i);
 | |
| 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
 | |
| 				     HFI1_RCVCTRL_CTXT_DIS |
 | |
| 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
 | |
| 				     HFI1_RCVCTRL_PKEY_DIS |
 | |
| 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
 | |
| 			hfi1_rcd_put(rcd);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Gracefully stop all sends allowing any in progress to
 | |
| 		 * trickle out first.
 | |
| 		 */
 | |
| 		for (i = 0; i < dd->num_send_contexts; i++)
 | |
| 			sc_flush(dd->send_contexts[i].sc);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enough for anything that's going to trickle out to have actually
 | |
| 	 * done so.
 | |
| 	 */
 | |
| 	udelay(20);
 | |
| 
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		ppd = dd->pport + pidx;
 | |
| 
 | |
| 		/* disable all contexts */
 | |
| 		for (i = 0; i < dd->num_send_contexts; i++)
 | |
| 			sc_disable(dd->send_contexts[i].sc);
 | |
| 		/* disable the send device */
 | |
| 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
 | |
| 
 | |
| 		shutdown_led_override(ppd);
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear SerdesEnable.
 | |
| 		 * We can't count on interrupts since we are stopping.
 | |
| 		 */
 | |
| 		hfi1_quiet_serdes(ppd);
 | |
| 		if (ppd->hfi1_wq)
 | |
| 			flush_workqueue(ppd->hfi1_wq);
 | |
| 		if (ppd->link_wq)
 | |
| 			flush_workqueue(ppd->link_wq);
 | |
| 	}
 | |
| 	sdma_exit(dd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_free_ctxtdata - free a context's allocated data
 | |
|  * @dd: the hfi1_ib device
 | |
|  * @rcd: the ctxtdata structure
 | |
|  *
 | |
|  * free up any allocated data for a context
 | |
|  * It should never change any chip state, or global driver state.
 | |
|  */
 | |
| void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
 | |
| {
 | |
| 	u32 e;
 | |
| 
 | |
| 	if (!rcd)
 | |
| 		return;
 | |
| 
 | |
| 	if (rcd->rcvhdrq) {
 | |
| 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
 | |
| 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
 | |
| 		rcd->rcvhdrq = NULL;
 | |
| 		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
 | |
| 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
 | |
| 					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
 | |
| 					  rcd->rcvhdrqtailaddr_dma);
 | |
| 			rcd->rcvhdrtail_kvaddr = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* all the RcvArray entries should have been cleared by now */
 | |
| 	kfree(rcd->egrbufs.rcvtids);
 | |
| 	rcd->egrbufs.rcvtids = NULL;
 | |
| 
 | |
| 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
 | |
| 		if (rcd->egrbufs.buffers[e].addr)
 | |
| 			dma_free_coherent(&dd->pcidev->dev,
 | |
| 					  rcd->egrbufs.buffers[e].len,
 | |
| 					  rcd->egrbufs.buffers[e].addr,
 | |
| 					  rcd->egrbufs.buffers[e].dma);
 | |
| 	}
 | |
| 	kfree(rcd->egrbufs.buffers);
 | |
| 	rcd->egrbufs.alloced = 0;
 | |
| 	rcd->egrbufs.buffers = NULL;
 | |
| 
 | |
| 	sc_free(rcd->sc);
 | |
| 	rcd->sc = NULL;
 | |
| 
 | |
| 	vfree(rcd->subctxt_uregbase);
 | |
| 	vfree(rcd->subctxt_rcvegrbuf);
 | |
| 	vfree(rcd->subctxt_rcvhdr_base);
 | |
| 	kfree(rcd->opstats);
 | |
| 
 | |
| 	rcd->subctxt_uregbase = NULL;
 | |
| 	rcd->subctxt_rcvegrbuf = NULL;
 | |
| 	rcd->subctxt_rcvhdr_base = NULL;
 | |
| 	rcd->opstats = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release our hold on the shared asic data.  If we are the last one,
 | |
|  * return the structure to be finalized outside the lock.  Must be
 | |
|  * holding hfi1_dev_table lock.
 | |
|  */
 | |
| static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct hfi1_asic_data *ad;
 | |
| 	int other;
 | |
| 
 | |
| 	if (!dd->asic_data)
 | |
| 		return NULL;
 | |
| 	dd->asic_data->dds[dd->hfi1_id] = NULL;
 | |
| 	other = dd->hfi1_id ? 0 : 1;
 | |
| 	ad = dd->asic_data;
 | |
| 	dd->asic_data = NULL;
 | |
| 	/* return NULL if the other dd still has a link */
 | |
| 	return ad->dds[other] ? NULL : ad;
 | |
| }
 | |
| 
 | |
| static void finalize_asic_data(struct hfi1_devdata *dd,
 | |
| 			       struct hfi1_asic_data *ad)
 | |
| {
 | |
| 	clean_up_i2c(dd, ad);
 | |
| 	kfree(ad);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_free_devdata - cleans up and frees per-unit data structure
 | |
|  * @dd: pointer to a valid devdata structure
 | |
|  *
 | |
|  * It cleans up and frees all data structures set up by
 | |
|  * by hfi1_alloc_devdata().
 | |
|  */
 | |
| void hfi1_free_devdata(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct hfi1_asic_data *ad;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	xa_lock_irqsave(&hfi1_dev_table, flags);
 | |
| 	__xa_erase(&hfi1_dev_table, dd->unit);
 | |
| 	ad = release_asic_data(dd);
 | |
| 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
 | |
| 
 | |
| 	finalize_asic_data(dd, ad);
 | |
| 	free_platform_config(dd);
 | |
| 	rcu_barrier(); /* wait for rcu callbacks to complete */
 | |
| 	free_percpu(dd->int_counter);
 | |
| 	free_percpu(dd->rcv_limit);
 | |
| 	free_percpu(dd->send_schedule);
 | |
| 	free_percpu(dd->tx_opstats);
 | |
| 	dd->int_counter   = NULL;
 | |
| 	dd->rcv_limit     = NULL;
 | |
| 	dd->send_schedule = NULL;
 | |
| 	dd->tx_opstats    = NULL;
 | |
| 	kfree(dd->comp_vect);
 | |
| 	dd->comp_vect = NULL;
 | |
| 	if (dd->rcvhdrtail_dummy_kvaddr)
 | |
| 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
 | |
| 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
 | |
| 				  dd->rcvhdrtail_dummy_dma);
 | |
| 	dd->rcvhdrtail_dummy_kvaddr = NULL;
 | |
| 	sdma_clean(dd, dd->num_sdma);
 | |
| 	rvt_dealloc_device(&dd->verbs_dev.rdi);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
 | |
|  * @pdev: Valid PCI device
 | |
|  * @extra: How many bytes to alloc past the default
 | |
|  *
 | |
|  * Must be done via verbs allocator, because the verbs cleanup process
 | |
|  * both does cleanup and free of the data structure.
 | |
|  * "extra" is for chip-specific data.
 | |
|  */
 | |
| static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
 | |
| 					       size_t extra)
 | |
| {
 | |
| 	struct hfi1_devdata *dd;
 | |
| 	int ret, nports;
 | |
| 
 | |
| 	/* extra is * number of ports */
 | |
| 	nports = extra / sizeof(struct hfi1_pportdata);
 | |
| 
 | |
| 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
 | |
| 						     nports);
 | |
| 	if (!dd)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	dd->num_pports = nports;
 | |
| 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
 | |
| 	dd->pcidev = pdev;
 | |
| 	pci_set_drvdata(pdev, dd);
 | |
| 
 | |
| 	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
 | |
| 			GFP_KERNEL);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Could not allocate unit ID: error %d\n", -ret);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
 | |
| 	/*
 | |
| 	 * If the BIOS does not have the NUMA node information set, select
 | |
| 	 * NUMA 0 so we get consistent performance.
 | |
| 	 */
 | |
| 	dd->node = pcibus_to_node(pdev->bus);
 | |
| 	if (dd->node == NUMA_NO_NODE) {
 | |
| 		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
 | |
| 		dd->node = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize all locks for the device. This needs to be as early as
 | |
| 	 * possible so locks are usable.
 | |
| 	 */
 | |
| 	spin_lock_init(&dd->sc_lock);
 | |
| 	spin_lock_init(&dd->sendctrl_lock);
 | |
| 	spin_lock_init(&dd->rcvctrl_lock);
 | |
| 	spin_lock_init(&dd->uctxt_lock);
 | |
| 	spin_lock_init(&dd->hfi1_diag_trans_lock);
 | |
| 	spin_lock_init(&dd->sc_init_lock);
 | |
| 	spin_lock_init(&dd->dc8051_memlock);
 | |
| 	seqlock_init(&dd->sc2vl_lock);
 | |
| 	spin_lock_init(&dd->sde_map_lock);
 | |
| 	spin_lock_init(&dd->pio_map_lock);
 | |
| 	mutex_init(&dd->dc8051_lock);
 | |
| 	init_waitqueue_head(&dd->event_queue);
 | |
| 	spin_lock_init(&dd->irq_src_lock);
 | |
| 
 | |
| 	dd->int_counter = alloc_percpu(u64);
 | |
| 	if (!dd->int_counter) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	dd->rcv_limit = alloc_percpu(u64);
 | |
| 	if (!dd->rcv_limit) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	dd->send_schedule = alloc_percpu(u64);
 | |
| 	if (!dd->send_schedule) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
 | |
| 	if (!dd->tx_opstats) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
 | |
| 	if (!dd->comp_vect) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* allocate dummy tail memory for all receive contexts */
 | |
| 	dd->rcvhdrtail_dummy_kvaddr =
 | |
| 		dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
 | |
| 				   &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
 | |
| 	if (!dd->rcvhdrtail_dummy_kvaddr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&dd->ipoib_rsm_usr_num, 0);
 | |
| 	return dd;
 | |
| 
 | |
| bail:
 | |
| 	hfi1_free_devdata(dd);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from freeze mode handlers, and from PCI error
 | |
|  * reporting code.  Should be paranoid about state of
 | |
|  * system and data structures.
 | |
|  */
 | |
| void hfi1_disable_after_error(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	if (dd->flags & HFI1_INITTED) {
 | |
| 		u32 pidx;
 | |
| 
 | |
| 		dd->flags &= ~HFI1_INITTED;
 | |
| 		if (dd->pport)
 | |
| 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 				struct hfi1_pportdata *ppd;
 | |
| 
 | |
| 				ppd = dd->pport + pidx;
 | |
| 				if (dd->flags & HFI1_PRESENT)
 | |
| 					set_link_state(ppd, HLS_DN_DISABLE);
 | |
| 
 | |
| 				if (ppd->statusp)
 | |
| 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark as having had an error for driver, and also
 | |
| 	 * for /sys and status word mapped to user programs.
 | |
| 	 * This marks unit as not usable, until reset.
 | |
| 	 */
 | |
| 	if (dd->status)
 | |
| 		dd->status->dev |= HFI1_STATUS_HWERROR;
 | |
| }
 | |
| 
 | |
| static void remove_one(struct pci_dev *);
 | |
| static int init_one(struct pci_dev *, const struct pci_device_id *);
 | |
| static void shutdown_one(struct pci_dev *);
 | |
| 
 | |
| #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
 | |
| #define PFX DRIVER_NAME ": "
 | |
| 
 | |
| const struct pci_device_id hfi1_pci_tbl[] = {
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
 | |
| 
 | |
| static struct pci_driver hfi1_pci_driver = {
 | |
| 	.name = DRIVER_NAME,
 | |
| 	.probe = init_one,
 | |
| 	.remove = remove_one,
 | |
| 	.shutdown = shutdown_one,
 | |
| 	.id_table = hfi1_pci_tbl,
 | |
| 	.err_handler = &hfi1_pci_err_handler,
 | |
| };
 | |
| 
 | |
| static void __init compute_krcvqs(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < krcvqsset; i++)
 | |
| 		n_krcvqs += krcvqs[i];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do all the generic driver unit- and chip-independent memory
 | |
|  * allocation and initialization.
 | |
|  */
 | |
| static int __init hfi1_mod_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dev_init();
 | |
| 	if (ret)
 | |
| 		goto bail;
 | |
| 
 | |
| 	ret = node_affinity_init();
 | |
| 	if (ret)
 | |
| 		goto bail;
 | |
| 
 | |
| 	/* validate max MTU before any devices start */
 | |
| 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
 | |
| 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
 | |
| 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
 | |
| 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
 | |
| 	}
 | |
| 	/* valid CUs run from 1-128 in powers of 2 */
 | |
| 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
 | |
| 		hfi1_cu = 1;
 | |
| 	/* valid credit return threshold is 0-100, variable is unsigned */
 | |
| 	if (user_credit_return_threshold > 100)
 | |
| 		user_credit_return_threshold = 100;
 | |
| 
 | |
| 	compute_krcvqs();
 | |
| 	/*
 | |
| 	 * sanitize receive interrupt count, time must wait until after
 | |
| 	 * the hardware type is known
 | |
| 	 */
 | |
| 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
 | |
| 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
 | |
| 	/* reject invalid combinations */
 | |
| 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
 | |
| 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
 | |
| 		rcv_intr_count = 1;
 | |
| 	}
 | |
| 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
 | |
| 		/*
 | |
| 		 * Avoid indefinite packet delivery by requiring a timeout
 | |
| 		 * if count is > 1.
 | |
| 		 */
 | |
| 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
 | |
| 		rcv_intr_timeout = 1;
 | |
| 	}
 | |
| 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
 | |
| 		/*
 | |
| 		 * The dynamic algorithm expects a non-zero timeout
 | |
| 		 * and a count > 1.
 | |
| 		 */
 | |
| 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
 | |
| 		rcv_intr_dynamic = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* sanitize link CRC options */
 | |
| 	link_crc_mask &= SUPPORTED_CRCS;
 | |
| 
 | |
| 	ret = opfn_init();
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Failed to allocate opfn_wq");
 | |
| 		goto bail_dev;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * These must be called before the driver is registered with
 | |
| 	 * the PCI subsystem.
 | |
| 	 */
 | |
| 	hfi1_dbg_init();
 | |
| 	ret = pci_register_driver(&hfi1_pci_driver);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Unable to register driver: error %d\n", -ret);
 | |
| 		goto bail_dev;
 | |
| 	}
 | |
| 	goto bail; /* all OK */
 | |
| 
 | |
| bail_dev:
 | |
| 	hfi1_dbg_exit();
 | |
| 	dev_cleanup();
 | |
| bail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| module_init(hfi1_mod_init);
 | |
| 
 | |
| /*
 | |
|  * Do the non-unit driver cleanup, memory free, etc. at unload.
 | |
|  */
 | |
| static void __exit hfi1_mod_cleanup(void)
 | |
| {
 | |
| 	pci_unregister_driver(&hfi1_pci_driver);
 | |
| 	opfn_exit();
 | |
| 	node_affinity_destroy_all();
 | |
| 	hfi1_dbg_exit();
 | |
| 
 | |
| 	WARN_ON(!xa_empty(&hfi1_dev_table));
 | |
| 	dispose_firmware();	/* asymmetric with obtain_firmware() */
 | |
| 	dev_cleanup();
 | |
| }
 | |
| 
 | |
| module_exit(hfi1_mod_cleanup);
 | |
| 
 | |
| /* this can only be called after a successful initialization */
 | |
| static void cleanup_device_data(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int ctxt;
 | |
| 	int pidx;
 | |
| 
 | |
| 	/* users can't do anything more with chip */
 | |
| 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
 | |
| 		struct cc_state *cc_state;
 | |
| 		int i;
 | |
| 
 | |
| 		if (ppd->statusp)
 | |
| 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
 | |
| 
 | |
| 		for (i = 0; i < OPA_MAX_SLS; i++)
 | |
| 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
 | |
| 
 | |
| 		spin_lock(&ppd->cc_state_lock);
 | |
| 		cc_state = get_cc_state_protected(ppd);
 | |
| 		RCU_INIT_POINTER(ppd->cc_state, NULL);
 | |
| 		spin_unlock(&ppd->cc_state_lock);
 | |
| 
 | |
| 		if (cc_state)
 | |
| 			kfree_rcu(cc_state, rcu);
 | |
| 	}
 | |
| 
 | |
| 	free_credit_return(dd);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free any resources still in use (usually just kernel contexts)
 | |
| 	 * at unload; we do for ctxtcnt, because that's what we allocate.
 | |
| 	 */
 | |
| 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
 | |
| 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
 | |
| 
 | |
| 		if (rcd) {
 | |
| 			hfi1_free_ctxt_rcv_groups(rcd);
 | |
| 			hfi1_free_ctxt(rcd);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(dd->rcd);
 | |
| 	dd->rcd = NULL;
 | |
| 
 | |
| 	free_pio_map(dd);
 | |
| 	/* must follow rcv context free - need to remove rcv's hooks */
 | |
| 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
 | |
| 		sc_free(dd->send_contexts[ctxt].sc);
 | |
| 	dd->num_send_contexts = 0;
 | |
| 	kfree(dd->send_contexts);
 | |
| 	dd->send_contexts = NULL;
 | |
| 	kfree(dd->hw_to_sw);
 | |
| 	dd->hw_to_sw = NULL;
 | |
| 	kfree(dd->boardname);
 | |
| 	vfree(dd->events);
 | |
| 	vfree(dd->status);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up on unit shutdown, or error during unit load after
 | |
|  * successful initialization.
 | |
|  */
 | |
| static void postinit_cleanup(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	hfi1_start_cleanup(dd);
 | |
| 	hfi1_comp_vectors_clean_up(dd);
 | |
| 	hfi1_dev_affinity_clean_up(dd);
 | |
| 
 | |
| 	hfi1_pcie_ddcleanup(dd);
 | |
| 	hfi1_pcie_cleanup(dd->pcidev);
 | |
| 
 | |
| 	cleanup_device_data(dd);
 | |
| 
 | |
| 	hfi1_free_devdata(dd);
 | |
| }
 | |
| 
 | |
| static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	int ret = 0, j, pidx, initfail;
 | |
| 	struct hfi1_devdata *dd;
 | |
| 	struct hfi1_pportdata *ppd;
 | |
| 
 | |
| 	/* First, lock the non-writable module parameters */
 | |
| 	HFI1_CAP_LOCK();
 | |
| 
 | |
| 	/* Validate dev ids */
 | |
| 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
 | |
| 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
 | |
| 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
 | |
| 			ent->device);
 | |
| 		ret = -ENODEV;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate the dd so we can get to work */
 | |
| 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
 | |
| 				sizeof(struct hfi1_pportdata));
 | |
| 	if (IS_ERR(dd)) {
 | |
| 		ret = PTR_ERR(dd);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Validate some global module parameters */
 | |
| 	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
 | |
| 	if (ret)
 | |
| 		goto bail;
 | |
| 
 | |
| 	/* use the encoding function as a sanitization check */
 | |
| 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
 | |
| 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
 | |
| 			   hfi1_hdrq_entsize);
 | |
| 		ret = -EINVAL;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* The receive eager buffer size must be set before the receive
 | |
| 	 * contexts are created.
 | |
| 	 *
 | |
| 	 * Set the eager buffer size.  Validate that it falls in a range
 | |
| 	 * allowed by the hardware - all powers of 2 between the min and
 | |
| 	 * max.  The maximum valid MTU is within the eager buffer range
 | |
| 	 * so we do not need to cap the max_mtu by an eager buffer size
 | |
| 	 * setting.
 | |
| 	 */
 | |
| 	if (eager_buffer_size) {
 | |
| 		if (!is_power_of_2(eager_buffer_size))
 | |
| 			eager_buffer_size =
 | |
| 				roundup_pow_of_two(eager_buffer_size);
 | |
| 		eager_buffer_size =
 | |
| 			clamp_val(eager_buffer_size,
 | |
| 				  MIN_EAGER_BUFFER * 8,
 | |
| 				  MAX_EAGER_BUFFER_TOTAL);
 | |
| 		dd_dev_info(dd, "Eager buffer size %u\n",
 | |
| 			    eager_buffer_size);
 | |
| 	} else {
 | |
| 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* restrict value of hfi1_rcvarr_split */
 | |
| 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
 | |
| 
 | |
| 	ret = hfi1_pcie_init(dd);
 | |
| 	if (ret)
 | |
| 		goto bail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do device-specific initialization, function table setup, dd
 | |
| 	 * allocation, etc.
 | |
| 	 */
 | |
| 	ret = hfi1_init_dd(dd);
 | |
| 	if (ret)
 | |
| 		goto clean_bail; /* error already printed */
 | |
| 
 | |
| 	ret = create_workqueues(dd);
 | |
| 	if (ret)
 | |
| 		goto clean_bail;
 | |
| 
 | |
| 	/* do the generic initialization */
 | |
| 	initfail = hfi1_init(dd, 0);
 | |
| 
 | |
| 	ret = hfi1_register_ib_device(dd);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now ready for use.  this should be cleared whenever we
 | |
| 	 * detect a reset, or initiate one.  If earlier failure,
 | |
| 	 * we still create devices, so diags, etc. can be used
 | |
| 	 * to determine cause of problem.
 | |
| 	 */
 | |
| 	if (!initfail && !ret) {
 | |
| 		dd->flags |= HFI1_INITTED;
 | |
| 		/* create debufs files after init and ib register */
 | |
| 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
 | |
| 	}
 | |
| 
 | |
| 	j = hfi1_device_create(dd);
 | |
| 	if (j)
 | |
| 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
 | |
| 
 | |
| 	if (initfail || ret) {
 | |
| 		msix_clean_up_interrupts(dd);
 | |
| 		stop_timers(dd);
 | |
| 		flush_workqueue(ib_wq);
 | |
| 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
 | |
| 			hfi1_quiet_serdes(dd->pport + pidx);
 | |
| 			ppd = dd->pport + pidx;
 | |
| 			if (ppd->hfi1_wq) {
 | |
| 				destroy_workqueue(ppd->hfi1_wq);
 | |
| 				ppd->hfi1_wq = NULL;
 | |
| 			}
 | |
| 			if (ppd->link_wq) {
 | |
| 				destroy_workqueue(ppd->link_wq);
 | |
| 				ppd->link_wq = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!j)
 | |
| 			hfi1_device_remove(dd);
 | |
| 		if (!ret)
 | |
| 			hfi1_unregister_ib_device(dd);
 | |
| 		postinit_cleanup(dd);
 | |
| 		if (initfail)
 | |
| 			ret = initfail;
 | |
| 		goto bail;	/* everything already cleaned */
 | |
| 	}
 | |
| 
 | |
| 	sdma_start(dd);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| clean_bail:
 | |
| 	hfi1_pcie_cleanup(pdev);
 | |
| bail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void wait_for_clients(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	/*
 | |
| 	 * Remove the device init value and complete the device if there is
 | |
| 	 * no clients or wait for active clients to finish.
 | |
| 	 */
 | |
| 	if (atomic_dec_and_test(&dd->user_refcount))
 | |
| 		complete(&dd->user_comp);
 | |
| 
 | |
| 	wait_for_completion(&dd->user_comp);
 | |
| }
 | |
| 
 | |
| static void remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
 | |
| 
 | |
| 	/* close debugfs files before ib unregister */
 | |
| 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
 | |
| 
 | |
| 	/* remove the /dev hfi1 interface */
 | |
| 	hfi1_device_remove(dd);
 | |
| 
 | |
| 	/* wait for existing user space clients to finish */
 | |
| 	wait_for_clients(dd);
 | |
| 
 | |
| 	/* unregister from IB core */
 | |
| 	hfi1_unregister_ib_device(dd);
 | |
| 
 | |
| 	/* free netdev data */
 | |
| 	hfi1_netdev_free(dd);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable the IB link, disable interrupts on the device,
 | |
| 	 * clear dma engines, etc.
 | |
| 	 */
 | |
| 	shutdown_device(dd);
 | |
| 	destroy_workqueues(dd);
 | |
| 
 | |
| 	stop_timers(dd);
 | |
| 
 | |
| 	/* wait until all of our (qsfp) queue_work() calls complete */
 | |
| 	flush_workqueue(ib_wq);
 | |
| 
 | |
| 	postinit_cleanup(dd);
 | |
| }
 | |
| 
 | |
| static void shutdown_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
 | |
| 
 | |
| 	shutdown_device(dd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hfi1_create_rcvhdrq - create a receive header queue
 | |
|  * @dd: the hfi1_ib device
 | |
|  * @rcd: the context data
 | |
|  *
 | |
|  * This must be contiguous memory (from an i/o perspective), and must be
 | |
|  * DMA'able (which means for some systems, it will go through an IOMMU,
 | |
|  * or be forced into a low address range).
 | |
|  */
 | |
| int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
 | |
| {
 | |
| 	unsigned amt;
 | |
| 
 | |
| 	if (!rcd->rcvhdrq) {
 | |
| 		gfp_t gfp_flags;
 | |
| 
 | |
| 		amt = rcvhdrq_size(rcd);
 | |
| 
 | |
| 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
 | |
| 			gfp_flags = GFP_KERNEL;
 | |
| 		else
 | |
| 			gfp_flags = GFP_USER;
 | |
| 		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
 | |
| 						  &rcd->rcvhdrq_dma,
 | |
| 						  gfp_flags | __GFP_COMP);
 | |
| 
 | |
| 		if (!rcd->rcvhdrq) {
 | |
| 			dd_dev_err(dd,
 | |
| 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
 | |
| 				   amt, rcd->ctxt);
 | |
| 			goto bail;
 | |
| 		}
 | |
| 
 | |
| 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
 | |
| 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
 | |
| 			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
 | |
| 								    PAGE_SIZE,
 | |
| 								    &rcd->rcvhdrqtailaddr_dma,
 | |
| 								    gfp_flags);
 | |
| 			if (!rcd->rcvhdrtail_kvaddr)
 | |
| 				goto bail_free;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
 | |
| 		      rcd->rcvhdrq_cnt);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bail_free:
 | |
| 	dd_dev_err(dd,
 | |
| 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
 | |
| 		   rcd->ctxt);
 | |
| 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
 | |
| 			  rcd->rcvhdrq_dma);
 | |
| 	rcd->rcvhdrq = NULL;
 | |
| bail:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * allocate eager buffers, both kernel and user contexts.
 | |
|  * @rcd: the context we are setting up.
 | |
|  *
 | |
|  * Allocate the eager TID buffers and program them into hip.
 | |
|  * They are no longer completely contiguous, we do multiple allocation
 | |
|  * calls.  Otherwise we get the OOM code involved, by asking for too
 | |
|  * much per call, with disastrous results on some kernels.
 | |
|  */
 | |
| int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = rcd->dd;
 | |
| 	u32 max_entries, egrtop, alloced_bytes = 0;
 | |
| 	gfp_t gfp_flags;
 | |
| 	u16 order, idx = 0;
 | |
| 	int ret = 0;
 | |
| 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
 | |
| 
 | |
| 	/*
 | |
| 	 * GFP_USER, but without GFP_FS, so buffer cache can be
 | |
| 	 * coalesced (we hope); otherwise, even at order 4,
 | |
| 	 * heavy filesystem activity makes these fail, and we can
 | |
| 	 * use compound pages.
 | |
| 	 */
 | |
| 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
 | |
| 
 | |
| 	/*
 | |
| 	 * The minimum size of the eager buffers is a groups of MTU-sized
 | |
| 	 * buffers.
 | |
| 	 * The global eager_buffer_size parameter is checked against the
 | |
| 	 * theoretical lower limit of the value. Here, we check against the
 | |
| 	 * MTU.
 | |
| 	 */
 | |
| 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
 | |
| 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
 | |
| 	/*
 | |
| 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
 | |
| 	 * size to the max MTU (page-aligned).
 | |
| 	 */
 | |
| 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
 | |
| 		rcd->egrbufs.rcvtid_size = round_mtu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
 | |
| 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
 | |
| 	 */
 | |
| 	if (rcd->egrbufs.size <= (1 << 20))
 | |
| 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
 | |
| 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
 | |
| 
 | |
| 	while (alloced_bytes < rcd->egrbufs.size &&
 | |
| 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
 | |
| 		rcd->egrbufs.buffers[idx].addr =
 | |
| 			dma_alloc_coherent(&dd->pcidev->dev,
 | |
| 					   rcd->egrbufs.rcvtid_size,
 | |
| 					   &rcd->egrbufs.buffers[idx].dma,
 | |
| 					   gfp_flags);
 | |
| 		if (rcd->egrbufs.buffers[idx].addr) {
 | |
| 			rcd->egrbufs.buffers[idx].len =
 | |
| 				rcd->egrbufs.rcvtid_size;
 | |
| 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
 | |
| 				rcd->egrbufs.buffers[idx].addr;
 | |
| 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
 | |
| 				rcd->egrbufs.buffers[idx].dma;
 | |
| 			rcd->egrbufs.alloced++;
 | |
| 			alloced_bytes += rcd->egrbufs.rcvtid_size;
 | |
| 			idx++;
 | |
| 		} else {
 | |
| 			u32 new_size, i, j;
 | |
| 			u64 offset = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Fail the eager buffer allocation if:
 | |
| 			 *   - we are already using the lowest acceptable size
 | |
| 			 *   - we are using one-pkt-per-egr-buffer (this implies
 | |
| 			 *     that we are accepting only one size)
 | |
| 			 */
 | |
| 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
 | |
| 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
 | |
| 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
 | |
| 					   rcd->ctxt);
 | |
| 				ret = -ENOMEM;
 | |
| 				goto bail_rcvegrbuf_phys;
 | |
| 			}
 | |
| 
 | |
| 			new_size = rcd->egrbufs.rcvtid_size / 2;
 | |
| 
 | |
| 			/*
 | |
| 			 * If the first attempt to allocate memory failed, don't
 | |
| 			 * fail everything but continue with the next lower
 | |
| 			 * size.
 | |
| 			 */
 | |
| 			if (idx == 0) {
 | |
| 				rcd->egrbufs.rcvtid_size = new_size;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Re-partition already allocated buffers to a smaller
 | |
| 			 * size.
 | |
| 			 */
 | |
| 			rcd->egrbufs.alloced = 0;
 | |
| 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
 | |
| 				if (i >= rcd->egrbufs.count)
 | |
| 					break;
 | |
| 				rcd->egrbufs.rcvtids[i].dma =
 | |
| 					rcd->egrbufs.buffers[j].dma + offset;
 | |
| 				rcd->egrbufs.rcvtids[i].addr =
 | |
| 					rcd->egrbufs.buffers[j].addr + offset;
 | |
| 				rcd->egrbufs.alloced++;
 | |
| 				if ((rcd->egrbufs.buffers[j].dma + offset +
 | |
| 				     new_size) ==
 | |
| 				    (rcd->egrbufs.buffers[j].dma +
 | |
| 				     rcd->egrbufs.buffers[j].len)) {
 | |
| 					j++;
 | |
| 					offset = 0;
 | |
| 				} else {
 | |
| 					offset += new_size;
 | |
| 				}
 | |
| 			}
 | |
| 			rcd->egrbufs.rcvtid_size = new_size;
 | |
| 		}
 | |
| 	}
 | |
| 	rcd->egrbufs.numbufs = idx;
 | |
| 	rcd->egrbufs.size = alloced_bytes;
 | |
| 
 | |
| 	hfi1_cdbg(PROC,
 | |
| 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
 | |
| 		  rcd->ctxt, rcd->egrbufs.alloced,
 | |
| 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the contexts rcv array head update threshold to the closest
 | |
| 	 * power of 2 (so we can use a mask instead of modulo) below half
 | |
| 	 * the allocated entries.
 | |
| 	 */
 | |
| 	rcd->egrbufs.threshold =
 | |
| 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
 | |
| 	/*
 | |
| 	 * Compute the expected RcvArray entry base. This is done after
 | |
| 	 * allocating the eager buffers in order to maximize the
 | |
| 	 * expected RcvArray entries for the context.
 | |
| 	 */
 | |
| 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
 | |
| 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
 | |
| 	rcd->expected_count = max_entries - egrtop;
 | |
| 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
 | |
| 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
 | |
| 
 | |
| 	rcd->expected_base = rcd->eager_base + egrtop;
 | |
| 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
 | |
| 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
 | |
| 		  rcd->eager_base, rcd->expected_base);
 | |
| 
 | |
| 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
 | |
| 		hfi1_cdbg(PROC,
 | |
| 			  "ctxt%u: current Eager buffer size is invalid %u\n",
 | |
| 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
 | |
| 		ret = -EINVAL;
 | |
| 		goto bail_rcvegrbuf_phys;
 | |
| 	}
 | |
| 
 | |
| 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
 | |
| 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
 | |
| 			     rcd->egrbufs.rcvtids[idx].dma, order);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bail_rcvegrbuf_phys:
 | |
| 	for (idx = 0; idx < rcd->egrbufs.alloced &&
 | |
| 	     rcd->egrbufs.buffers[idx].addr;
 | |
| 	     idx++) {
 | |
| 		dma_free_coherent(&dd->pcidev->dev,
 | |
| 				  rcd->egrbufs.buffers[idx].len,
 | |
| 				  rcd->egrbufs.buffers[idx].addr,
 | |
| 				  rcd->egrbufs.buffers[idx].dma);
 | |
| 		rcd->egrbufs.buffers[idx].addr = NULL;
 | |
| 		rcd->egrbufs.buffers[idx].dma = 0;
 | |
| 		rcd->egrbufs.buffers[idx].len = 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 |