3424 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3424 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright(c) 2015 - 2018 Intel Corporation.
 | |
|  *
 | |
|  * This file is provided under a dual BSD/GPLv2 license.  When using or
 | |
|  * redistributing this file, you may do so under either license.
 | |
|  *
 | |
|  * GPL LICENSE SUMMARY
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of version 2 of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * BSD LICENSE
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *  - Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  - Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *  - Neither the name of Intel Corporation nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/seqlock.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/highmem.h>
 | |
| 
 | |
| #include "hfi.h"
 | |
| #include "common.h"
 | |
| #include "qp.h"
 | |
| #include "sdma.h"
 | |
| #include "iowait.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| /* must be a power of 2 >= 64 <= 32768 */
 | |
| #define SDMA_DESCQ_CNT 2048
 | |
| #define SDMA_DESC_INTR 64
 | |
| #define INVALID_TAIL 0xffff
 | |
| #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
 | |
| 
 | |
| static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
 | |
| module_param(sdma_descq_cnt, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
 | |
| 
 | |
| static uint sdma_idle_cnt = 250;
 | |
| module_param(sdma_idle_cnt, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
 | |
| 
 | |
| uint mod_num_sdma;
 | |
| module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
 | |
| 
 | |
| static uint sdma_desct_intr = SDMA_DESC_INTR;
 | |
| module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
 | |
| MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
 | |
| 
 | |
| #define SDMA_WAIT_BATCH_SIZE 20
 | |
| /* max wait time for a SDMA engine to indicate it has halted */
 | |
| #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
 | |
| /* all SDMA engine errors that cause a halt */
 | |
| 
 | |
| #define SD(name) SEND_DMA_##name
 | |
| #define ALL_SDMA_ENG_HALT_ERRS \
 | |
| 	(SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
 | |
| 	| SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
 | |
| 
 | |
| /* sdma_sendctrl operations */
 | |
| #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
 | |
| #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
 | |
| #define SDMA_SENDCTRL_OP_HALT      BIT(2)
 | |
| #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
 | |
| 
 | |
| /* handle long defines */
 | |
| #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
 | |
| SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
 | |
| #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
 | |
| SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
 | |
| 
 | |
| static const char * const sdma_state_names[] = {
 | |
| 	[sdma_state_s00_hw_down]                = "s00_HwDown",
 | |
| 	[sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
 | |
| 	[sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
 | |
| 	[sdma_state_s20_idle]                   = "s20_Idle",
 | |
| 	[sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
 | |
| 	[sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
 | |
| 	[sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
 | |
| 	[sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
 | |
| 	[sdma_state_s80_hw_freeze]		= "s80_HwFreeze",
 | |
| 	[sdma_state_s82_freeze_sw_clean]	= "s82_FreezeSwClean",
 | |
| 	[sdma_state_s99_running]                = "s99_Running",
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| static const char * const sdma_event_names[] = {
 | |
| 	[sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
 | |
| 	[sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
 | |
| 	[sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
 | |
| 	[sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
 | |
| 	[sdma_event_e30_go_running]   = "e30_GoRunning",
 | |
| 	[sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
 | |
| 	[sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
 | |
| 	[sdma_event_e60_hw_halted]    = "e60_HwHalted",
 | |
| 	[sdma_event_e70_go_idle]      = "e70_GoIdle",
 | |
| 	[sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
 | |
| 	[sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
 | |
| 	[sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
 | |
| 	[sdma_event_e85_link_down]    = "e85_LinkDown",
 | |
| 	[sdma_event_e90_sw_halted]    = "e90_SwHalted",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static const struct sdma_set_state_action sdma_action_table[] = {
 | |
| 	[sdma_state_s00_hw_down] = {
 | |
| 		.go_s99_running_tofalse = 1,
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s10_hw_start_up_halt_wait] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 1,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s15_hw_start_up_clean_wait] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 1,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 1,
 | |
| 	},
 | |
| 	[sdma_state_s20_idle] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 1,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s30_sw_clean_up_wait] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s40_hw_clean_up_wait] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 1,
 | |
| 	},
 | |
| 	[sdma_state_s50_hw_halt_wait] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s60_idle_halt_wait] = {
 | |
| 		.go_s99_running_tofalse = 1,
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 1,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s80_hw_freeze] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s82_freeze_sw_clean] = {
 | |
| 		.op_enable = 0,
 | |
| 		.op_intenable = 0,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 0,
 | |
| 	},
 | |
| 	[sdma_state_s99_running] = {
 | |
| 		.op_enable = 1,
 | |
| 		.op_intenable = 1,
 | |
| 		.op_halt = 0,
 | |
| 		.op_cleanup = 0,
 | |
| 		.go_s99_running_totrue = 1,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| #define SDMA_TAIL_UPDATE_THRESH 0x1F
 | |
| 
 | |
| /* declare all statics here rather than keep sorting */
 | |
| static void sdma_complete(struct kref *);
 | |
| static void sdma_finalput(struct sdma_state *);
 | |
| static void sdma_get(struct sdma_state *);
 | |
| static void sdma_hw_clean_up_task(struct tasklet_struct *);
 | |
| static void sdma_put(struct sdma_state *);
 | |
| static void sdma_set_state(struct sdma_engine *, enum sdma_states);
 | |
| static void sdma_start_hw_clean_up(struct sdma_engine *);
 | |
| static void sdma_sw_clean_up_task(struct tasklet_struct *);
 | |
| static void sdma_sendctrl(struct sdma_engine *, unsigned);
 | |
| static void init_sdma_regs(struct sdma_engine *, u32, uint);
 | |
| static void sdma_process_event(
 | |
| 	struct sdma_engine *sde,
 | |
| 	enum sdma_events event);
 | |
| static void __sdma_process_event(
 | |
| 	struct sdma_engine *sde,
 | |
| 	enum sdma_events event);
 | |
| static void dump_sdma_state(struct sdma_engine *sde);
 | |
| static void sdma_make_progress(struct sdma_engine *sde, u64 status);
 | |
| static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
 | |
| static void sdma_flush_descq(struct sdma_engine *sde);
 | |
| 
 | |
| /**
 | |
|  * sdma_state_name() - return state string from enum
 | |
|  * @state: state
 | |
|  */
 | |
| static const char *sdma_state_name(enum sdma_states state)
 | |
| {
 | |
| 	return sdma_state_names[state];
 | |
| }
 | |
| 
 | |
| static void sdma_get(struct sdma_state *ss)
 | |
| {
 | |
| 	kref_get(&ss->kref);
 | |
| }
 | |
| 
 | |
| static void sdma_complete(struct kref *kref)
 | |
| {
 | |
| 	struct sdma_state *ss =
 | |
| 		container_of(kref, struct sdma_state, kref);
 | |
| 
 | |
| 	complete(&ss->comp);
 | |
| }
 | |
| 
 | |
| static void sdma_put(struct sdma_state *ss)
 | |
| {
 | |
| 	kref_put(&ss->kref, sdma_complete);
 | |
| }
 | |
| 
 | |
| static void sdma_finalput(struct sdma_state *ss)
 | |
| {
 | |
| 	sdma_put(ss);
 | |
| 	wait_for_completion(&ss->comp);
 | |
| }
 | |
| 
 | |
| static inline void write_sde_csr(
 | |
| 	struct sdma_engine *sde,
 | |
| 	u32 offset0,
 | |
| 	u64 value)
 | |
| {
 | |
| 	write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
 | |
| }
 | |
| 
 | |
| static inline u64 read_sde_csr(
 | |
| 	struct sdma_engine *sde,
 | |
| 	u32 offset0)
 | |
| {
 | |
| 	return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
 | |
|  * sdma engine 'sde' to drop to 0.
 | |
|  */
 | |
| static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
 | |
| 					int pause)
 | |
| {
 | |
| 	u64 off = 8 * sde->this_idx;
 | |
| 	struct hfi1_devdata *dd = sde->dd;
 | |
| 	int lcnt = 0;
 | |
| 	u64 reg_prev;
 | |
| 	u64 reg = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		reg_prev = reg;
 | |
| 		reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
 | |
| 
 | |
| 		reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
 | |
| 		reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
 | |
| 		if (reg == 0)
 | |
| 			break;
 | |
| 		/* counter is reest if accupancy count changes */
 | |
| 		if (reg != reg_prev)
 | |
| 			lcnt = 0;
 | |
| 		if (lcnt++ > 500) {
 | |
| 			/* timed out - bounce the link */
 | |
| 			dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 | |
| 				   __func__, sde->this_idx, (u32)reg);
 | |
| 			queue_work(dd->pport->link_wq,
 | |
| 				   &dd->pport->link_bounce_work);
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
 | |
|  * and pause for credit return.
 | |
|  */
 | |
| void sdma_wait(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < dd->num_sdma; i++) {
 | |
| 		struct sdma_engine *sde = &dd->per_sdma[i];
 | |
| 
 | |
| 		sdma_wait_for_packet_egress(sde, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
 | |
| {
 | |
| 	u64 reg;
 | |
| 
 | |
| 	if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
 | |
| 		return;
 | |
| 	reg = cnt;
 | |
| 	reg &= SD(DESC_CNT_CNT_MASK);
 | |
| 	reg <<= SD(DESC_CNT_CNT_SHIFT);
 | |
| 	write_sde_csr(sde, SD(DESC_CNT), reg);
 | |
| }
 | |
| 
 | |
| static inline void complete_tx(struct sdma_engine *sde,
 | |
| 			       struct sdma_txreq *tx,
 | |
| 			       int res)
 | |
| {
 | |
| 	/* protect against complete modifying */
 | |
| 	struct iowait *wait = tx->wait;
 | |
| 	callback_t complete = tx->complete;
 | |
| 
 | |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 | |
| 	trace_hfi1_sdma_out_sn(sde, tx->sn);
 | |
| 	if (WARN_ON_ONCE(sde->head_sn != tx->sn))
 | |
| 		dd_dev_err(sde->dd, "expected %llu got %llu\n",
 | |
| 			   sde->head_sn, tx->sn);
 | |
| 	sde->head_sn++;
 | |
| #endif
 | |
| 	__sdma_txclean(sde->dd, tx);
 | |
| 	if (complete)
 | |
| 		(*complete)(tx, res);
 | |
| 	if (iowait_sdma_dec(wait))
 | |
| 		iowait_drain_wakeup(wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
 | |
|  *
 | |
|  * Depending on timing there can be txreqs in two places:
 | |
|  * - in the descq ring
 | |
|  * - in the flush list
 | |
|  *
 | |
|  * To avoid ordering issues the descq ring needs to be flushed
 | |
|  * first followed by the flush list.
 | |
|  *
 | |
|  * This routine is called from two places
 | |
|  * - From a work queue item
 | |
|  * - Directly from the state machine just before setting the
 | |
|  *   state to running
 | |
|  *
 | |
|  * Must be called with head_lock held
 | |
|  *
 | |
|  */
 | |
| static void sdma_flush(struct sdma_engine *sde)
 | |
| {
 | |
| 	struct sdma_txreq *txp, *txp_next;
 | |
| 	LIST_HEAD(flushlist);
 | |
| 	unsigned long flags;
 | |
| 	uint seq;
 | |
| 
 | |
| 	/* flush from head to tail */
 | |
| 	sdma_flush_descq(sde);
 | |
| 	spin_lock_irqsave(&sde->flushlist_lock, flags);
 | |
| 	/* copy flush list */
 | |
| 	list_splice_init(&sde->flushlist, &flushlist);
 | |
| 	spin_unlock_irqrestore(&sde->flushlist_lock, flags);
 | |
| 	/* flush from flush list */
 | |
| 	list_for_each_entry_safe(txp, txp_next, &flushlist, list)
 | |
| 		complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 | |
| 	/* wakeup QPs orphaned on the dmawait list */
 | |
| 	do {
 | |
| 		struct iowait *w, *nw;
 | |
| 
 | |
| 		seq = read_seqbegin(&sde->waitlock);
 | |
| 		if (!list_empty(&sde->dmawait)) {
 | |
| 			write_seqlock(&sde->waitlock);
 | |
| 			list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
 | |
| 				if (w->wakeup) {
 | |
| 					w->wakeup(w, SDMA_AVAIL_REASON);
 | |
| 					list_del_init(&w->list);
 | |
| 				}
 | |
| 			}
 | |
| 			write_sequnlock(&sde->waitlock);
 | |
| 		}
 | |
| 	} while (read_seqretry(&sde->waitlock, seq));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fields a work request for flushing the descq ring
 | |
|  * and the flush list
 | |
|  *
 | |
|  * If the engine has been brought to running during
 | |
|  * the scheduling delay, the flush is ignored, assuming
 | |
|  * that the process of bringing the engine to running
 | |
|  * would have done this flush prior to going to running.
 | |
|  *
 | |
|  */
 | |
| static void sdma_field_flush(struct work_struct *work)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct sdma_engine *sde =
 | |
| 		container_of(work, struct sdma_engine, flush_worker);
 | |
| 
 | |
| 	write_seqlock_irqsave(&sde->head_lock, flags);
 | |
| 	if (!__sdma_running(sde))
 | |
| 		sdma_flush(sde);
 | |
| 	write_sequnlock_irqrestore(&sde->head_lock, flags);
 | |
| }
 | |
| 
 | |
| static void sdma_err_halt_wait(struct work_struct *work)
 | |
| {
 | |
| 	struct sdma_engine *sde = container_of(work, struct sdma_engine,
 | |
| 						err_halt_worker);
 | |
| 	u64 statuscsr;
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
 | |
| 	while (1) {
 | |
| 		statuscsr = read_sde_csr(sde, SD(STATUS));
 | |
| 		statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
 | |
| 		if (statuscsr)
 | |
| 			break;
 | |
| 		if (time_after(jiffies, timeout)) {
 | |
| 			dd_dev_err(sde->dd,
 | |
| 				   "SDMA engine %d - timeout waiting for engine to halt\n",
 | |
| 				   sde->this_idx);
 | |
| 			/*
 | |
| 			 * Continue anyway.  This could happen if there was
 | |
| 			 * an uncorrectable error in the wrong spot.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		usleep_range(80, 120);
 | |
| 	}
 | |
| 
 | |
| 	sdma_process_event(sde, sdma_event_e15_hw_halt_done);
 | |
| }
 | |
| 
 | |
| static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
 | |
| {
 | |
| 	if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
 | |
| 		unsigned index;
 | |
| 		struct hfi1_devdata *dd = sde->dd;
 | |
| 
 | |
| 		for (index = 0; index < dd->num_sdma; index++) {
 | |
| 			struct sdma_engine *curr_sdma = &dd->per_sdma[index];
 | |
| 
 | |
| 			if (curr_sdma != sde)
 | |
| 				curr_sdma->progress_check_head =
 | |
| 							curr_sdma->descq_head;
 | |
| 		}
 | |
| 		dd_dev_err(sde->dd,
 | |
| 			   "SDMA engine %d - check scheduled\n",
 | |
| 				sde->this_idx);
 | |
| 		mod_timer(&sde->err_progress_check_timer, jiffies + 10);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sdma_err_progress_check(struct timer_list *t)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
 | |
| 
 | |
| 	dd_dev_err(sde->dd, "SDE progress check event\n");
 | |
| 	for (index = 0; index < sde->dd->num_sdma; index++) {
 | |
| 		struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/* check progress on each engine except the current one */
 | |
| 		if (curr_sde == sde)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * We must lock interrupts when acquiring sde->lock,
 | |
| 		 * to avoid a deadlock if interrupt triggers and spins on
 | |
| 		 * the same lock on same CPU
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&curr_sde->tail_lock, flags);
 | |
| 		write_seqlock(&curr_sde->head_lock);
 | |
| 
 | |
| 		/* skip non-running queues */
 | |
| 		if (curr_sde->state.current_state != sdma_state_s99_running) {
 | |
| 			write_sequnlock(&curr_sde->head_lock);
 | |
| 			spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if ((curr_sde->descq_head != curr_sde->descq_tail) &&
 | |
| 		    (curr_sde->descq_head ==
 | |
| 				curr_sde->progress_check_head))
 | |
| 			__sdma_process_event(curr_sde,
 | |
| 					     sdma_event_e90_sw_halted);
 | |
| 		write_sequnlock(&curr_sde->head_lock);
 | |
| 		spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 | |
| 	}
 | |
| 	schedule_work(&sde->err_halt_worker);
 | |
| }
 | |
| 
 | |
| static void sdma_hw_clean_up_task(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct sdma_engine *sde = from_tasklet(sde, t,
 | |
| 					       sdma_hw_clean_up_task);
 | |
| 	u64 statuscsr;
 | |
| 
 | |
| 	while (1) {
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 		dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 | |
| 			   sde->this_idx, slashstrip(__FILE__), __LINE__,
 | |
| 			__func__);
 | |
| #endif
 | |
| 		statuscsr = read_sde_csr(sde, SD(STATUS));
 | |
| 		statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
 | |
| 		if (statuscsr)
 | |
| 			break;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
 | |
| }
 | |
| 
 | |
| static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
 | |
| {
 | |
| 	return sde->tx_ring[sde->tx_head & sde->sdma_mask];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * flush ring for recovery
 | |
|  */
 | |
| static void sdma_flush_descq(struct sdma_engine *sde)
 | |
| {
 | |
| 	u16 head, tail;
 | |
| 	int progress = 0;
 | |
| 	struct sdma_txreq *txp = get_txhead(sde);
 | |
| 
 | |
| 	/* The reason for some of the complexity of this code is that
 | |
| 	 * not all descriptors have corresponding txps.  So, we have to
 | |
| 	 * be able to skip over descs until we wander into the range of
 | |
| 	 * the next txp on the list.
 | |
| 	 */
 | |
| 	head = sde->descq_head & sde->sdma_mask;
 | |
| 	tail = sde->descq_tail & sde->sdma_mask;
 | |
| 	while (head != tail) {
 | |
| 		/* advance head, wrap if needed */
 | |
| 		head = ++sde->descq_head & sde->sdma_mask;
 | |
| 		/* if now past this txp's descs, do the callback */
 | |
| 		if (txp && txp->next_descq_idx == head) {
 | |
| 			/* remove from list */
 | |
| 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 | |
| 			complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 | |
| 			trace_hfi1_sdma_progress(sde, head, tail, txp);
 | |
| 			txp = get_txhead(sde);
 | |
| 		}
 | |
| 		progress++;
 | |
| 	}
 | |
| 	if (progress)
 | |
| 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 | |
| }
 | |
| 
 | |
| static void sdma_sw_clean_up_task(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&sde->tail_lock, flags);
 | |
| 	write_seqlock(&sde->head_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, the following should always be true:
 | |
| 	 * - We are halted, so no more descriptors are getting retired.
 | |
| 	 * - We are not running, so no one is submitting new work.
 | |
| 	 * - Only we can send the e40_sw_cleaned, so we can't start
 | |
| 	 *   running again until we say so.  So, the active list and
 | |
| 	 *   descq are ours to play with.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * In the error clean up sequence, software clean must be called
 | |
| 	 * before the hardware clean so we can use the hardware head in
 | |
| 	 * the progress routine.  A hardware clean or SPC unfreeze will
 | |
| 	 * reset the hardware head.
 | |
| 	 *
 | |
| 	 * Process all retired requests. The progress routine will use the
 | |
| 	 * latest physical hardware head - we are not running so speed does
 | |
| 	 * not matter.
 | |
| 	 */
 | |
| 	sdma_make_progress(sde, 0);
 | |
| 
 | |
| 	sdma_flush(sde);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset our notion of head and tail.
 | |
| 	 * Note that the HW registers have been reset via an earlier
 | |
| 	 * clean up.
 | |
| 	 */
 | |
| 	sde->descq_tail = 0;
 | |
| 	sde->descq_head = 0;
 | |
| 	sde->desc_avail = sdma_descq_freecnt(sde);
 | |
| 	*sde->head_dma = 0;
 | |
| 
 | |
| 	__sdma_process_event(sde, sdma_event_e40_sw_cleaned);
 | |
| 
 | |
| 	write_sequnlock(&sde->head_lock);
 | |
| 	spin_unlock_irqrestore(&sde->tail_lock, flags);
 | |
| }
 | |
| 
 | |
| static void sdma_sw_tear_down(struct sdma_engine *sde)
 | |
| {
 | |
| 	struct sdma_state *ss = &sde->state;
 | |
| 
 | |
| 	/* Releasing this reference means the state machine has stopped. */
 | |
| 	sdma_put(ss);
 | |
| 
 | |
| 	/* stop waiting for all unfreeze events to complete */
 | |
| 	atomic_set(&sde->dd->sdma_unfreeze_count, -1);
 | |
| 	wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 | |
| }
 | |
| 
 | |
| static void sdma_start_hw_clean_up(struct sdma_engine *sde)
 | |
| {
 | |
| 	tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
 | |
| }
 | |
| 
 | |
| static void sdma_set_state(struct sdma_engine *sde,
 | |
| 			   enum sdma_states next_state)
 | |
| {
 | |
| 	struct sdma_state *ss = &sde->state;
 | |
| 	const struct sdma_set_state_action *action = sdma_action_table;
 | |
| 	unsigned op = 0;
 | |
| 
 | |
| 	trace_hfi1_sdma_state(
 | |
| 		sde,
 | |
| 		sdma_state_names[ss->current_state],
 | |
| 		sdma_state_names[next_state]);
 | |
| 
 | |
| 	/* debugging bookkeeping */
 | |
| 	ss->previous_state = ss->current_state;
 | |
| 	ss->previous_op = ss->current_op;
 | |
| 	ss->current_state = next_state;
 | |
| 
 | |
| 	if (ss->previous_state != sdma_state_s99_running &&
 | |
| 	    next_state == sdma_state_s99_running)
 | |
| 		sdma_flush(sde);
 | |
| 
 | |
| 	if (action[next_state].op_enable)
 | |
| 		op |= SDMA_SENDCTRL_OP_ENABLE;
 | |
| 
 | |
| 	if (action[next_state].op_intenable)
 | |
| 		op |= SDMA_SENDCTRL_OP_INTENABLE;
 | |
| 
 | |
| 	if (action[next_state].op_halt)
 | |
| 		op |= SDMA_SENDCTRL_OP_HALT;
 | |
| 
 | |
| 	if (action[next_state].op_cleanup)
 | |
| 		op |= SDMA_SENDCTRL_OP_CLEANUP;
 | |
| 
 | |
| 	if (action[next_state].go_s99_running_tofalse)
 | |
| 		ss->go_s99_running = 0;
 | |
| 
 | |
| 	if (action[next_state].go_s99_running_totrue)
 | |
| 		ss->go_s99_running = 1;
 | |
| 
 | |
| 	ss->current_op = op;
 | |
| 	sdma_sendctrl(sde, ss->current_op);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_get_descq_cnt() - called when device probed
 | |
|  *
 | |
|  * Return a validated descq count.
 | |
|  *
 | |
|  * This is currently only used in the verbs initialization to build the tx
 | |
|  * list.
 | |
|  *
 | |
|  * This will probably be deleted in favor of a more scalable approach to
 | |
|  * alloc tx's.
 | |
|  *
 | |
|  */
 | |
| u16 sdma_get_descq_cnt(void)
 | |
| {
 | |
| 	u16 count = sdma_descq_cnt;
 | |
| 
 | |
| 	if (!count)
 | |
| 		return SDMA_DESCQ_CNT;
 | |
| 	/* count must be a power of 2 greater than 64 and less than
 | |
| 	 * 32768.   Otherwise return default.
 | |
| 	 */
 | |
| 	if (!is_power_of_2(count))
 | |
| 		return SDMA_DESCQ_CNT;
 | |
| 	if (count < 64 || count > 32768)
 | |
| 		return SDMA_DESCQ_CNT;
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_engine_get_vl() - return vl for a given sdma engine
 | |
|  * @sde: sdma engine
 | |
|  *
 | |
|  * This function returns the vl mapped to a given engine, or an error if
 | |
|  * the mapping can't be found. The mapping fields are protected by RCU.
 | |
|  */
 | |
| int sdma_engine_get_vl(struct sdma_engine *sde)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = sde->dd;
 | |
| 	struct sdma_vl_map *m;
 | |
| 	u8 vl;
 | |
| 
 | |
| 	if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	m = rcu_dereference(dd->sdma_map);
 | |
| 	if (unlikely(!m)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	vl = m->engine_to_vl[sde->this_idx];
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return vl;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_select_engine_vl() - select sdma engine
 | |
|  * @dd: devdata
 | |
|  * @selector: a spreading factor
 | |
|  * @vl: this vl
 | |
|  *
 | |
|  *
 | |
|  * This function returns an engine based on the selector and a vl.  The
 | |
|  * mapping fields are protected by RCU.
 | |
|  */
 | |
| struct sdma_engine *sdma_select_engine_vl(
 | |
| 	struct hfi1_devdata *dd,
 | |
| 	u32 selector,
 | |
| 	u8 vl)
 | |
| {
 | |
| 	struct sdma_vl_map *m;
 | |
| 	struct sdma_map_elem *e;
 | |
| 	struct sdma_engine *rval;
 | |
| 
 | |
| 	/* NOTE This should only happen if SC->VL changed after the initial
 | |
| 	 *      checks on the QP/AH
 | |
| 	 *      Default will return engine 0 below
 | |
| 	 */
 | |
| 	if (vl >= num_vls) {
 | |
| 		rval = NULL;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	m = rcu_dereference(dd->sdma_map);
 | |
| 	if (unlikely(!m)) {
 | |
| 		rcu_read_unlock();
 | |
| 		return &dd->per_sdma[0];
 | |
| 	}
 | |
| 	e = m->map[vl & m->mask];
 | |
| 	rval = e->sde[selector & e->mask];
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| done:
 | |
| 	rval =  !rval ? &dd->per_sdma[0] : rval;
 | |
| 	trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_select_engine_sc() - select sdma engine
 | |
|  * @dd: devdata
 | |
|  * @selector: a spreading factor
 | |
|  * @sc5: the 5 bit sc
 | |
|  *
 | |
|  *
 | |
|  * This function returns an engine based on the selector and an sc.
 | |
|  */
 | |
| struct sdma_engine *sdma_select_engine_sc(
 | |
| 	struct hfi1_devdata *dd,
 | |
| 	u32 selector,
 | |
| 	u8 sc5)
 | |
| {
 | |
| 	u8 vl = sc_to_vlt(dd, sc5);
 | |
| 
 | |
| 	return sdma_select_engine_vl(dd, selector, vl);
 | |
| }
 | |
| 
 | |
| struct sdma_rht_map_elem {
 | |
| 	u32 mask;
 | |
| 	u8 ctr;
 | |
| 	struct sdma_engine *sde[];
 | |
| };
 | |
| 
 | |
| struct sdma_rht_node {
 | |
| 	unsigned long cpu_id;
 | |
| 	struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
 | |
| 	struct rhash_head node;
 | |
| };
 | |
| 
 | |
| #define NR_CPUS_HINT 192
 | |
| 
 | |
| static const struct rhashtable_params sdma_rht_params = {
 | |
| 	.nelem_hint = NR_CPUS_HINT,
 | |
| 	.head_offset = offsetof(struct sdma_rht_node, node),
 | |
| 	.key_offset = offsetof(struct sdma_rht_node, cpu_id),
 | |
| 	.key_len = sizeof_field(struct sdma_rht_node, cpu_id),
 | |
| 	.max_size = NR_CPUS,
 | |
| 	.min_size = 8,
 | |
| 	.automatic_shrinking = true,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sdma_select_user_engine() - select sdma engine based on user setup
 | |
|  * @dd: devdata
 | |
|  * @selector: a spreading factor
 | |
|  * @vl: this vl
 | |
|  *
 | |
|  * This function returns an sdma engine for a user sdma request.
 | |
|  * User defined sdma engine affinity setting is honored when applicable,
 | |
|  * otherwise system default sdma engine mapping is used. To ensure correct
 | |
|  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
 | |
|  */
 | |
| struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
 | |
| 					    u32 selector, u8 vl)
 | |
| {
 | |
| 	struct sdma_rht_node *rht_node;
 | |
| 	struct sdma_engine *sde = NULL;
 | |
| 	unsigned long cpu_id;
 | |
| 
 | |
| 	/*
 | |
| 	 * To ensure that always the same sdma engine(s) will be
 | |
| 	 * selected make sure the process is pinned to this CPU only.
 | |
| 	 */
 | |
| 	if (current->nr_cpus_allowed != 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cpu_id = smp_processor_id();
 | |
| 	rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
 | |
| 				     sdma_rht_params);
 | |
| 
 | |
| 	if (rht_node && rht_node->map[vl]) {
 | |
| 		struct sdma_rht_map_elem *map = rht_node->map[vl];
 | |
| 
 | |
| 		sde = map->sde[selector & map->mask];
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (sde)
 | |
| 		return sde;
 | |
| 
 | |
| out:
 | |
| 	return sdma_select_engine_vl(dd, selector, vl);
 | |
| }
 | |
| 
 | |
| static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
 | |
| 		map->sde[map->ctr + i] = map->sde[i];
 | |
| }
 | |
| 
 | |
| static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
 | |
| 				 struct sdma_engine *sde)
 | |
| {
 | |
| 	unsigned int i, pow;
 | |
| 
 | |
| 	/* only need to check the first ctr entries for a match */
 | |
| 	for (i = 0; i < map->ctr; i++) {
 | |
| 		if (map->sde[i] == sde) {
 | |
| 			memmove(&map->sde[i], &map->sde[i + 1],
 | |
| 				(map->ctr - i - 1) * sizeof(map->sde[0]));
 | |
| 			map->ctr--;
 | |
| 			pow = roundup_pow_of_two(map->ctr ? : 1);
 | |
| 			map->mask = pow - 1;
 | |
| 			sdma_populate_sde_map(map);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prevents concurrent reads and writes of the sdma engine cpu_mask
 | |
|  */
 | |
| static DEFINE_MUTEX(process_to_sde_mutex);
 | |
| 
 | |
| ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
 | |
| 				size_t count)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = sde->dd;
 | |
| 	cpumask_var_t mask, new_mask;
 | |
| 	unsigned long cpu;
 | |
| 	int ret, vl, sz;
 | |
| 	struct sdma_rht_node *rht_node;
 | |
| 
 | |
| 	vl = sdma_engine_get_vl(sde);
 | |
| 	if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 | |
| 	if (!ret)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
 | |
| 	if (!ret) {
 | |
| 		free_cpumask_var(mask);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	ret = cpulist_parse(buf, mask);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	if (!cpumask_subset(mask, cpu_online_mask)) {
 | |
| 		dd_dev_warn(sde->dd, "Invalid CPU mask\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	sz = sizeof(struct sdma_rht_map_elem) +
 | |
| 			(TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
 | |
| 
 | |
| 	mutex_lock(&process_to_sde_mutex);
 | |
| 
 | |
| 	for_each_cpu(cpu, mask) {
 | |
| 		/* Check if we have this already mapped */
 | |
| 		if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
 | |
| 			cpumask_set_cpu(cpu, new_mask);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 | |
| 						  sdma_rht_params);
 | |
| 		if (!rht_node) {
 | |
| 			rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
 | |
| 			if (!rht_node) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 | |
| 			if (!rht_node->map[vl]) {
 | |
| 				kfree(rht_node);
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			rht_node->cpu_id = cpu;
 | |
| 			rht_node->map[vl]->mask = 0;
 | |
| 			rht_node->map[vl]->ctr = 1;
 | |
| 			rht_node->map[vl]->sde[0] = sde;
 | |
| 
 | |
| 			ret = rhashtable_insert_fast(dd->sdma_rht,
 | |
| 						     &rht_node->node,
 | |
| 						     sdma_rht_params);
 | |
| 			if (ret) {
 | |
| 				kfree(rht_node->map[vl]);
 | |
| 				kfree(rht_node);
 | |
| 				dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
 | |
| 					   cpu);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 		} else {
 | |
| 			int ctr, pow;
 | |
| 
 | |
| 			/* Add new user mappings */
 | |
| 			if (!rht_node->map[vl])
 | |
| 				rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 | |
| 
 | |
| 			if (!rht_node->map[vl]) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			rht_node->map[vl]->ctr++;
 | |
| 			ctr = rht_node->map[vl]->ctr;
 | |
| 			rht_node->map[vl]->sde[ctr - 1] = sde;
 | |
| 			pow = roundup_pow_of_two(ctr);
 | |
| 			rht_node->map[vl]->mask = pow - 1;
 | |
| 
 | |
| 			/* Populate the sde map table */
 | |
| 			sdma_populate_sde_map(rht_node->map[vl]);
 | |
| 		}
 | |
| 		cpumask_set_cpu(cpu, new_mask);
 | |
| 	}
 | |
| 
 | |
| 	/* Clean up old mappings */
 | |
| 	for_each_cpu(cpu, cpu_online_mask) {
 | |
| 		struct sdma_rht_node *rht_node;
 | |
| 
 | |
| 		/* Don't cleanup sdes that are set in the new mask */
 | |
| 		if (cpumask_test_cpu(cpu, mask))
 | |
| 			continue;
 | |
| 
 | |
| 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 | |
| 						  sdma_rht_params);
 | |
| 		if (rht_node) {
 | |
| 			bool empty = true;
 | |
| 			int i;
 | |
| 
 | |
| 			/* Remove mappings for old sde */
 | |
| 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
 | |
| 				if (rht_node->map[i])
 | |
| 					sdma_cleanup_sde_map(rht_node->map[i],
 | |
| 							     sde);
 | |
| 
 | |
| 			/* Free empty hash table entries */
 | |
| 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
 | |
| 				if (!rht_node->map[i])
 | |
| 					continue;
 | |
| 
 | |
| 				if (rht_node->map[i]->ctr) {
 | |
| 					empty = false;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (empty) {
 | |
| 				ret = rhashtable_remove_fast(dd->sdma_rht,
 | |
| 							     &rht_node->node,
 | |
| 							     sdma_rht_params);
 | |
| 				WARN_ON(ret);
 | |
| 
 | |
| 				for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
 | |
| 					kfree(rht_node->map[i]);
 | |
| 
 | |
| 				kfree(rht_node);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpumask_copy(&sde->cpu_mask, new_mask);
 | |
| out:
 | |
| 	mutex_unlock(&process_to_sde_mutex);
 | |
| out_free:
 | |
| 	free_cpumask_var(mask);
 | |
| 	free_cpumask_var(new_mask);
 | |
| 	return ret ? : strnlen(buf, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
 | |
| {
 | |
| 	mutex_lock(&process_to_sde_mutex);
 | |
| 	if (cpumask_empty(&sde->cpu_mask))
 | |
| 		snprintf(buf, PAGE_SIZE, "%s\n", "empty");
 | |
| 	else
 | |
| 		cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
 | |
| 	mutex_unlock(&process_to_sde_mutex);
 | |
| 	return strnlen(buf, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static void sdma_rht_free(void *ptr, void *arg)
 | |
| {
 | |
| 	struct sdma_rht_node *rht_node = ptr;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
 | |
| 		kfree(rht_node->map[i]);
 | |
| 
 | |
| 	kfree(rht_node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
 | |
|  * @s: seq file
 | |
|  * @dd: hfi1_devdata
 | |
|  * @cpuid: cpu id
 | |
|  *
 | |
|  * This routine dumps the process to sde mappings per cpu
 | |
|  */
 | |
| void sdma_seqfile_dump_cpu_list(struct seq_file *s,
 | |
| 				struct hfi1_devdata *dd,
 | |
| 				unsigned long cpuid)
 | |
| {
 | |
| 	struct sdma_rht_node *rht_node;
 | |
| 	int i, j;
 | |
| 
 | |
| 	rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
 | |
| 					  sdma_rht_params);
 | |
| 	if (!rht_node)
 | |
| 		return;
 | |
| 
 | |
| 	seq_printf(s, "cpu%3lu: ", cpuid);
 | |
| 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
 | |
| 		if (!rht_node->map[i] || !rht_node->map[i]->ctr)
 | |
| 			continue;
 | |
| 
 | |
| 		seq_printf(s, " vl%d: [", i);
 | |
| 
 | |
| 		for (j = 0; j < rht_node->map[i]->ctr; j++) {
 | |
| 			if (!rht_node->map[i]->sde[j])
 | |
| 				continue;
 | |
| 
 | |
| 			if (j > 0)
 | |
| 				seq_puts(s, ",");
 | |
| 
 | |
| 			seq_printf(s, " sdma%2d",
 | |
| 				   rht_node->map[i]->sde[j]->this_idx);
 | |
| 		}
 | |
| 		seq_puts(s, " ]");
 | |
| 	}
 | |
| 
 | |
| 	seq_puts(s, "\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the indicated map struct
 | |
|  */
 | |
| static void sdma_map_free(struct sdma_vl_map *m)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; m && i < m->actual_vls; i++)
 | |
| 		kfree(m->map[i]);
 | |
| 	kfree(m);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle RCU callback
 | |
|  */
 | |
| static void sdma_map_rcu_callback(struct rcu_head *list)
 | |
| {
 | |
| 	struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
 | |
| 
 | |
| 	sdma_map_free(m);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_map_init - called when # vls change
 | |
|  * @dd: hfi1_devdata
 | |
|  * @port: port number
 | |
|  * @num_vls: number of vls
 | |
|  * @vl_engines: per vl engine mapping (optional)
 | |
|  *
 | |
|  * This routine changes the mapping based on the number of vls.
 | |
|  *
 | |
|  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
 | |
|  * implies auto computing the loading and giving each VLs a uniform
 | |
|  * distribution of engines per VL.
 | |
|  *
 | |
|  * The auto algorithm computes the sde_per_vl and the number of extra
 | |
|  * engines.  Any extra engines are added from the last VL on down.
 | |
|  *
 | |
|  * rcu locking is used here to control access to the mapping fields.
 | |
|  *
 | |
|  * If either the num_vls or num_sdma are non-power of 2, the array sizes
 | |
|  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
 | |
|  * up to the next highest power of 2 and the first entry is reused
 | |
|  * in a round robin fashion.
 | |
|  *
 | |
|  * If an error occurs the map change is not done and the mapping is
 | |
|  * not changed.
 | |
|  *
 | |
|  */
 | |
| int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int extra, sde_per_vl;
 | |
| 	int engine = 0;
 | |
| 	u8 lvl_engines[OPA_MAX_VLS];
 | |
| 	struct sdma_vl_map *oldmap, *newmap;
 | |
| 
 | |
| 	if (!(dd->flags & HFI1_HAS_SEND_DMA))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!vl_engines) {
 | |
| 		/* truncate divide */
 | |
| 		sde_per_vl = dd->num_sdma / num_vls;
 | |
| 		/* extras */
 | |
| 		extra = dd->num_sdma % num_vls;
 | |
| 		vl_engines = lvl_engines;
 | |
| 		/* add extras from last vl down */
 | |
| 		for (i = num_vls - 1; i >= 0; i--, extra--)
 | |
| 			vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
 | |
| 	}
 | |
| 	/* build new map */
 | |
| 	newmap = kzalloc(
 | |
| 		sizeof(struct sdma_vl_map) +
 | |
| 			roundup_pow_of_two(num_vls) *
 | |
| 			sizeof(struct sdma_map_elem *),
 | |
| 		GFP_KERNEL);
 | |
| 	if (!newmap)
 | |
| 		goto bail;
 | |
| 	newmap->actual_vls = num_vls;
 | |
| 	newmap->vls = roundup_pow_of_two(num_vls);
 | |
| 	newmap->mask = (1 << ilog2(newmap->vls)) - 1;
 | |
| 	/* initialize back-map */
 | |
| 	for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
 | |
| 		newmap->engine_to_vl[i] = -1;
 | |
| 	for (i = 0; i < newmap->vls; i++) {
 | |
| 		/* save for wrap around */
 | |
| 		int first_engine = engine;
 | |
| 
 | |
| 		if (i < newmap->actual_vls) {
 | |
| 			int sz = roundup_pow_of_two(vl_engines[i]);
 | |
| 
 | |
| 			/* only allocate once */
 | |
| 			newmap->map[i] = kzalloc(
 | |
| 				sizeof(struct sdma_map_elem) +
 | |
| 					sz * sizeof(struct sdma_engine *),
 | |
| 				GFP_KERNEL);
 | |
| 			if (!newmap->map[i])
 | |
| 				goto bail;
 | |
| 			newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
 | |
| 			/* assign engines */
 | |
| 			for (j = 0; j < sz; j++) {
 | |
| 				newmap->map[i]->sde[j] =
 | |
| 					&dd->per_sdma[engine];
 | |
| 				if (++engine >= first_engine + vl_engines[i])
 | |
| 					/* wrap back to first engine */
 | |
| 					engine = first_engine;
 | |
| 			}
 | |
| 			/* assign back-map */
 | |
| 			for (j = 0; j < vl_engines[i]; j++)
 | |
| 				newmap->engine_to_vl[first_engine + j] = i;
 | |
| 		} else {
 | |
| 			/* just re-use entry without allocating */
 | |
| 			newmap->map[i] = newmap->map[i % num_vls];
 | |
| 		}
 | |
| 		engine = first_engine + vl_engines[i];
 | |
| 	}
 | |
| 	/* newmap in hand, save old map */
 | |
| 	spin_lock_irq(&dd->sde_map_lock);
 | |
| 	oldmap = rcu_dereference_protected(dd->sdma_map,
 | |
| 					   lockdep_is_held(&dd->sde_map_lock));
 | |
| 
 | |
| 	/* publish newmap */
 | |
| 	rcu_assign_pointer(dd->sdma_map, newmap);
 | |
| 
 | |
| 	spin_unlock_irq(&dd->sde_map_lock);
 | |
| 	/* success, free any old map after grace period */
 | |
| 	if (oldmap)
 | |
| 		call_rcu(&oldmap->list, sdma_map_rcu_callback);
 | |
| 	return 0;
 | |
| bail:
 | |
| 	/* free any partial allocation */
 | |
| 	sdma_map_free(newmap);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_clean()  Clean up allocated memory
 | |
|  * @dd:          struct hfi1_devdata
 | |
|  * @num_engines: num sdma engines
 | |
|  *
 | |
|  * This routine can be called regardless of the success of
 | |
|  * sdma_init()
 | |
|  */
 | |
| void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
 | |
| {
 | |
| 	size_t i;
 | |
| 	struct sdma_engine *sde;
 | |
| 
 | |
| 	if (dd->sdma_pad_dma) {
 | |
| 		dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
 | |
| 				  (void *)dd->sdma_pad_dma,
 | |
| 				  dd->sdma_pad_phys);
 | |
| 		dd->sdma_pad_dma = NULL;
 | |
| 		dd->sdma_pad_phys = 0;
 | |
| 	}
 | |
| 	if (dd->sdma_heads_dma) {
 | |
| 		dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
 | |
| 				  (void *)dd->sdma_heads_dma,
 | |
| 				  dd->sdma_heads_phys);
 | |
| 		dd->sdma_heads_dma = NULL;
 | |
| 		dd->sdma_heads_phys = 0;
 | |
| 	}
 | |
| 	for (i = 0; dd->per_sdma && i < num_engines; ++i) {
 | |
| 		sde = &dd->per_sdma[i];
 | |
| 
 | |
| 		sde->head_dma = NULL;
 | |
| 		sde->head_phys = 0;
 | |
| 
 | |
| 		if (sde->descq) {
 | |
| 			dma_free_coherent(
 | |
| 				&dd->pcidev->dev,
 | |
| 				sde->descq_cnt * sizeof(u64[2]),
 | |
| 				sde->descq,
 | |
| 				sde->descq_phys
 | |
| 			);
 | |
| 			sde->descq = NULL;
 | |
| 			sde->descq_phys = 0;
 | |
| 		}
 | |
| 		kvfree(sde->tx_ring);
 | |
| 		sde->tx_ring = NULL;
 | |
| 	}
 | |
| 	if (rcu_access_pointer(dd->sdma_map)) {
 | |
| 		spin_lock_irq(&dd->sde_map_lock);
 | |
| 		sdma_map_free(rcu_access_pointer(dd->sdma_map));
 | |
| 		RCU_INIT_POINTER(dd->sdma_map, NULL);
 | |
| 		spin_unlock_irq(&dd->sde_map_lock);
 | |
| 		synchronize_rcu();
 | |
| 	}
 | |
| 	kfree(dd->per_sdma);
 | |
| 	dd->per_sdma = NULL;
 | |
| 
 | |
| 	if (dd->sdma_rht) {
 | |
| 		rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
 | |
| 		kfree(dd->sdma_rht);
 | |
| 		dd->sdma_rht = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_init() - called when device probed
 | |
|  * @dd: hfi1_devdata
 | |
|  * @port: port number (currently only zero)
 | |
|  *
 | |
|  * Initializes each sde and its csrs.
 | |
|  * Interrupts are not required to be enabled.
 | |
|  *
 | |
|  * Returns:
 | |
|  * 0 - success, -errno on failure
 | |
|  */
 | |
| int sdma_init(struct hfi1_devdata *dd, u8 port)
 | |
| {
 | |
| 	unsigned this_idx;
 | |
| 	struct sdma_engine *sde;
 | |
| 	struct rhashtable *tmp_sdma_rht;
 | |
| 	u16 descq_cnt;
 | |
| 	void *curr_head;
 | |
| 	struct hfi1_pportdata *ppd = dd->pport + port;
 | |
| 	u32 per_sdma_credits;
 | |
| 	uint idle_cnt = sdma_idle_cnt;
 | |
| 	size_t num_engines = chip_sdma_engines(dd);
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	if (!HFI1_CAP_IS_KSET(SDMA)) {
 | |
| 		HFI1_CAP_CLEAR(SDMA_AHG);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (mod_num_sdma &&
 | |
| 	    /* can't exceed chip support */
 | |
| 	    mod_num_sdma <= chip_sdma_engines(dd) &&
 | |
| 	    /* count must be >= vls */
 | |
| 	    mod_num_sdma >= num_vls)
 | |
| 		num_engines = mod_num_sdma;
 | |
| 
 | |
| 	dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
 | |
| 	dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
 | |
| 	dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
 | |
| 		    chip_sdma_mem_size(dd));
 | |
| 
 | |
| 	per_sdma_credits =
 | |
| 		chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
 | |
| 
 | |
| 	/* set up freeze waitqueue */
 | |
| 	init_waitqueue_head(&dd->sdma_unfreeze_wq);
 | |
| 	atomic_set(&dd->sdma_unfreeze_count, 0);
 | |
| 
 | |
| 	descq_cnt = sdma_get_descq_cnt();
 | |
| 	dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
 | |
| 		    num_engines, descq_cnt);
 | |
| 
 | |
| 	/* alloc memory for array of send engines */
 | |
| 	dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
 | |
| 				    GFP_KERNEL, dd->node);
 | |
| 	if (!dd->per_sdma)
 | |
| 		return ret;
 | |
| 
 | |
| 	idle_cnt = ns_to_cclock(dd, idle_cnt);
 | |
| 	if (idle_cnt)
 | |
| 		dd->default_desc1 =
 | |
| 			SDMA_DESC1_HEAD_TO_HOST_FLAG;
 | |
| 	else
 | |
| 		dd->default_desc1 =
 | |
| 			SDMA_DESC1_INT_REQ_FLAG;
 | |
| 
 | |
| 	if (!sdma_desct_intr)
 | |
| 		sdma_desct_intr = SDMA_DESC_INTR;
 | |
| 
 | |
| 	/* Allocate memory for SendDMA descriptor FIFOs */
 | |
| 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
 | |
| 		sde = &dd->per_sdma[this_idx];
 | |
| 		sde->dd = dd;
 | |
| 		sde->ppd = ppd;
 | |
| 		sde->this_idx = this_idx;
 | |
| 		sde->descq_cnt = descq_cnt;
 | |
| 		sde->desc_avail = sdma_descq_freecnt(sde);
 | |
| 		sde->sdma_shift = ilog2(descq_cnt);
 | |
| 		sde->sdma_mask = (1 << sde->sdma_shift) - 1;
 | |
| 
 | |
| 		/* Create a mask specifically for each interrupt source */
 | |
| 		sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
 | |
| 					   this_idx);
 | |
| 		sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
 | |
| 						this_idx);
 | |
| 		sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
 | |
| 					    this_idx);
 | |
| 		/* Create a combined mask to cover all 3 interrupt sources */
 | |
| 		sde->imask = sde->int_mask | sde->progress_mask |
 | |
| 			     sde->idle_mask;
 | |
| 
 | |
| 		spin_lock_init(&sde->tail_lock);
 | |
| 		seqlock_init(&sde->head_lock);
 | |
| 		spin_lock_init(&sde->senddmactrl_lock);
 | |
| 		spin_lock_init(&sde->flushlist_lock);
 | |
| 		seqlock_init(&sde->waitlock);
 | |
| 		/* insure there is always a zero bit */
 | |
| 		sde->ahg_bits = 0xfffffffe00000000ULL;
 | |
| 
 | |
| 		sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 
 | |
| 		/* set up reference counting */
 | |
| 		kref_init(&sde->state.kref);
 | |
| 		init_completion(&sde->state.comp);
 | |
| 
 | |
| 		INIT_LIST_HEAD(&sde->flushlist);
 | |
| 		INIT_LIST_HEAD(&sde->dmawait);
 | |
| 
 | |
| 		sde->tail_csr =
 | |
| 			get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
 | |
| 
 | |
| 		tasklet_setup(&sde->sdma_hw_clean_up_task,
 | |
| 			      sdma_hw_clean_up_task);
 | |
| 		tasklet_setup(&sde->sdma_sw_clean_up_task,
 | |
| 			      sdma_sw_clean_up_task);
 | |
| 		INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
 | |
| 		INIT_WORK(&sde->flush_worker, sdma_field_flush);
 | |
| 
 | |
| 		sde->progress_check_head = 0;
 | |
| 
 | |
| 		timer_setup(&sde->err_progress_check_timer,
 | |
| 			    sdma_err_progress_check, 0);
 | |
| 
 | |
| 		sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
 | |
| 						descq_cnt * sizeof(u64[2]),
 | |
| 						&sde->descq_phys, GFP_KERNEL);
 | |
| 		if (!sde->descq)
 | |
| 			goto bail;
 | |
| 		sde->tx_ring =
 | |
| 			kvzalloc_node(array_size(descq_cnt,
 | |
| 						 sizeof(struct sdma_txreq *)),
 | |
| 				      GFP_KERNEL, dd->node);
 | |
| 		if (!sde->tx_ring)
 | |
| 			goto bail;
 | |
| 	}
 | |
| 
 | |
| 	dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
 | |
| 	/* Allocate memory for DMA of head registers to memory */
 | |
| 	dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
 | |
| 						dd->sdma_heads_size,
 | |
| 						&dd->sdma_heads_phys,
 | |
| 						GFP_KERNEL);
 | |
| 	if (!dd->sdma_heads_dma) {
 | |
| 		dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate memory for pad */
 | |
| 	dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
 | |
| 					      &dd->sdma_pad_phys, GFP_KERNEL);
 | |
| 	if (!dd->sdma_pad_dma) {
 | |
| 		dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* assign each engine to different cacheline and init registers */
 | |
| 	curr_head = (void *)dd->sdma_heads_dma;
 | |
| 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
 | |
| 		unsigned long phys_offset;
 | |
| 
 | |
| 		sde = &dd->per_sdma[this_idx];
 | |
| 
 | |
| 		sde->head_dma = curr_head;
 | |
| 		curr_head += L1_CACHE_BYTES;
 | |
| 		phys_offset = (unsigned long)sde->head_dma -
 | |
| 			      (unsigned long)dd->sdma_heads_dma;
 | |
| 		sde->head_phys = dd->sdma_heads_phys + phys_offset;
 | |
| 		init_sdma_regs(sde, per_sdma_credits, idle_cnt);
 | |
| 	}
 | |
| 	dd->flags |= HFI1_HAS_SEND_DMA;
 | |
| 	dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
 | |
| 	dd->num_sdma = num_engines;
 | |
| 	ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
 | |
| 	if (ret < 0)
 | |
| 		goto bail;
 | |
| 
 | |
| 	tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
 | |
| 	if (!tmp_sdma_rht) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
 | |
| 	if (ret < 0) {
 | |
| 		kfree(tmp_sdma_rht);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	dd->sdma_rht = tmp_sdma_rht;
 | |
| 
 | |
| 	dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
 | |
| 	return 0;
 | |
| 
 | |
| bail:
 | |
| 	sdma_clean(dd, num_engines);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_all_running() - called when the link goes up
 | |
|  * @dd: hfi1_devdata
 | |
|  *
 | |
|  * This routine moves all engines to the running state.
 | |
|  */
 | |
| void sdma_all_running(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct sdma_engine *sde;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* move all engines to running */
 | |
| 	for (i = 0; i < dd->num_sdma; ++i) {
 | |
| 		sde = &dd->per_sdma[i];
 | |
| 		sdma_process_event(sde, sdma_event_e30_go_running);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_all_idle() - called when the link goes down
 | |
|  * @dd: hfi1_devdata
 | |
|  *
 | |
|  * This routine moves all engines to the idle state.
 | |
|  */
 | |
| void sdma_all_idle(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	struct sdma_engine *sde;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* idle all engines */
 | |
| 	for (i = 0; i < dd->num_sdma; ++i) {
 | |
| 		sde = &dd->per_sdma[i];
 | |
| 		sdma_process_event(sde, sdma_event_e70_go_idle);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_start() - called to kick off state processing for all engines
 | |
|  * @dd: hfi1_devdata
 | |
|  *
 | |
|  * This routine is for kicking off the state processing for all required
 | |
|  * sdma engines.  Interrupts need to be working at this point.
 | |
|  *
 | |
|  */
 | |
| void sdma_start(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	struct sdma_engine *sde;
 | |
| 
 | |
| 	/* kick off the engines state processing */
 | |
| 	for (i = 0; i < dd->num_sdma; ++i) {
 | |
| 		sde = &dd->per_sdma[i];
 | |
| 		sdma_process_event(sde, sdma_event_e10_go_hw_start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_exit() - used when module is removed
 | |
|  * @dd: hfi1_devdata
 | |
|  */
 | |
| void sdma_exit(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	unsigned this_idx;
 | |
| 	struct sdma_engine *sde;
 | |
| 
 | |
| 	for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
 | |
| 			++this_idx) {
 | |
| 		sde = &dd->per_sdma[this_idx];
 | |
| 		if (!list_empty(&sde->dmawait))
 | |
| 			dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
 | |
| 				   sde->this_idx);
 | |
| 		sdma_process_event(sde, sdma_event_e00_go_hw_down);
 | |
| 
 | |
| 		del_timer_sync(&sde->err_progress_check_timer);
 | |
| 
 | |
| 		/*
 | |
| 		 * This waits for the state machine to exit so it is not
 | |
| 		 * necessary to kill the sdma_sw_clean_up_task to make sure
 | |
| 		 * it is not running.
 | |
| 		 */
 | |
| 		sdma_finalput(&sde->state);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unmap the indicated descriptor
 | |
|  */
 | |
| static inline void sdma_unmap_desc(
 | |
| 	struct hfi1_devdata *dd,
 | |
| 	struct sdma_desc *descp)
 | |
| {
 | |
| 	switch (sdma_mapping_type(descp)) {
 | |
| 	case SDMA_MAP_SINGLE:
 | |
| 		dma_unmap_single(
 | |
| 			&dd->pcidev->dev,
 | |
| 			sdma_mapping_addr(descp),
 | |
| 			sdma_mapping_len(descp),
 | |
| 			DMA_TO_DEVICE);
 | |
| 		break;
 | |
| 	case SDMA_MAP_PAGE:
 | |
| 		dma_unmap_page(
 | |
| 			&dd->pcidev->dev,
 | |
| 			sdma_mapping_addr(descp),
 | |
| 			sdma_mapping_len(descp),
 | |
| 			DMA_TO_DEVICE);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return the mode as indicated by the first
 | |
|  * descriptor in the tx.
 | |
|  */
 | |
| static inline u8 ahg_mode(struct sdma_txreq *tx)
 | |
| {
 | |
| 	return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
 | |
| 		>> SDMA_DESC1_HEADER_MODE_SHIFT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
 | |
|  * @dd: hfi1_devdata for unmapping
 | |
|  * @tx: tx request to clean
 | |
|  *
 | |
|  * This is used in the progress routine to clean the tx or
 | |
|  * by the ULP to toss an in-process tx build.
 | |
|  *
 | |
|  * The code can be called multiple times without issue.
 | |
|  *
 | |
|  */
 | |
| void __sdma_txclean(
 | |
| 	struct hfi1_devdata *dd,
 | |
| 	struct sdma_txreq *tx)
 | |
| {
 | |
| 	u16 i;
 | |
| 
 | |
| 	if (tx->num_desc) {
 | |
| 		u8 skip = 0, mode = ahg_mode(tx);
 | |
| 
 | |
| 		/* unmap first */
 | |
| 		sdma_unmap_desc(dd, &tx->descp[0]);
 | |
| 		/* determine number of AHG descriptors to skip */
 | |
| 		if (mode > SDMA_AHG_APPLY_UPDATE1)
 | |
| 			skip = mode >> 1;
 | |
| 		for (i = 1 + skip; i < tx->num_desc; i++)
 | |
| 			sdma_unmap_desc(dd, &tx->descp[i]);
 | |
| 		tx->num_desc = 0;
 | |
| 	}
 | |
| 	kfree(tx->coalesce_buf);
 | |
| 	tx->coalesce_buf = NULL;
 | |
| 	/* kmalloc'ed descp */
 | |
| 	if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
 | |
| 		tx->desc_limit = ARRAY_SIZE(tx->descs);
 | |
| 		kfree(tx->descp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline u16 sdma_gethead(struct sdma_engine *sde)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = sde->dd;
 | |
| 	int use_dmahead;
 | |
| 	u16 hwhead;
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 | |
| 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
 | |
| #endif
 | |
| 
 | |
| retry:
 | |
| 	use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
 | |
| 					(dd->flags & HFI1_HAS_SDMA_TIMEOUT);
 | |
| 	hwhead = use_dmahead ?
 | |
| 		(u16)le64_to_cpu(*sde->head_dma) :
 | |
| 		(u16)read_sde_csr(sde, SD(HEAD));
 | |
| 
 | |
| 	if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
 | |
| 		u16 cnt;
 | |
| 		u16 swtail;
 | |
| 		u16 swhead;
 | |
| 		int sane;
 | |
| 
 | |
| 		swhead = sde->descq_head & sde->sdma_mask;
 | |
| 		/* this code is really bad for cache line trading */
 | |
| 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
 | |
| 		cnt = sde->descq_cnt;
 | |
| 
 | |
| 		if (swhead < swtail)
 | |
| 			/* not wrapped */
 | |
| 			sane = (hwhead >= swhead) & (hwhead <= swtail);
 | |
| 		else if (swhead > swtail)
 | |
| 			/* wrapped around */
 | |
| 			sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
 | |
| 				(hwhead <= swtail);
 | |
| 		else
 | |
| 			/* empty */
 | |
| 			sane = (hwhead == swhead);
 | |
| 
 | |
| 		if (unlikely(!sane)) {
 | |
| 			dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
 | |
| 				   sde->this_idx,
 | |
| 				   use_dmahead ? "dma" : "kreg",
 | |
| 				   hwhead, swhead, swtail, cnt);
 | |
| 			if (use_dmahead) {
 | |
| 				/* try one more time, using csr */
 | |
| 				use_dmahead = 0;
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			/* proceed as if no progress */
 | |
| 			hwhead = swhead;
 | |
| 		}
 | |
| 	}
 | |
| 	return hwhead;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when there are send DMA descriptors that might be
 | |
|  * available.
 | |
|  *
 | |
|  * This is called with head_lock held.
 | |
|  */
 | |
| static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
 | |
| {
 | |
| 	struct iowait *wait, *nw, *twait;
 | |
| 	struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
 | |
| 	uint i, n = 0, seq, tidx = 0;
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
 | |
| 		   slashstrip(__FILE__), __LINE__, __func__);
 | |
| 	dd_dev_err(sde->dd, "avail: %u\n", avail);
 | |
| #endif
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&sde->waitlock);
 | |
| 		if (!list_empty(&sde->dmawait)) {
 | |
| 			/* at least one item */
 | |
| 			write_seqlock(&sde->waitlock);
 | |
| 			/* Harvest waiters wanting DMA descriptors */
 | |
| 			list_for_each_entry_safe(
 | |
| 					wait,
 | |
| 					nw,
 | |
| 					&sde->dmawait,
 | |
| 					list) {
 | |
| 				u32 num_desc;
 | |
| 
 | |
| 				if (!wait->wakeup)
 | |
| 					continue;
 | |
| 				if (n == ARRAY_SIZE(waits))
 | |
| 					break;
 | |
| 				iowait_init_priority(wait);
 | |
| 				num_desc = iowait_get_all_desc(wait);
 | |
| 				if (num_desc > avail)
 | |
| 					break;
 | |
| 				avail -= num_desc;
 | |
| 				/* Find the top-priority wait memeber */
 | |
| 				if (n) {
 | |
| 					twait = waits[tidx];
 | |
| 					tidx =
 | |
| 					    iowait_priority_update_top(wait,
 | |
| 								       twait,
 | |
| 								       n,
 | |
| 								       tidx);
 | |
| 				}
 | |
| 				list_del_init(&wait->list);
 | |
| 				waits[n++] = wait;
 | |
| 			}
 | |
| 			write_sequnlock(&sde->waitlock);
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (read_seqretry(&sde->waitlock, seq));
 | |
| 
 | |
| 	/* Schedule the top-priority entry first */
 | |
| 	if (n)
 | |
| 		waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
 | |
| 
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		if (i != tidx)
 | |
| 			waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
 | |
| }
 | |
| 
 | |
| /* head_lock must be held */
 | |
| static void sdma_make_progress(struct sdma_engine *sde, u64 status)
 | |
| {
 | |
| 	struct sdma_txreq *txp = NULL;
 | |
| 	int progress = 0;
 | |
| 	u16 hwhead, swhead;
 | |
| 	int idle_check_done = 0;
 | |
| 
 | |
| 	hwhead = sdma_gethead(sde);
 | |
| 
 | |
| 	/* The reason for some of the complexity of this code is that
 | |
| 	 * not all descriptors have corresponding txps.  So, we have to
 | |
| 	 * be able to skip over descs until we wander into the range of
 | |
| 	 * the next txp on the list.
 | |
| 	 */
 | |
| 
 | |
| retry:
 | |
| 	txp = get_txhead(sde);
 | |
| 	swhead = sde->descq_head & sde->sdma_mask;
 | |
| 	trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
 | |
| 	while (swhead != hwhead) {
 | |
| 		/* advance head, wrap if needed */
 | |
| 		swhead = ++sde->descq_head & sde->sdma_mask;
 | |
| 
 | |
| 		/* if now past this txp's descs, do the callback */
 | |
| 		if (txp && txp->next_descq_idx == swhead) {
 | |
| 			/* remove from list */
 | |
| 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 | |
| 			complete_tx(sde, txp, SDMA_TXREQ_S_OK);
 | |
| 			/* see if there is another txp */
 | |
| 			txp = get_txhead(sde);
 | |
| 		}
 | |
| 		trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
 | |
| 		progress++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The SDMA idle interrupt is not guaranteed to be ordered with respect
 | |
| 	 * to updates to the the dma_head location in host memory. The head
 | |
| 	 * value read might not be fully up to date. If there are pending
 | |
| 	 * descriptors and the SDMA idle interrupt fired then read from the
 | |
| 	 * CSR SDMA head instead to get the latest value from the hardware.
 | |
| 	 * The hardware SDMA head should be read at most once in this invocation
 | |
| 	 * of sdma_make_progress(..) which is ensured by idle_check_done flag
 | |
| 	 */
 | |
| 	if ((status & sde->idle_mask) && !idle_check_done) {
 | |
| 		u16 swtail;
 | |
| 
 | |
| 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
 | |
| 		if (swtail != hwhead) {
 | |
| 			hwhead = (u16)read_sde_csr(sde, SD(HEAD));
 | |
| 			idle_check_done = 1;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sde->last_status = status;
 | |
| 	if (progress)
 | |
| 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sdma_engine_interrupt() - interrupt handler for engine
 | |
|  * @sde: sdma engine
 | |
|  * @status: sdma interrupt reason
 | |
|  *
 | |
|  * Status is a mask of the 3 possible interrupts for this engine.  It will
 | |
|  * contain bits _only_ for this SDMA engine.  It will contain at least one
 | |
|  * bit, it may contain more.
 | |
|  */
 | |
| void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
 | |
| {
 | |
| 	trace_hfi1_sdma_engine_interrupt(sde, status);
 | |
| 	write_seqlock(&sde->head_lock);
 | |
| 	sdma_set_desc_cnt(sde, sdma_desct_intr);
 | |
| 	if (status & sde->idle_mask)
 | |
| 		sde->idle_int_cnt++;
 | |
| 	else if (status & sde->progress_mask)
 | |
| 		sde->progress_int_cnt++;
 | |
| 	else if (status & sde->int_mask)
 | |
| 		sde->sdma_int_cnt++;
 | |
| 	sdma_make_progress(sde, status);
 | |
| 	write_sequnlock(&sde->head_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_engine_error() - error handler for engine
 | |
|  * @sde: sdma engine
 | |
|  * @status: sdma interrupt reason
 | |
|  */
 | |
| void sdma_engine_error(struct sdma_engine *sde, u64 status)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
 | |
| 		   sde->this_idx,
 | |
| 		   (unsigned long long)status,
 | |
| 		   sdma_state_names[sde->state.current_state]);
 | |
| #endif
 | |
| 	spin_lock_irqsave(&sde->tail_lock, flags);
 | |
| 	write_seqlock(&sde->head_lock);
 | |
| 	if (status & ALL_SDMA_ENG_HALT_ERRS)
 | |
| 		__sdma_process_event(sde, sdma_event_e60_hw_halted);
 | |
| 	if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
 | |
| 		dd_dev_err(sde->dd,
 | |
| 			   "SDMA (%u) engine error: 0x%llx state %s\n",
 | |
| 			   sde->this_idx,
 | |
| 			   (unsigned long long)status,
 | |
| 			   sdma_state_names[sde->state.current_state]);
 | |
| 		dump_sdma_state(sde);
 | |
| 	}
 | |
| 	write_sequnlock(&sde->head_lock);
 | |
| 	spin_unlock_irqrestore(&sde->tail_lock, flags);
 | |
| }
 | |
| 
 | |
| static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
 | |
| {
 | |
| 	u64 set_senddmactrl = 0;
 | |
| 	u64 clr_senddmactrl = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
 | |
| 		   sde->this_idx,
 | |
| 		   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
 | |
| 		   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
 | |
| 		   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
 | |
| 		   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
 | |
| #endif
 | |
| 
 | |
| 	if (op & SDMA_SENDCTRL_OP_ENABLE)
 | |
| 		set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
 | |
| 	else
 | |
| 		clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
 | |
| 
 | |
| 	if (op & SDMA_SENDCTRL_OP_INTENABLE)
 | |
| 		set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
 | |
| 	else
 | |
| 		clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
 | |
| 
 | |
| 	if (op & SDMA_SENDCTRL_OP_HALT)
 | |
| 		set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
 | |
| 	else
 | |
| 		clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
 | |
| 
 | |
| 	spin_lock_irqsave(&sde->senddmactrl_lock, flags);
 | |
| 
 | |
| 	sde->p_senddmactrl |= set_senddmactrl;
 | |
| 	sde->p_senddmactrl &= ~clr_senddmactrl;
 | |
| 
 | |
| 	if (op & SDMA_SENDCTRL_OP_CLEANUP)
 | |
| 		write_sde_csr(sde, SD(CTRL),
 | |
| 			      sde->p_senddmactrl |
 | |
| 			      SD(CTRL_SDMA_CLEANUP_SMASK));
 | |
| 	else
 | |
| 		write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	sdma_dumpstate(sde);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void sdma_setlengen(struct sdma_engine *sde)
 | |
| {
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 | |
| 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Set SendDmaLenGen and clear-then-set the MSB of the generation
 | |
| 	 * count to enable generation checking and load the internal
 | |
| 	 * generation counter.
 | |
| 	 */
 | |
| 	write_sde_csr(sde, SD(LEN_GEN),
 | |
| 		      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
 | |
| 	write_sde_csr(sde, SD(LEN_GEN),
 | |
| 		      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
 | |
| 		      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
 | |
| }
 | |
| 
 | |
| static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
 | |
| {
 | |
| 	/* Commit writes to memory and advance the tail on the chip */
 | |
| 	smp_wmb(); /* see get_txhead() */
 | |
| 	writeq(tail, sde->tail_csr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when changing to state s10_hw_start_up_halt_wait as
 | |
|  * a result of send buffer errors or send DMA descriptor errors.
 | |
|  */
 | |
| static void sdma_hw_start_up(struct sdma_engine *sde)
 | |
| {
 | |
| 	u64 reg;
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 | |
| 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
 | |
| #endif
 | |
| 
 | |
| 	sdma_setlengen(sde);
 | |
| 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
 | |
| 	*sde->head_dma = 0;
 | |
| 
 | |
| 	reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
 | |
| 	      SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
 | |
| 	write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set_sdma_integrity
 | |
|  *
 | |
|  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
 | |
|  */
 | |
| static void set_sdma_integrity(struct sdma_engine *sde)
 | |
| {
 | |
| 	struct hfi1_devdata *dd = sde->dd;
 | |
| 
 | |
| 	write_sde_csr(sde, SD(CHECK_ENABLE),
 | |
| 		      hfi1_pkt_base_sdma_integrity(dd));
 | |
| }
 | |
| 
 | |
| static void init_sdma_regs(
 | |
| 	struct sdma_engine *sde,
 | |
| 	u32 credits,
 | |
| 	uint idle_cnt)
 | |
| {
 | |
| 	u8 opval, opmask;
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	struct hfi1_devdata *dd = sde->dd;
 | |
| 
 | |
| 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 | |
| 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
 | |
| #endif
 | |
| 
 | |
| 	write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
 | |
| 	sdma_setlengen(sde);
 | |
| 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
 | |
| 	write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
 | |
| 	write_sde_csr(sde, SD(DESC_CNT), 0);
 | |
| 	write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
 | |
| 	write_sde_csr(sde, SD(MEMORY),
 | |
| 		      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
 | |
| 		      ((u64)(credits * sde->this_idx) <<
 | |
| 		       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
 | |
| 	write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
 | |
| 	set_sdma_integrity(sde);
 | |
| 	opmask = OPCODE_CHECK_MASK_DISABLED;
 | |
| 	opval = OPCODE_CHECK_VAL_DISABLED;
 | |
| 	write_sde_csr(sde, SD(CHECK_OPCODE),
 | |
| 		      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
 | |
| 		      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 
 | |
| #define sdma_dumpstate_helper0(reg) do { \
 | |
| 		csr = read_csr(sde->dd, reg); \
 | |
| 		dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
 | |
| 	} while (0)
 | |
| 
 | |
| #define sdma_dumpstate_helper(reg) do { \
 | |
| 		csr = read_sde_csr(sde, reg); \
 | |
| 		dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
 | |
| 			#reg, sde->this_idx, csr); \
 | |
| 	} while (0)
 | |
| 
 | |
| #define sdma_dumpstate_helper2(reg) do { \
 | |
| 		csr = read_csr(sde->dd, reg + (8 * i)); \
 | |
| 		dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
 | |
| 				#reg, i, csr); \
 | |
| 	} while (0)
 | |
| 
 | |
| void sdma_dumpstate(struct sdma_engine *sde)
 | |
| {
 | |
| 	u64 csr;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	sdma_dumpstate_helper(SD(CTRL));
 | |
| 	sdma_dumpstate_helper(SD(STATUS));
 | |
| 	sdma_dumpstate_helper0(SD(ERR_STATUS));
 | |
| 	sdma_dumpstate_helper0(SD(ERR_MASK));
 | |
| 	sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
 | |
| 	sdma_dumpstate_helper(SD(ENG_ERR_MASK));
 | |
| 
 | |
| 	for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
 | |
| 		sdma_dumpstate_helper2(CCE_INT_STATUS);
 | |
| 		sdma_dumpstate_helper2(CCE_INT_MASK);
 | |
| 		sdma_dumpstate_helper2(CCE_INT_BLOCKED);
 | |
| 	}
 | |
| 
 | |
| 	sdma_dumpstate_helper(SD(TAIL));
 | |
| 	sdma_dumpstate_helper(SD(HEAD));
 | |
| 	sdma_dumpstate_helper(SD(PRIORITY_THLD));
 | |
| 	sdma_dumpstate_helper(SD(IDLE_CNT));
 | |
| 	sdma_dumpstate_helper(SD(RELOAD_CNT));
 | |
| 	sdma_dumpstate_helper(SD(DESC_CNT));
 | |
| 	sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
 | |
| 	sdma_dumpstate_helper(SD(MEMORY));
 | |
| 	sdma_dumpstate_helper0(SD(ENGINES));
 | |
| 	sdma_dumpstate_helper0(SD(MEM_SIZE));
 | |
| 	/* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
 | |
| 	sdma_dumpstate_helper(SD(BASE_ADDR));
 | |
| 	sdma_dumpstate_helper(SD(LEN_GEN));
 | |
| 	sdma_dumpstate_helper(SD(HEAD_ADDR));
 | |
| 	sdma_dumpstate_helper(SD(CHECK_ENABLE));
 | |
| 	sdma_dumpstate_helper(SD(CHECK_VL));
 | |
| 	sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
 | |
| 	sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
 | |
| 	sdma_dumpstate_helper(SD(CHECK_SLID));
 | |
| 	sdma_dumpstate_helper(SD(CHECK_OPCODE));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void dump_sdma_state(struct sdma_engine *sde)
 | |
| {
 | |
| 	struct hw_sdma_desc *descqp;
 | |
| 	u64 desc[2];
 | |
| 	u64 addr;
 | |
| 	u8 gen;
 | |
| 	u16 len;
 | |
| 	u16 head, tail, cnt;
 | |
| 
 | |
| 	head = sde->descq_head & sde->sdma_mask;
 | |
| 	tail = sde->descq_tail & sde->sdma_mask;
 | |
| 	cnt = sdma_descq_freecnt(sde);
 | |
| 
 | |
| 	dd_dev_err(sde->dd,
 | |
| 		   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
 | |
| 		   sde->this_idx, head, tail, cnt,
 | |
| 		   !list_empty(&sde->flushlist));
 | |
| 
 | |
| 	/* print info for each entry in the descriptor queue */
 | |
| 	while (head != tail) {
 | |
| 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
 | |
| 
 | |
| 		descqp = &sde->descq[head];
 | |
| 		desc[0] = le64_to_cpu(descqp->qw[0]);
 | |
| 		desc[1] = le64_to_cpu(descqp->qw[1]);
 | |
| 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
 | |
| 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
 | |
| 				'H' : '-';
 | |
| 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
 | |
| 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
 | |
| 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
 | |
| 			& SDMA_DESC0_PHY_ADDR_MASK;
 | |
| 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
 | |
| 			& SDMA_DESC1_GENERATION_MASK;
 | |
| 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
 | |
| 			& SDMA_DESC0_BYTE_COUNT_MASK;
 | |
| 		dd_dev_err(sde->dd,
 | |
| 			   "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
 | |
| 			   head, flags, addr, gen, len);
 | |
| 		dd_dev_err(sde->dd,
 | |
| 			   "\tdesc0:0x%016llx desc1 0x%016llx\n",
 | |
| 			   desc[0], desc[1]);
 | |
| 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
 | |
| 			dd_dev_err(sde->dd,
 | |
| 				   "\taidx: %u amode: %u alen: %u\n",
 | |
| 				   (u8)((desc[1] &
 | |
| 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
 | |
| 					SDMA_DESC1_HEADER_INDEX_SHIFT),
 | |
| 				   (u8)((desc[1] &
 | |
| 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
 | |
| 					SDMA_DESC1_HEADER_MODE_SHIFT),
 | |
| 				   (u8)((desc[1] &
 | |
| 					 SDMA_DESC1_HEADER_DWS_SMASK) >>
 | |
| 					SDMA_DESC1_HEADER_DWS_SHIFT));
 | |
| 		head++;
 | |
| 		head &= sde->sdma_mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define SDE_FMT \
 | |
| 	"SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
 | |
| /**
 | |
|  * sdma_seqfile_dump_sde() - debugfs dump of sde
 | |
|  * @s: seq file
 | |
|  * @sde: send dma engine to dump
 | |
|  *
 | |
|  * This routine dumps the sde to the indicated seq file.
 | |
|  */
 | |
| void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
 | |
| {
 | |
| 	u16 head, tail;
 | |
| 	struct hw_sdma_desc *descqp;
 | |
| 	u64 desc[2];
 | |
| 	u64 addr;
 | |
| 	u8 gen;
 | |
| 	u16 len;
 | |
| 
 | |
| 	head = sde->descq_head & sde->sdma_mask;
 | |
| 	tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
 | |
| 	seq_printf(s, SDE_FMT, sde->this_idx,
 | |
| 		   sde->cpu,
 | |
| 		   sdma_state_name(sde->state.current_state),
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
 | |
| 		   (unsigned long long)le64_to_cpu(*sde->head_dma),
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
 | |
| 		   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
 | |
| 		   (unsigned long long)sde->last_status,
 | |
| 		   (unsigned long long)sde->ahg_bits,
 | |
| 		   sde->tx_tail,
 | |
| 		   sde->tx_head,
 | |
| 		   sde->descq_tail,
 | |
| 		   sde->descq_head,
 | |
| 		   !list_empty(&sde->flushlist),
 | |
| 		   sde->descq_full_count,
 | |
| 		   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
 | |
| 
 | |
| 	/* print info for each entry in the descriptor queue */
 | |
| 	while (head != tail) {
 | |
| 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
 | |
| 
 | |
| 		descqp = &sde->descq[head];
 | |
| 		desc[0] = le64_to_cpu(descqp->qw[0]);
 | |
| 		desc[1] = le64_to_cpu(descqp->qw[1]);
 | |
| 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
 | |
| 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
 | |
| 				'H' : '-';
 | |
| 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
 | |
| 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
 | |
| 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
 | |
| 			& SDMA_DESC0_PHY_ADDR_MASK;
 | |
| 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
 | |
| 			& SDMA_DESC1_GENERATION_MASK;
 | |
| 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
 | |
| 			& SDMA_DESC0_BYTE_COUNT_MASK;
 | |
| 		seq_printf(s,
 | |
| 			   "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
 | |
| 			   head, flags, addr, gen, len);
 | |
| 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
 | |
| 			seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
 | |
| 				   (u8)((desc[1] &
 | |
| 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
 | |
| 					SDMA_DESC1_HEADER_INDEX_SHIFT),
 | |
| 				   (u8)((desc[1] &
 | |
| 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
 | |
| 					SDMA_DESC1_HEADER_MODE_SHIFT));
 | |
| 		head = (head + 1) & sde->sdma_mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add the generation number into
 | |
|  * the qw1 and return
 | |
|  */
 | |
| static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
 | |
| {
 | |
| 	u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
 | |
| 
 | |
| 	qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
 | |
| 	qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
 | |
| 			<< SDMA_DESC1_GENERATION_SHIFT;
 | |
| 	return qw1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine submits the indicated tx
 | |
|  *
 | |
|  * Space has already been guaranteed and
 | |
|  * tail side of ring is locked.
 | |
|  *
 | |
|  * The hardware tail update is done
 | |
|  * in the caller and that is facilitated
 | |
|  * by returning the new tail.
 | |
|  *
 | |
|  * There is special case logic for ahg
 | |
|  * to not add the generation number for
 | |
|  * up to 2 descriptors that follow the
 | |
|  * first descriptor.
 | |
|  *
 | |
|  */
 | |
| static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
 | |
| {
 | |
| 	int i;
 | |
| 	u16 tail;
 | |
| 	struct sdma_desc *descp = tx->descp;
 | |
| 	u8 skip = 0, mode = ahg_mode(tx);
 | |
| 
 | |
| 	tail = sde->descq_tail & sde->sdma_mask;
 | |
| 	sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
 | |
| 	sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
 | |
| 	trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
 | |
| 				   tail, &sde->descq[tail]);
 | |
| 	tail = ++sde->descq_tail & sde->sdma_mask;
 | |
| 	descp++;
 | |
| 	if (mode > SDMA_AHG_APPLY_UPDATE1)
 | |
| 		skip = mode >> 1;
 | |
| 	for (i = 1; i < tx->num_desc; i++, descp++) {
 | |
| 		u64 qw1;
 | |
| 
 | |
| 		sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
 | |
| 		if (skip) {
 | |
| 			/* edits don't have generation */
 | |
| 			qw1 = descp->qw[1];
 | |
| 			skip--;
 | |
| 		} else {
 | |
| 			/* replace generation with real one for non-edits */
 | |
| 			qw1 = add_gen(sde, descp->qw[1]);
 | |
| 		}
 | |
| 		sde->descq[tail].qw[1] = cpu_to_le64(qw1);
 | |
| 		trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
 | |
| 					   tail, &sde->descq[tail]);
 | |
| 		tail = ++sde->descq_tail & sde->sdma_mask;
 | |
| 	}
 | |
| 	tx->next_descq_idx = tail;
 | |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 | |
| 	tx->sn = sde->tail_sn++;
 | |
| 	trace_hfi1_sdma_in_sn(sde, tx->sn);
 | |
| 	WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
 | |
| #endif
 | |
| 	sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
 | |
| 	sde->desc_avail -= tx->num_desc;
 | |
| 	return tail;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for progress
 | |
|  */
 | |
| static int sdma_check_progress(
 | |
| 	struct sdma_engine *sde,
 | |
| 	struct iowait_work *wait,
 | |
| 	struct sdma_txreq *tx,
 | |
| 	bool pkts_sent)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	sde->desc_avail = sdma_descq_freecnt(sde);
 | |
| 	if (tx->num_desc <= sde->desc_avail)
 | |
| 		return -EAGAIN;
 | |
| 	/* pulse the head_lock */
 | |
| 	if (wait && iowait_ioww_to_iow(wait)->sleep) {
 | |
| 		unsigned seq;
 | |
| 
 | |
| 		seq = raw_seqcount_begin(
 | |
| 			(const seqcount_t *)&sde->head_lock.seqcount);
 | |
| 		ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
 | |
| 		if (ret == -EAGAIN)
 | |
| 			sde->desc_avail = sdma_descq_freecnt(sde);
 | |
| 	} else {
 | |
| 		ret = -EBUSY;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_send_txreq() - submit a tx req to ring
 | |
|  * @sde: sdma engine to use
 | |
|  * @wait: SE wait structure to use when full (may be NULL)
 | |
|  * @tx: sdma_txreq to submit
 | |
|  * @pkts_sent: has any packet been sent yet?
 | |
|  *
 | |
|  * The call submits the tx into the ring.  If a iowait structure is non-NULL
 | |
|  * the packet will be queued to the list in wait.
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
 | |
|  * ring (wait == NULL)
 | |
|  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
 | |
|  */
 | |
| int sdma_send_txreq(struct sdma_engine *sde,
 | |
| 		    struct iowait_work *wait,
 | |
| 		    struct sdma_txreq *tx,
 | |
| 		    bool pkts_sent)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u16 tail;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* user should have supplied entire packet */
 | |
| 	if (unlikely(tx->tlen))
 | |
| 		return -EINVAL;
 | |
| 	tx->wait = iowait_ioww_to_iow(wait);
 | |
| 	spin_lock_irqsave(&sde->tail_lock, flags);
 | |
| retry:
 | |
| 	if (unlikely(!__sdma_running(sde)))
 | |
| 		goto unlock_noconn;
 | |
| 	if (unlikely(tx->num_desc > sde->desc_avail))
 | |
| 		goto nodesc;
 | |
| 	tail = submit_tx(sde, tx);
 | |
| 	if (wait)
 | |
| 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
 | |
| 	sdma_update_tail(sde, tail);
 | |
| unlock:
 | |
| 	spin_unlock_irqrestore(&sde->tail_lock, flags);
 | |
| 	return ret;
 | |
| unlock_noconn:
 | |
| 	if (wait)
 | |
| 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
 | |
| 	tx->next_descq_idx = 0;
 | |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 | |
| 	tx->sn = sde->tail_sn++;
 | |
| 	trace_hfi1_sdma_in_sn(sde, tx->sn);
 | |
| #endif
 | |
| 	spin_lock(&sde->flushlist_lock);
 | |
| 	list_add_tail(&tx->list, &sde->flushlist);
 | |
| 	spin_unlock(&sde->flushlist_lock);
 | |
| 	iowait_inc_wait_count(wait, tx->num_desc);
 | |
| 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
 | |
| 	ret = -ECOMM;
 | |
| 	goto unlock;
 | |
| nodesc:
 | |
| 	ret = sdma_check_progress(sde, wait, tx, pkts_sent);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		ret = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	sde->descq_full_count++;
 | |
| 	goto unlock;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_send_txlist() - submit a list of tx req to ring
 | |
|  * @sde: sdma engine to use
 | |
|  * @wait: SE wait structure to use when full (may be NULL)
 | |
|  * @tx_list: list of sdma_txreqs to submit
 | |
|  * @count: pointer to a u16 which, after return will contain the total number of
 | |
|  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
 | |
|  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
 | |
|  *         which are added to SDMA engine flush list if the SDMA engine state is
 | |
|  *         not running.
 | |
|  *
 | |
|  * The call submits the list into the ring.
 | |
|  *
 | |
|  * If the iowait structure is non-NULL and not equal to the iowait list
 | |
|  * the unprocessed part of the list  will be appended to the list in wait.
 | |
|  *
 | |
|  * In all cases, the tx_list will be updated so the head of the tx_list is
 | |
|  * the list of descriptors that have yet to be transmitted.
 | |
|  *
 | |
|  * The intent of this call is to provide a more efficient
 | |
|  * way of submitting multiple packets to SDMA while holding the tail
 | |
|  * side locking.
 | |
|  *
 | |
|  * Return:
 | |
|  * 0 - Success,
 | |
|  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
 | |
|  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
 | |
|  */
 | |
| int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
 | |
| 		     struct list_head *tx_list, u16 *count_out)
 | |
| {
 | |
| 	struct sdma_txreq *tx, *tx_next;
 | |
| 	int ret = 0;
 | |
| 	unsigned long flags;
 | |
| 	u16 tail = INVALID_TAIL;
 | |
| 	u32 submit_count = 0, flush_count = 0, total_count;
 | |
| 
 | |
| 	spin_lock_irqsave(&sde->tail_lock, flags);
 | |
| retry:
 | |
| 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
 | |
| 		tx->wait = iowait_ioww_to_iow(wait);
 | |
| 		if (unlikely(!__sdma_running(sde)))
 | |
| 			goto unlock_noconn;
 | |
| 		if (unlikely(tx->num_desc > sde->desc_avail))
 | |
| 			goto nodesc;
 | |
| 		if (unlikely(tx->tlen)) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto update_tail;
 | |
| 		}
 | |
| 		list_del_init(&tx->list);
 | |
| 		tail = submit_tx(sde, tx);
 | |
| 		submit_count++;
 | |
| 		if (tail != INVALID_TAIL &&
 | |
| 		    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
 | |
| 			sdma_update_tail(sde, tail);
 | |
| 			tail = INVALID_TAIL;
 | |
| 		}
 | |
| 	}
 | |
| update_tail:
 | |
| 	total_count = submit_count + flush_count;
 | |
| 	if (wait) {
 | |
| 		iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
 | |
| 		iowait_starve_clear(submit_count > 0,
 | |
| 				    iowait_ioww_to_iow(wait));
 | |
| 	}
 | |
| 	if (tail != INVALID_TAIL)
 | |
| 		sdma_update_tail(sde, tail);
 | |
| 	spin_unlock_irqrestore(&sde->tail_lock, flags);
 | |
| 	*count_out = total_count;
 | |
| 	return ret;
 | |
| unlock_noconn:
 | |
| 	spin_lock(&sde->flushlist_lock);
 | |
| 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
 | |
| 		tx->wait = iowait_ioww_to_iow(wait);
 | |
| 		list_del_init(&tx->list);
 | |
| 		tx->next_descq_idx = 0;
 | |
| #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 | |
| 		tx->sn = sde->tail_sn++;
 | |
| 		trace_hfi1_sdma_in_sn(sde, tx->sn);
 | |
| #endif
 | |
| 		list_add_tail(&tx->list, &sde->flushlist);
 | |
| 		flush_count++;
 | |
| 		iowait_inc_wait_count(wait, tx->num_desc);
 | |
| 	}
 | |
| 	spin_unlock(&sde->flushlist_lock);
 | |
| 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
 | |
| 	ret = -ECOMM;
 | |
| 	goto update_tail;
 | |
| nodesc:
 | |
| 	ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		ret = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	sde->descq_full_count++;
 | |
| 	goto update_tail;
 | |
| }
 | |
| 
 | |
| static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&sde->tail_lock, flags);
 | |
| 	write_seqlock(&sde->head_lock);
 | |
| 
 | |
| 	__sdma_process_event(sde, event);
 | |
| 
 | |
| 	if (sde->state.current_state == sdma_state_s99_running)
 | |
| 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 | |
| 
 | |
| 	write_sequnlock(&sde->head_lock);
 | |
| 	spin_unlock_irqrestore(&sde->tail_lock, flags);
 | |
| }
 | |
| 
 | |
| static void __sdma_process_event(struct sdma_engine *sde,
 | |
| 				 enum sdma_events event)
 | |
| {
 | |
| 	struct sdma_state *ss = &sde->state;
 | |
| 	int need_progress = 0;
 | |
| 
 | |
| 	/* CONFIG SDMA temporary */
 | |
| #ifdef CONFIG_SDMA_VERBOSITY
 | |
| 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
 | |
| 		   sdma_state_names[ss->current_state],
 | |
| 		   sdma_event_names[event]);
 | |
| #endif
 | |
| 
 | |
| 	switch (ss->current_state) {
 | |
| 	case sdma_state_s00_hw_down:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			/*
 | |
| 			 * If down, but running requested (usually result
 | |
| 			 * of link up, then we need to start up.
 | |
| 			 * This can happen when hw down is requested while
 | |
| 			 * bringing the link up with traffic active on
 | |
| 			 * 7220, e.g.
 | |
| 			 */
 | |
| 			ss->go_s99_running = 1;
 | |
| 			fallthrough;	/* and start dma engine */
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			/* This reference means the state machine is started */
 | |
| 			sdma_get(&sde->state);
 | |
| 			sdma_set_state(sde,
 | |
| 				       sdma_state_s10_hw_start_up_halt_wait);
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			sdma_sw_tear_down(sde);
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s10_hw_start_up_halt_wait:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			sdma_sw_tear_down(sde);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			sdma_set_state(sde,
 | |
| 				       sdma_state_s15_hw_start_up_clean_wait);
 | |
| 			sdma_start_hw_clean_up(sde);
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			schedule_work(&sde->err_halt_worker);
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s15_hw_start_up_clean_wait:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			sdma_sw_tear_down(sde);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			sdma_hw_start_up(sde);
 | |
| 			sdma_set_state(sde, ss->go_s99_running ?
 | |
| 				       sdma_state_s99_running :
 | |
| 				       sdma_state_s20_idle);
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s20_idle:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			sdma_sw_tear_down(sde);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			sdma_set_state(sde, sdma_state_s99_running);
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
 | |
| 			schedule_work(&sde->err_halt_worker);
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
 | |
| 			atomic_dec(&sde->dd->sdma_unfreeze_count);
 | |
| 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s30_sw_clean_up_wait:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
 | |
| 			sdma_start_hw_clean_up(sde);
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s40_hw_clean_up_wait:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			sdma_hw_start_up(sde);
 | |
| 			sdma_set_state(sde, ss->go_s99_running ?
 | |
| 				       sdma_state_s99_running :
 | |
| 				       sdma_state_s20_idle);
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s50_hw_halt_wait:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			schedule_work(&sde->err_halt_worker);
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s60_idle_halt_wait:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			schedule_work(&sde->err_halt_worker);
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s80_hw_freeze:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s82_freeze_sw_clean:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			ss->go_s99_running = 1;
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			/* notify caller this engine is done cleaning */
 | |
| 			atomic_dec(&sde->dd->sdma_unfreeze_count);
 | |
| 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			break;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			sdma_hw_start_up(sde);
 | |
| 			sdma_set_state(sde, ss->go_s99_running ?
 | |
| 				       sdma_state_s99_running :
 | |
| 				       sdma_state_s20_idle);
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			break;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case sdma_state_s99_running:
 | |
| 		switch (event) {
 | |
| 		case sdma_event_e00_go_hw_down:
 | |
| 			sdma_set_state(sde, sdma_state_s00_hw_down);
 | |
| 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
 | |
| 			break;
 | |
| 		case sdma_event_e10_go_hw_start:
 | |
| 			break;
 | |
| 		case sdma_event_e15_hw_halt_done:
 | |
| 			break;
 | |
| 		case sdma_event_e25_hw_clean_up_done:
 | |
| 			break;
 | |
| 		case sdma_event_e30_go_running:
 | |
| 			break;
 | |
| 		case sdma_event_e40_sw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e50_hw_cleaned:
 | |
| 			break;
 | |
| 		case sdma_event_e60_hw_halted:
 | |
| 			need_progress = 1;
 | |
| 			sdma_err_progress_check_schedule(sde);
 | |
| 			fallthrough;
 | |
| 		case sdma_event_e90_sw_halted:
 | |
| 			/*
 | |
| 			* SW initiated halt does not perform engines
 | |
| 			* progress check
 | |
| 			*/
 | |
| 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
 | |
| 			schedule_work(&sde->err_halt_worker);
 | |
| 			break;
 | |
| 		case sdma_event_e70_go_idle:
 | |
| 			sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
 | |
| 			break;
 | |
| 		case sdma_event_e85_link_down:
 | |
| 			ss->go_s99_running = 0;
 | |
| 			fallthrough;
 | |
| 		case sdma_event_e80_hw_freeze:
 | |
| 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
 | |
| 			atomic_dec(&sde->dd->sdma_unfreeze_count);
 | |
| 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 | |
| 			break;
 | |
| 		case sdma_event_e81_hw_frozen:
 | |
| 			break;
 | |
| 		case sdma_event_e82_hw_unfreeze:
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ss->last_event = event;
 | |
| 	if (need_progress)
 | |
| 		sdma_make_progress(sde, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * _extend_sdma_tx_descs() - helper to extend txreq
 | |
|  *
 | |
|  * This is called once the initial nominal allocation
 | |
|  * of descriptors in the sdma_txreq is exhausted.
 | |
|  *
 | |
|  * The code will bump the allocation up to the max
 | |
|  * of MAX_DESC (64) descriptors. There doesn't seem
 | |
|  * much point in an interim step. The last descriptor
 | |
|  * is reserved for coalesce buffer in order to support
 | |
|  * cases where input packet has >MAX_DESC iovecs.
 | |
|  *
 | |
|  */
 | |
| static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
 | |
| {
 | |
| 	int i;
 | |
| 	struct sdma_desc *descp;
 | |
| 
 | |
| 	/* Handle last descriptor */
 | |
| 	if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
 | |
| 		/* if tlen is 0, it is for padding, release last descriptor */
 | |
| 		if (!tx->tlen) {
 | |
| 			tx->desc_limit = MAX_DESC;
 | |
| 		} else if (!tx->coalesce_buf) {
 | |
| 			/* allocate coalesce buffer with space for padding */
 | |
| 			tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
 | |
| 						   GFP_ATOMIC);
 | |
| 			if (!tx->coalesce_buf)
 | |
| 				goto enomem;
 | |
| 			tx->coalesce_idx = 0;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(tx->num_desc == MAX_DESC))
 | |
| 		goto enomem;
 | |
| 
 | |
| 	descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
 | |
| 	if (!descp)
 | |
| 		goto enomem;
 | |
| 	tx->descp = descp;
 | |
| 
 | |
| 	/* reserve last descriptor for coalescing */
 | |
| 	tx->desc_limit = MAX_DESC - 1;
 | |
| 	/* copy ones already built */
 | |
| 	for (i = 0; i < tx->num_desc; i++)
 | |
| 		tx->descp[i] = tx->descs[i];
 | |
| 	return 0;
 | |
| enomem:
 | |
| 	__sdma_txclean(dd, tx);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
 | |
|  *
 | |
|  * This is called once the initial nominal allocation of descriptors
 | |
|  * in the sdma_txreq is exhausted.
 | |
|  *
 | |
|  * This function calls _extend_sdma_tx_descs to extend or allocate
 | |
|  * coalesce buffer. If there is a allocated coalesce buffer, it will
 | |
|  * copy the input packet data into the coalesce buffer. It also adds
 | |
|  * coalesce buffer descriptor once when whole packet is received.
 | |
|  *
 | |
|  * Return:
 | |
|  * <0 - error
 | |
|  * 0 - coalescing, don't populate descriptor
 | |
|  * 1 - continue with populating descriptor
 | |
|  */
 | |
| int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
 | |
| 			   int type, void *kvaddr, struct page *page,
 | |
| 			   unsigned long offset, u16 len)
 | |
| {
 | |
| 	int pad_len, rval;
 | |
| 	dma_addr_t addr;
 | |
| 
 | |
| 	rval = _extend_sdma_tx_descs(dd, tx);
 | |
| 	if (rval) {
 | |
| 		__sdma_txclean(dd, tx);
 | |
| 		return rval;
 | |
| 	}
 | |
| 
 | |
| 	/* If coalesce buffer is allocated, copy data into it */
 | |
| 	if (tx->coalesce_buf) {
 | |
| 		if (type == SDMA_MAP_NONE) {
 | |
| 			__sdma_txclean(dd, tx);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (type == SDMA_MAP_PAGE) {
 | |
| 			kvaddr = kmap(page);
 | |
| 			kvaddr += offset;
 | |
| 		} else if (WARN_ON(!kvaddr)) {
 | |
| 			__sdma_txclean(dd, tx);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
 | |
| 		tx->coalesce_idx += len;
 | |
| 		if (type == SDMA_MAP_PAGE)
 | |
| 			kunmap(page);
 | |
| 
 | |
| 		/* If there is more data, return */
 | |
| 		if (tx->tlen - tx->coalesce_idx)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* Whole packet is received; add any padding */
 | |
| 		pad_len = tx->packet_len & (sizeof(u32) - 1);
 | |
| 		if (pad_len) {
 | |
| 			pad_len = sizeof(u32) - pad_len;
 | |
| 			memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
 | |
| 			/* padding is taken care of for coalescing case */
 | |
| 			tx->packet_len += pad_len;
 | |
| 			tx->tlen += pad_len;
 | |
| 		}
 | |
| 
 | |
| 		/* dma map the coalesce buffer */
 | |
| 		addr = dma_map_single(&dd->pcidev->dev,
 | |
| 				      tx->coalesce_buf,
 | |
| 				      tx->tlen,
 | |
| 				      DMA_TO_DEVICE);
 | |
| 
 | |
| 		if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
 | |
| 			__sdma_txclean(dd, tx);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		/* Add descriptor for coalesce buffer */
 | |
| 		tx->desc_limit = MAX_DESC;
 | |
| 		return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
 | |
| 					 addr, tx->tlen);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Update sdes when the lmc changes */
 | |
| void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
 | |
| {
 | |
| 	struct sdma_engine *sde;
 | |
| 	int i;
 | |
| 	u64 sreg;
 | |
| 
 | |
| 	sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
 | |
| 		SD(CHECK_SLID_MASK_SHIFT)) |
 | |
| 		(((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
 | |
| 		SD(CHECK_SLID_VALUE_SHIFT));
 | |
| 
 | |
| 	for (i = 0; i < dd->num_sdma; i++) {
 | |
| 		hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
 | |
| 			  i, (u32)sreg);
 | |
| 		sde = &dd->per_sdma[i];
 | |
| 		write_sde_csr(sde, SD(CHECK_SLID), sreg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* tx not dword sized - pad */
 | |
| int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
 | |
| {
 | |
| 	int rval = 0;
 | |
| 
 | |
| 	tx->num_desc++;
 | |
| 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
 | |
| 		rval = _extend_sdma_tx_descs(dd, tx);
 | |
| 		if (rval) {
 | |
| 			__sdma_txclean(dd, tx);
 | |
| 			return rval;
 | |
| 		}
 | |
| 	}
 | |
| 	/* finish the one just added */
 | |
| 	make_tx_sdma_desc(
 | |
| 		tx,
 | |
| 		SDMA_MAP_NONE,
 | |
| 		dd->sdma_pad_phys,
 | |
| 		sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
 | |
| 	_sdma_close_tx(dd, tx);
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add ahg to the sdma_txreq
 | |
|  *
 | |
|  * The logic will consume up to 3
 | |
|  * descriptors at the beginning of
 | |
|  * sdma_txreq.
 | |
|  */
 | |
| void _sdma_txreq_ahgadd(
 | |
| 	struct sdma_txreq *tx,
 | |
| 	u8 num_ahg,
 | |
| 	u8 ahg_entry,
 | |
| 	u32 *ahg,
 | |
| 	u8 ahg_hlen)
 | |
| {
 | |
| 	u32 i, shift = 0, desc = 0;
 | |
| 	u8 mode;
 | |
| 
 | |
| 	WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
 | |
| 	/* compute mode */
 | |
| 	if (num_ahg == 1)
 | |
| 		mode = SDMA_AHG_APPLY_UPDATE1;
 | |
| 	else if (num_ahg <= 5)
 | |
| 		mode = SDMA_AHG_APPLY_UPDATE2;
 | |
| 	else
 | |
| 		mode = SDMA_AHG_APPLY_UPDATE3;
 | |
| 	tx->num_desc++;
 | |
| 	/* initialize to consumed descriptors to zero */
 | |
| 	switch (mode) {
 | |
| 	case SDMA_AHG_APPLY_UPDATE3:
 | |
| 		tx->num_desc++;
 | |
| 		tx->descs[2].qw[0] = 0;
 | |
| 		tx->descs[2].qw[1] = 0;
 | |
| 		fallthrough;
 | |
| 	case SDMA_AHG_APPLY_UPDATE2:
 | |
| 		tx->num_desc++;
 | |
| 		tx->descs[1].qw[0] = 0;
 | |
| 		tx->descs[1].qw[1] = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	ahg_hlen >>= 2;
 | |
| 	tx->descs[0].qw[1] |=
 | |
| 		(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
 | |
| 			<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
 | |
| 		(((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
 | |
| 			<< SDMA_DESC1_HEADER_DWS_SHIFT) |
 | |
| 		(((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
 | |
| 			<< SDMA_DESC1_HEADER_MODE_SHIFT) |
 | |
| 		(((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
 | |
| 			<< SDMA_DESC1_HEADER_UPDATE1_SHIFT);
 | |
| 	for (i = 0; i < (num_ahg - 1); i++) {
 | |
| 		if (!shift && !(i & 2))
 | |
| 			desc++;
 | |
| 		tx->descs[desc].qw[!!(i & 2)] |=
 | |
| 			(((u64)ahg[i + 1])
 | |
| 				<< shift);
 | |
| 		shift = (shift + 32) & 63;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_ahg_alloc - allocate an AHG entry
 | |
|  * @sde: engine to allocate from
 | |
|  *
 | |
|  * Return:
 | |
|  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
 | |
|  * -ENOSPC if an entry is not available
 | |
|  */
 | |
| int sdma_ahg_alloc(struct sdma_engine *sde)
 | |
| {
 | |
| 	int nr;
 | |
| 	int oldbit;
 | |
| 
 | |
| 	if (!sde) {
 | |
| 		trace_hfi1_ahg_allocate(sde, -EINVAL);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		nr = ffz(READ_ONCE(sde->ahg_bits));
 | |
| 		if (nr > 31) {
 | |
| 			trace_hfi1_ahg_allocate(sde, -ENOSPC);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 		oldbit = test_and_set_bit(nr, &sde->ahg_bits);
 | |
| 		if (!oldbit)
 | |
| 			break;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 	trace_hfi1_ahg_allocate(sde, nr);
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sdma_ahg_free - free an AHG entry
 | |
|  * @sde: engine to return AHG entry
 | |
|  * @ahg_index: index to free
 | |
|  *
 | |
|  * This routine frees the indicate AHG entry.
 | |
|  */
 | |
| void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
 | |
| {
 | |
| 	if (!sde)
 | |
| 		return;
 | |
| 	trace_hfi1_ahg_deallocate(sde, ahg_index);
 | |
| 	if (ahg_index < 0 || ahg_index > 31)
 | |
| 		return;
 | |
| 	clear_bit(ahg_index, &sde->ahg_bits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SPC freeze handling for SDMA engines.  Called when the driver knows
 | |
|  * the SPC is going into a freeze but before the freeze is fully
 | |
|  * settled.  Generally an error interrupt.
 | |
|  *
 | |
|  * This event will pull the engine out of running so no more entries can be
 | |
|  * added to the engine's queue.
 | |
|  */
 | |
| void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
 | |
| {
 | |
| 	int i;
 | |
| 	enum sdma_events event = link_down ? sdma_event_e85_link_down :
 | |
| 					     sdma_event_e80_hw_freeze;
 | |
| 
 | |
| 	/* set up the wait but do not wait here */
 | |
| 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
 | |
| 
 | |
| 	/* tell all engines to stop running and wait */
 | |
| 	for (i = 0; i < dd->num_sdma; i++)
 | |
| 		sdma_process_event(&dd->per_sdma[i], event);
 | |
| 
 | |
| 	/* sdma_freeze() will wait for all engines to have stopped */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SPC freeze handling for SDMA engines.  Called when the driver knows
 | |
|  * the SPC is fully frozen.
 | |
|  */
 | |
| void sdma_freeze(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure all engines have moved out of the running state before
 | |
| 	 * continuing.
 | |
| 	 */
 | |
| 	ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
 | |
| 				       atomic_read(&dd->sdma_unfreeze_count) <=
 | |
| 				       0);
 | |
| 	/* interrupted or count is negative, then unloading - just exit */
 | |
| 	if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* set up the count for the next wait */
 | |
| 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
 | |
| 
 | |
| 	/* tell all engines that the SPC is frozen, they can start cleaning */
 | |
| 	for (i = 0; i < dd->num_sdma; i++)
 | |
| 		sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for everyone to finish software clean before exiting.  The
 | |
| 	 * software clean will read engine CSRs, so must be completed before
 | |
| 	 * the next step, which will clear the engine CSRs.
 | |
| 	 */
 | |
| 	(void)wait_event_interruptible(dd->sdma_unfreeze_wq,
 | |
| 				atomic_read(&dd->sdma_unfreeze_count) <= 0);
 | |
| 	/* no need to check results - done no matter what */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
 | |
|  *
 | |
|  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
 | |
|  * that is left is a software clean.  We could do it after the SPC is fully
 | |
|  * frozen, but then we'd have to add another state to wait for the unfreeze.
 | |
|  * Instead, just defer the software clean until the unfreeze step.
 | |
|  */
 | |
| void sdma_unfreeze(struct hfi1_devdata *dd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* tell all engines start freeze clean up */
 | |
| 	for (i = 0; i < dd->num_sdma; i++)
 | |
| 		sdma_process_event(&dd->per_sdma[i],
 | |
| 				   sdma_event_e82_hw_unfreeze);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _sdma_engine_progress_schedule() - schedule progress on engine
 | |
|  * @sde: sdma_engine to schedule progress
 | |
|  *
 | |
|  */
 | |
| void _sdma_engine_progress_schedule(
 | |
| 	struct sdma_engine *sde)
 | |
| {
 | |
| 	trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
 | |
| 	/* assume we have selected a good cpu */
 | |
| 	write_csr(sde->dd,
 | |
| 		  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
 | |
| 		  sde->progress_mask);
 | |
| }
 |