android13/kernel-5.10/drivers/media/i2c/sensor_adapter.c

1506 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sensor driver
*
* Copyright (C) 2022 Rockchip Electronics Co., Ltd.
*
*/
//#define DEBUG
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/version.h>
#include <linux/rk-camera-module.h>
#include <media/media-entity.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mediabus.h>
#include <linux/pinctrl/consumer.h>
#include <linux/rk-preisp.h>
#include <linux/of_graph.h>
#include "../platform/rockchip/cif/rkcif-externel.h"
#define DRIVER_VERSION KERNEL_VERSION(0, 0x01, 0x0)
#ifndef V4L2_CID_DIGITAL_GAIN
#define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN
#endif
#define MIPI_FREQ_360M 360000000
#define SENSOR_XVCLK_FREQ_24M 24000000
#define OF_CAMERA_PINCTRL_STATE_DEFAULT "rockchip,camera_default"
#define OF_CAMERA_PINCTRL_STATE_SLEEP "rockchip,camera_sleep"
#define SENSOR_NAME "sensor"
#define MAX_MIPICLK_NUM 5
struct sensor_crop {
bool is_enable;
u32 top;
u32 left;
u32 width;
u32 height;
};
struct sensor_mode {
u32 bus_fmt;
u32 width;
u32 height;
struct v4l2_fract max_fps;
u64 mipi_freq;
u32 mclk;
u32 bpp;
struct rkmodule_hdr_cfg hdr_cfg;
u32 vc[PAD_MAX];
};
struct sensor {
struct i2c_client *client;
struct clk *clks[MAX_MIPICLK_NUM];
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *pixel_rate;
struct v4l2_ctrl *link_freq;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
struct mutex mutex;
bool streaming;
bool power_on;
struct sensor_mode *cur_mode;
struct rkmodule_bus_config bus_config;
struct sensor_crop crop;
struct rkmodule_csi_dphy_param dphy_param;
u32 module_index;
const char *module_facing;
const char *module_name;
const char *len_name;
enum rkmodule_sync_mode sync_mode;
u8 i2cdev;
bool is_link;
};
static struct sensor *g_sensor[RKMODULE_MAX_SENSOR_NUM];
static u8 cam_idx;
static s64 link_freq_menu_items[] = {
MIPI_FREQ_360M,
};
static const char * const mipi_clks[] = {
"clk_mipi0",
"clk_mipi1",
"clk_mipi2",
"clk_mipi3",
"clk_mipi4",
};
static struct rkmodule_csi_dphy_param rk3588_dcphy_param = {
.vendor = PHY_VENDOR_SAMSUNG,
.lp_vol_ref = 3,
.lp_hys_sw = {3, 0, 0, 0},
.lp_escclk_pol_sel = {1, 0, 0, 0},
.skew_data_cal_clk = {0, 3, 3, 3},
.clk_hs_term_sel = 2,
.data_hs_term_sel = {2, 2, 2, 2},
.reserved = {0},
};
#define to_sensor(sd) container_of(sd, struct sensor, subdev)
/*
* The width and height must be configured to be
* the same as the current output resolution of the sensor.
* The input width of the isp needs to be 16 aligned.
* The input height of the isp needs to be 8 aligned.
* If the width or height does not meet the alignment rules,
* you can configure the cropping parameters with the following function to
* crop out the appropriate resolution.
* struct v4l2_subdev_pad_ops {
* .get_selection
* }
*/
static struct sensor_mode supported_modes[] = {
{
.bus_fmt = MEDIA_BUS_FMT_SRGGB10_1X10,
.width = 2688,
.height = 1520,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.mipi_freq = MIPI_FREQ_360M,
.bpp = 10,
.mclk = SENSOR_XVCLK_FREQ_24M,
.hdr_cfg = {
.hdr_mode = NO_HDR,
.esp = {
.mode = HDR_NORMAL_VC,
},
},
},
};
static int sensor_write_reg(struct i2c_client *client, u16 reg,
u32 reg_len, u32 val, u32 val_len)
{
u32 buf_i, val_i;
u8 buf[8];
u8 *val_p;
u8 *reg_p;
__be32 val_be;
__be32 reg_be;
if (reg_len > 4 || val_len > 4)
return -EINVAL;
reg_be = cpu_to_be32(reg);
reg_p = (u8 *)&reg_be;
for (buf_i = 0; buf_i < reg_len; buf_i++)
buf[buf_i] = reg_p[4 - reg_len + buf_i];
val_be = cpu_to_be32(val);
val_p = (u8 *)&val_be;
buf_i = reg_len;
val_i = 4 - val_len;
while (val_i < 4)
buf[buf_i++] = val_p[val_i++];
if (i2c_master_send(client, buf, reg_len + val_len) != reg_len + val_len)
return -EIO;
return 0;
}
static int sensor_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct sensor *sensor = to_sensor(sd);
mutex_lock(&sensor->mutex);
//application set resolution
sensor->cur_mode->bus_fmt = fmt->format.code;
sensor->cur_mode->width = fmt->format.width;
sensor->cur_mode->height = fmt->format.height;
mutex_unlock(&sensor->mutex);
return 0;
}
static int sensor_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct sensor *sensor = to_sensor(sd);
const struct sensor_mode *mode = sensor->cur_mode;
//vicap or other device to get resolution configuration
mutex_lock(&sensor->mutex);
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.code = mode->bus_fmt;
fmt->format.field = V4L2_FIELD_NONE;
mutex_unlock(&sensor->mutex);
return 0;
}
static int sensor_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct sensor *sensor = to_sensor(sd);
if (code->index != 0)
return -EINVAL;
code->code = sensor->cur_mode->bus_fmt;
return 0;
}
static int sensor_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index > 1)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = supported_modes[fse->index].width;
fse->max_height = supported_modes[fse->index].height;
fse->min_height = supported_modes[fse->index].height;
return 0;
}
static int sensor_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct sensor *sensor = to_sensor(sd);
const struct sensor_mode *mode = sensor->cur_mode;
mutex_lock(&sensor->mutex);
fi->interval = mode->max_fps;
mutex_unlock(&sensor->mutex);
return 0;
}
static int sensor_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct sensor *sensor = to_sensor(sd);
struct sensor_mode *mode = sensor->cur_mode;
mutex_lock(&sensor->mutex);
mode->max_fps = fi->interval;
mutex_unlock(&sensor->mutex);
return 0;
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id,
struct v4l2_mbus_config *config)
{
struct sensor *sensor = to_sensor(sd);
u32 val = 0;
u32 lane_num = sensor->bus_config.bus.lanes;
val = 1 << (lane_num - 1) |
V4L2_MBUS_CSI2_CHANNEL_0 |
V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
config->type = sensor->bus_config.bus.bus_type;
config->flags = val;
return 0;
}
static void sensor_get_module_inf(struct sensor *sensor,
struct rkmodule_inf *inf)
{
memset(inf, 0, sizeof(*inf));
strscpy(inf->base.sensor, SENSOR_NAME, sizeof(inf->base.sensor));
strscpy(inf->base.module, sensor->module_name,
sizeof(inf->base.module));
strscpy(inf->base.lens, sensor->len_name, sizeof(inf->base.lens));
}
int rkcam_sensor_enable_mclk(u8 i2cdev, u32 mclk_index, u32 mclk_rate)
{
struct sensor *sensor;
struct device *dev;
int ret = 0;
int i = 0;
for (i = 0; i < RKMODULE_MAX_SENSOR_NUM; i++) {
sensor = g_sensor[i];
if (sensor->module_index == i2cdev)
break;
}
if (i == RKMODULE_MAX_SENSOR_NUM)
return -EINVAL;
dev = &sensor->client->dev;
ret = clk_set_rate(sensor->clks[mclk_index], mclk_rate);
if (ret < 0)
dev_warn(dev, "Failed to set xvclk rate\n");
if (clk_get_rate(sensor->clks[mclk_index]) != sensor->cur_mode->mclk)
dev_warn(dev, "xvclk mismatched, %lu\n", clk_get_rate(sensor->clks[mclk_index]));
ret = clk_prepare_enable(sensor->clks[mclk_index]);
if (ret < 0) {
dev_err(dev, "Failed to enable xvclk\n");
return ret;
}
sensor->cur_mode->mclk = clk_get_rate(sensor->clks[mclk_index]);
return 0;
}
EXPORT_SYMBOL(rkcam_sensor_enable_mclk);
int rkcam_sensor_disable_mclk(u8 i2cdev, u32 mclk_index)
{
struct sensor *sensor;
int i = 0;
for (i = 0; i < RKMODULE_MAX_SENSOR_NUM; i++) {
sensor = g_sensor[i];
if (sensor->module_index == i2cdev)
break;
}
if (i == RKMODULE_MAX_SENSOR_NUM)
return -EINVAL;
clk_disable_unprepare(sensor->clks[mclk_index]);
return 0;
}
EXPORT_SYMBOL(rkcam_sensor_disable_mclk);
static int sensor_config_link_freq(struct sensor *sensor, s64 link_freq)
{
u32 pixel_rate = 0;
struct sensor_mode *mode = sensor->cur_mode;
link_freq_menu_items[0] = link_freq;
__v4l2_ctrl_modify_range(sensor->link_freq, 0, 0, 1, link_freq_menu_items[0]);
mode->mipi_freq = link_freq;
pixel_rate = (u32)mode->mipi_freq / mode->bpp * 2 *
sensor->bus_config.bus.lanes;
__v4l2_ctrl_modify_range(sensor->pixel_rate, pixel_rate, pixel_rate, 1, pixel_rate);
return 0;
}
enum rk_isp_bus_type_e {
ISP_BUS_TYPE_I2C = 0,
ISP_BUS_TYPE_SPI,
ISP_BUS_TYPE_UNKNOWN,
};
struct rkcam_bus_callbakck_s {
u32 (*prkcam_write_i2c_data)(u8 i2cdev, u8 dev_addr,
u32 reg_addr, u32 reg_bytes,
u32 data, u32 data_bytes);
u32 (*prkcam_write_spi_data)(u32 spidev, u32 spi_csn,
u32 dev_addr, u32 dev_addr_bytes,
u32 reg_addr, u32 reg_addr_bytes,
u32 data, u32 data_bytes);
u32 (*prkcam_s_stream)(u32 dev, bool on);
};
static struct rkcam_bus_callbakck_s g_rkcam_bus_callback[RKMODULE_MAX_SENSOR_NUM];
static int rkcam_register_bus_callback(int sensor_id,
enum rk_isp_bus_type_e bus_type,
struct rkcam_bus_callbakck_s *bus_callbaclk)
{
if (bus_type == ISP_BUS_TYPE_I2C) {
g_rkcam_bus_callback[sensor_id].prkcam_write_i2c_data = bus_callbaclk->prkcam_write_i2c_data;
} else if (bus_type == ISP_BUS_TYPE_SPI) {
g_rkcam_bus_callback[sensor_id].prkcam_write_spi_data = bus_callbaclk->prkcam_write_spi_data;
} else {
dev_err(&g_sensor[sensor_id]->client->dev,
"sensor[%d] error bus type %d\n", sensor_id, bus_type);
return -EFAULT;
}
if (bus_callbaclk->prkcam_s_stream)
g_rkcam_bus_callback[sensor_id].prkcam_s_stream = bus_callbaclk->prkcam_s_stream;
return 0;
}
struct rkcam_export_func_s {
int (*p_rkcam_register_bus_callback)(int sensor_id,
enum rk_isp_bus_type_e bus_type,
struct rkcam_bus_callbakck_s *bus_callbaclk);
};
struct rkcam_export_func_s g_rkcam_export_func = {
.p_rkcam_register_bus_callback = rkcam_register_bus_callback,
};
EXPORT_SYMBOL(g_rkcam_export_func);
static void sensor_get_remote_dev(struct media_entity *sensor_entity,
struct video_device **video)
{
struct media_graph graph;
struct media_device *mdev = sensor_entity->graph_obj.mdev;
struct media_entity *entity;
int ret = 0;
mutex_lock(&mdev->graph_mutex);
ret = media_graph_walk_init(&graph, mdev);
if (ret) {
mutex_unlock(&mdev->graph_mutex);
return;
}
media_graph_walk_start(&graph, sensor_entity);
while ((entity = media_graph_walk_next(&graph))) {
if (strcmp(entity->name, "stream_cif_mipi_id0") == 0)
break;
}
mutex_unlock(&mdev->graph_mutex);
media_graph_walk_cleanup(&graph);
if (entity)
*video = media_entity_to_video_device(entity);
else
*video = NULL;
}
static int sensor_sync_dev_pipeline(u8 dev_num)
{
struct sensor *sensor = NULL;
struct video_device *vdev = NULL;
int i = 0;
int disconnect_num = 0;
int ret = 0;
for (i = 0; i < cam_idx; i++) {
sensor = g_sensor[i];
if (!sensor)
continue;
if (!sensor->is_link) {
sensor_get_remote_dev(&sensor->subdev.entity, &vdev);
if (vdev != NULL) {
rkcif_sditf_disconnect(vdev);
disconnect_num++;
dev_info(&sensor->client->dev, "cam%d disconnect with isp\n", sensor->module_index);
}
}
}
if (sensor == NULL) {
ret = -EFAULT;
} else if (dev_num != (cam_idx - disconnect_num)) {
dev_err(&sensor->client->dev, "failed to sync i2cdev, dev_num not match\n");
ret = -EINVAL;
}
return ret;
}
static struct sensor *find_sensor(int index)
{
int i = 0;
for (i = 0; i < cam_idx; i++) {
if (index == g_sensor[i]->module_index)
return g_sensor[i];
}
return NULL;
}
static int sensor_set_sensor_info(struct rkmodule_sensor_infos *sensor_infos)
{
int i = 0;
int dev_num = 0;
for (i = 0; i < cam_idx; i++) {
struct sensor *sensor = find_sensor(sensor_infos->sensor_fmt[i].sensor_index);
if (sensor_infos->sensor_fmt[i].sensor_width == 0 ||
sensor_infos->sensor_fmt[i].sensor_height == 0)
break;
if (sensor) {
sensor->cur_mode->width = sensor_infos->sensor_fmt[i].sensor_width;
sensor->cur_mode->height = sensor_infos->sensor_fmt[i].sensor_height;
sensor->is_link = true;
dev_num++;
} else {
dev_err(&g_sensor[0]->client->dev,
"not find the sensor, index %d\n", sensor_infos->sensor_fmt[i].sensor_index);
return -EINVAL;
}
}
sensor_sync_dev_pipeline(dev_num);
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
void __user *up;
struct sensor *sensor = to_sensor(sd);
struct rkmodule_hdr_cfg *hdr;
struct rkmodule_bus_config *bus_config;
struct rkmodule_reg *reg_s;
long ret = 0;
s64 link_freq = 0;
int i = 0;
u32 *preg_addr = NULL;
u32 *preg_value = NULL;
u32 *preg_addr_bytes = NULL;
u32 *preg_value_bytes = NULL;
u32 lens = 0;
u8 dev_num = 0;
u32 stream = 0;
u32 *sync_mode = NULL;
struct rkmodule_mclk_data *mclk;
struct rkmodule_dev_info *dev_info;
struct rkmodule_csi_dphy_param *dphy_param;
struct rkmodule_sensor_infos *sensor_infos;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
sensor_get_module_inf(sensor, (struct rkmodule_inf *)arg);
break;
case RKMODULE_GET_HDR_CFG:
hdr = (struct rkmodule_hdr_cfg *)arg;
*hdr = sensor->cur_mode->hdr_cfg;
dev_info(&sensor->client->dev,
"sensor get hdr esp_mode %d, hdr_mode %d\n",
hdr->esp.mode,
hdr->hdr_mode);
break;
case RKMODULE_SET_HDR_CFG:
hdr = (struct rkmodule_hdr_cfg *)arg;
sensor->cur_mode->hdr_cfg = *hdr;
dev_info(&sensor->client->dev,
"sensor set hdr esp_mode %d, hdr_mode %d\n",
hdr->esp.mode,
hdr->hdr_mode);
break;
case RKMODULE_SET_LINK_FREQ:
link_freq = *(s64 *)arg;
ret = sensor_config_link_freq(sensor, link_freq);
dev_info(&sensor->client->dev,
"sensor set link_freq %llu\n",
link_freq);
break;
case RKMODULE_SET_BUS_CONFIG:
bus_config = (struct rkmodule_bus_config *)arg;
sensor->bus_config = *bus_config;
dev_info(&sensor->client->dev,
"sensor set bus config, phy_mode %d, lanes %d\n",
bus_config->bus.phy_mode, bus_config->bus.lanes);
break;
case RKMODULE_GET_BUS_CONFIG:
bus_config = (struct rkmodule_bus_config *)arg;
bus_config->bus.bus_type = sensor->bus_config.bus.bus_type;
bus_config->bus.lanes = sensor->bus_config.bus.lanes;
bus_config->bus.phy_mode = sensor->bus_config.bus.phy_mode;
dev_info(&sensor->client->dev,
"sensor get bus config, phy_mode %d, lanes %d\n",
bus_config->bus.phy_mode, bus_config->bus.lanes);
break;
case RKMODULE_SET_REGISTER:
reg_s = (struct rkmodule_reg *)arg;
if (reg_s->num_regs == 0) {
dev_err(&sensor->client->dev, "sensor reg array num %llu\n", reg_s->num_regs);
return -EINVAL;
}
dev_dbg(&sensor->client->dev, "sensor reg array num %llu\n",
reg_s->num_regs);
lens = sizeof(u32) * reg_s->num_regs;
preg_addr = kzalloc(lens, GFP_KERNEL);
if (!preg_addr)
return -EFAULT;
up = (void __user *)reg_s->preg_addr;
ret = copy_from_user(preg_addr, up, lens);
if (ret) {
ret = -EFAULT;
goto end_set_reg;
}
preg_value = kzalloc(lens, GFP_KERNEL);
if (!preg_value) {
ret = -EFAULT;
goto end_set_reg;
}
up = (void __user *)reg_s->preg_value;
ret = copy_from_user(preg_value, up, lens);
if (ret) {
ret = -EFAULT;
goto end_set_reg;
}
preg_addr_bytes = kzalloc(lens, GFP_KERNEL);
if (!preg_addr_bytes) {
ret = -EFAULT;
goto end_set_reg;
}
up = (void __user *)reg_s->preg_addr_bytes;
ret = copy_from_user(preg_addr_bytes, up, lens);
if (ret) {
ret = -EFAULT;
goto end_set_reg;
}
preg_value_bytes = kzalloc(lens, GFP_KERNEL);
if (!preg_value_bytes) {
ret = -EFAULT;
goto end_set_reg;
}
up = (void __user *)reg_s->preg_value_bytes;
ret = copy_from_user(preg_value_bytes, up, lens);
if (ret) {
ret = -EFAULT;
goto end_set_reg;
}
for (i = 0; i < reg_s->num_regs; i++) {
dev_dbg(&sensor->client->dev, "sensor reg 0x%x, reg_bytes %u, val 0x%x, val_bytes %u\n",
preg_addr[i], preg_addr_bytes[i], preg_value[i], preg_value_bytes[i]);
if (g_rkcam_bus_callback[sensor->i2cdev].prkcam_write_i2c_data) {
ret = g_rkcam_bus_callback[sensor->i2cdev].prkcam_write_i2c_data(sensor->i2cdev,
0,
(u32)preg_addr[i], (u32)preg_addr_bytes[i],
(u32)preg_value[i], (u32)preg_value_bytes[i]);
if (ret)
dev_err(&sensor->client->dev, "failed to write sensor reg\n");
} else {
ret = sensor_write_reg(sensor->client,
(u32)preg_addr[i],
(u32)preg_addr_bytes[i],
(u32)preg_value[i],
(u32)preg_value_bytes[i]);
if (ret)
dev_err(&sensor->client->dev, "failed to write sensor by sensor_write_reg\n");
}
}
end_set_reg:
kfree(preg_addr);
kfree(preg_value);
kfree(preg_addr_bytes);
kfree(preg_value_bytes);
break;
case RKMODULE_SET_QUICK_STREAM:
if (g_rkcam_bus_callback[sensor->i2cdev].prkcam_s_stream) {
stream = *(u32 *)arg;
ret = g_rkcam_bus_callback[sensor->i2cdev].prkcam_s_stream(sensor->i2cdev, !!stream);
if (ret)
dev_err(&sensor->client->dev, "failed to set quick stream\n");
else
dev_info(&sensor->client->dev, "success to set quick stream\n");
} else {
dev_err(&sensor->client->dev,
"The callback function of sensor s_stream is not exist\n");
}
break;
case RKMODULE_SYNC_I2CDEV:
sensor->i2cdev = *(u8 *)arg;
sensor->is_link = true;
dev_info(&sensor->client->dev,
"sensor sync i2cdev, dev_index %d\n",
sensor->i2cdev);
break;
case RKMODULE_SYNC_I2CDEV_COMPLETE:
dev_num = *(u8 *)arg;
ret = sensor_sync_dev_pipeline(dev_num);
dev_info(&sensor->client->dev,
"sensor sync i2cdev complete, dev_num %d\n",
dev_num);
break;
case RKMODULE_GET_SYNC_MODE:
sync_mode = (u32 *)arg;
*sync_mode = sensor->sync_mode;
dev_info(&sensor->client->dev,
"sensor get sync_mode %d\n",
*sync_mode);
break;
case RKMODULE_SET_SYNC_MODE:
sync_mode = (u32 *)arg;
sensor->sync_mode = *sync_mode;
dev_info(&sensor->client->dev,
"sensor set sync_mode %d\n",
*sync_mode);
break;
case RKMODULE_SET_MCLK:
mclk = (struct rkmodule_mclk_data *)arg;
if (mclk->enable)
rkcam_sensor_enable_mclk(0, mclk->mclk_index, mclk->mclk_rate);
else
rkcam_sensor_disable_mclk(0, mclk->mclk_index);
dev_info(&sensor->client->dev,
"sensor set mclk, enable %u, index %u, rate %u\n",
mclk->enable, mclk->mclk_index, mclk->mclk_rate);
break;
case RKMODULE_SET_DEV_INFO:
dev_info = (struct rkmodule_dev_info *)arg;
if (dev_info->i2c_dev.slave_addr)
sensor->client->addr = dev_info->i2c_dev.slave_addr;
dev_info(&sensor->client->dev,
"sensor set dev info ,slave addr 0x%x\n",
dev_info->i2c_dev.slave_addr);
break;
case RKMODULE_SET_CSI_DPHY_PARAM:
dphy_param = (struct rkmodule_csi_dphy_param *)arg;
if (dphy_param->vendor == PHY_VENDOR_SAMSUNG)
sensor->dphy_param = *dphy_param;
dev_dbg(&sensor->client->dev,
"sensor set dphy param\n");
break;
case RKMODULE_GET_CSI_DPHY_PARAM:
dphy_param = (struct rkmodule_csi_dphy_param *)arg;
*dphy_param = sensor->dphy_param;
dev_dbg(&sensor->client->dev,
"sensor get dphy param\n");
break;
case RKMODULE_SET_SENSOR_INFOS:
sensor_infos = (struct rkmodule_sensor_infos *)arg;
ret = sensor_set_sensor_info(sensor_infos);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long sensor_compat_ioctl32(struct v4l2_subdev *sd,
unsigned int cmd, unsigned long arg)
{
void __user *up = compat_ptr(arg);
struct rkmodule_inf *inf;
struct rkmodule_hdr_cfg *hdr;
struct rkmodule_bus_config *bus_config;
struct rkmodule_reg *reg_s;
long ret;
u32 stream = 0;
s64 link_freq = 0;
u8 i2cdev = 0;
u8 dev_num = 0;
u32 *sync_mode = NULL;
struct rkmodule_mclk_data *mclk;
struct rkmodule_dev_info *dev_info;
struct rkmodule_csi_dphy_param *dphy_param;
struct rkmodule_sensor_infos *sensor_infos;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
inf = kzalloc(sizeof(*inf), GFP_KERNEL);
if (!inf) {
ret = -ENOMEM;
return ret;
}
ret = sensor_ioctl(sd, cmd, inf);
if (!ret) {
ret = copy_to_user(up, inf, sizeof(*inf));
if (ret)
ret = -EFAULT;
}
kfree(inf);
break;
case RKMODULE_GET_HDR_CFG:
hdr = kzalloc(sizeof(*hdr), GFP_KERNEL);
if (!hdr) {
ret = -ENOMEM;
return ret;
}
ret = sensor_ioctl(sd, cmd, hdr);
if (!ret) {
ret = copy_to_user(up, hdr, sizeof(*hdr));
if (ret)
ret = -EFAULT;
}
kfree(hdr);
break;
case RKMODULE_SET_HDR_CFG:
hdr = kzalloc(sizeof(*hdr), GFP_KERNEL);
if (!hdr) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(hdr, up, sizeof(*hdr));
if (!ret)
ret = sensor_ioctl(sd, cmd, hdr);
else
ret = -EFAULT;
kfree(hdr);
break;
case RKMODULE_SET_QUICK_STREAM:
ret = copy_from_user(&stream, up, sizeof(u32));
if (!ret)
ret = sensor_ioctl(sd, cmd, &stream);
else
ret = -EFAULT;
break;
case RKMODULE_SET_LINK_FREQ:
ret = copy_from_user(&link_freq, up, sizeof(s64));
if (!ret)
ret = sensor_ioctl(sd, cmd, &link_freq);
else
ret = -EFAULT;
break;
case RKMODULE_GET_BUS_CONFIG:
bus_config = kzalloc(sizeof(*bus_config), GFP_KERNEL);
if (!bus_config) {
ret = -ENOMEM;
return ret;
}
ret = sensor_ioctl(sd, cmd, bus_config);
if (!ret) {
ret = copy_to_user(up, bus_config, sizeof(*bus_config));
if (ret)
ret = -EFAULT;
}
kfree(bus_config);
break;
case RKMODULE_SET_BUS_CONFIG:
bus_config = kzalloc(sizeof(*bus_config), GFP_KERNEL);
if (!bus_config) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(bus_config, up, sizeof(*bus_config));
if (!ret)
ret = sensor_ioctl(sd, cmd, bus_config);
else
ret = -EFAULT;
kfree(bus_config);
break;
case RKMODULE_SET_REGISTER:
reg_s = kzalloc(sizeof(*reg_s), GFP_KERNEL);
if (!reg_s) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(reg_s, up, sizeof(*reg_s));
if (!ret) {
ret = sensor_ioctl(sd, cmd, reg_s);
kfree(reg_s);
} else {
kfree(reg_s);
ret = -EFAULT;
}
break;
case RKMODULE_SYNC_I2CDEV:
ret = copy_from_user(&i2cdev, up, sizeof(u8));
if (!ret)
ret = sensor_ioctl(sd, cmd, &i2cdev);
else
ret = -EFAULT;
break;
case RKMODULE_SYNC_I2CDEV_COMPLETE:
ret = copy_from_user(&dev_num, up, sizeof(u8));
if (!ret)
ret = sensor_ioctl(sd, cmd, &dev_num);
else
ret = -EFAULT;
break;
case RKMODULE_GET_SYNC_MODE:
ret = sensor_ioctl(sd, cmd, &sync_mode);
if (!ret) {
ret = copy_to_user(up, &sync_mode, sizeof(u32));
if (ret)
ret = -EFAULT;
}
break;
case RKMODULE_SET_SYNC_MODE:
ret = copy_from_user(&sync_mode, up, sizeof(u32));
if (!ret)
ret = sensor_ioctl(sd, cmd, &sync_mode);
else
ret = -EFAULT;
break;
case RKMODULE_SET_MCLK:
mclk = kzalloc(sizeof(*mclk), GFP_KERNEL);
if (!mclk) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(mclk, up, sizeof(*mclk));
if (!ret)
ret = sensor_ioctl(sd, cmd, mclk);
else
ret = -EFAULT;
kfree(mclk);
break;
case RKMODULE_SET_DEV_INFO:
dev_info = kzalloc(sizeof(*dev_info), GFP_KERNEL);
if (!dev_info) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(dev_info, up, sizeof(*dev_info));
if (!ret)
ret = sensor_ioctl(sd, cmd, dev_info);
else
ret = -EFAULT;
kfree(dev_info);
break;
case RKMODULE_SET_CSI_DPHY_PARAM:
dphy_param = kzalloc(sizeof(*dphy_param), GFP_KERNEL);
if (!dphy_param) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(dphy_param, up, sizeof(*dphy_param));
if (!ret)
ret = sensor_ioctl(sd, cmd, dphy_param);
else
ret = -EFAULT;
kfree(dphy_param);
break;
case RKMODULE_GET_CSI_DPHY_PARAM:
dphy_param = kzalloc(sizeof(*dphy_param), GFP_KERNEL);
if (!dphy_param) {
ret = -ENOMEM;
return ret;
}
ret = sensor_ioctl(sd, cmd, dphy_param);
if (!ret) {
ret = copy_to_user(up, dphy_param, sizeof(*dphy_param));
if (ret)
ret = -EFAULT;
}
kfree(dphy_param);
break;
case RKMODULE_SET_SENSOR_INFOS:
sensor_infos = kzalloc(sizeof(*sensor_infos), GFP_KERNEL);
if (!sensor_infos) {
ret = -ENOMEM;
return ret;
}
ret = copy_from_user(sensor_infos, up, sizeof(*sensor_infos));
if (!ret)
ret = sensor_ioctl(sd, cmd, sensor_infos);
else
ret = -EFAULT;
kfree(sensor_infos);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#endif
static int __sensor_start_stream(struct sensor *sensor)
{
/* user to write sensor setting or
* may control by aiq callback to set sensor setting by customer driver
*/
return 0;
}
static int __sensor_stop_stream(struct sensor *sensor)
{
/* user to write sensor setting or
* may control by aiq callback to set sensor setting by customer driver
*/
return 0;
}
static int sensor_s_stream(struct v4l2_subdev *sd, int on)
{
struct sensor *sensor = to_sensor(sd);
struct i2c_client *client = sensor->client;
int ret = 0;
mutex_lock(&sensor->mutex);
on = !!on;
if (on == sensor->streaming)
goto unlock_and_return;
if (on) {
ret = __sensor_start_stream(sensor);
if (ret) {
v4l2_err(sd, "start stream failed while write regs\n");
pm_runtime_put(&client->dev);
goto unlock_and_return;
}
} else {
__sensor_stop_stream(sensor);
}
sensor->streaming = on;
unlock_and_return:
mutex_unlock(&sensor->mutex);
return ret;
}
static int sensor_s_power(struct v4l2_subdev *sd, int on)
{
struct sensor *sensor = to_sensor(sd);
struct i2c_client *client = sensor->client;
int ret = 0;
mutex_lock(&sensor->mutex);
/* If the power state is not modified - no work to do. */
if (sensor->power_on == !!on)
goto unlock_and_return;
if (on) {
ret = pm_runtime_get_sync(&client->dev);
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
sensor->power_on = true;
} else {
pm_runtime_put(&client->dev);
sensor->power_on = false;
}
unlock_and_return:
mutex_unlock(&sensor->mutex);
return ret;
}
static int __sensor_power_on(struct sensor *sensor)
{
//todo
//call sensor power on
return 0;
}
static void __sensor_power_off(struct sensor *sensor)
{
//todo
//call sensor power off
}
static int sensor_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct sensor *sensor = to_sensor(sd);
return __sensor_power_on(sensor);
}
static int sensor_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct sensor *sensor = to_sensor(sd);
__sensor_power_off(sensor);
return 0;
}
static int sensor_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct sensor *sensor = to_sensor(sd);
if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
if (sensor->crop.is_enable &&
(sensor->crop.left + sensor->crop.width) <= sensor->cur_mode->width &&
(sensor->crop.top + sensor->crop.height) <= sensor->cur_mode->height) {
sel->r.left = sensor->crop.left;
sel->r.width = sensor->crop.width;
sel->r.top = sensor->crop.top;
sel->r.height = sensor->crop.height;
dev_dbg(&sensor->client->dev,
"%s left %d, width %d, top %d, height %d\n",
__func__,
sensor->crop.left, sensor->crop.width,
sensor->crop.top, sensor->crop.height);
} else {
sel->r.left = 0;
sel->r.width = sensor->cur_mode->width;
sel->r.top = 0;
sel->r.height = sensor->cur_mode->height;
}
return 0;
}
dev_err(&sensor->client->dev,
"%s failed\n", __func__);
return -EINVAL;
}
static int sensor_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct sensor *sensor = to_sensor(sd);
if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
sensor->crop.top = sel->r.top;
sensor->crop.left = sel->r.left;
sensor->crop.width = sel->r.width;
sensor->crop.height = sel->r.height;
sensor->crop.is_enable = true;
dev_info(&sensor->client->dev,
"%s left %d, width %d, top %d, height %d\n",
__func__,
sensor->crop.left, sensor->crop.width,
sensor->crop.top, sensor->crop.height);
return 0;
}
dev_err(&sensor->client->dev,
"sensor_get_selection failed\n");
return -EINVAL;
}
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static int sensor_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct sensor *sensor = to_sensor(sd);
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->pad, 0);
const struct sensor_mode *def_mode = sensor->cur_mode;
mutex_lock(&sensor->mutex);
/* Initialize try_fmt */
try_fmt->width = def_mode->width;
try_fmt->height = def_mode->height;
try_fmt->code = def_mode->bus_fmt;
try_fmt->field = V4L2_FIELD_NONE;
mutex_unlock(&sensor->mutex);
/* No crop or compose */
return 0;
}
#endif
static int sensor_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct sensor *sensor = to_sensor(sd);
if (fie->index > 1)
return -EINVAL;
fie->code = sensor->cur_mode->bus_fmt;
fie->width = sensor->cur_mode->width;
fie->height = sensor->cur_mode->height;
fie->interval = sensor->cur_mode->max_fps;
fie->reserved[0] = sensor->cur_mode->hdr_cfg.hdr_mode;
return 0;
}
static const struct dev_pm_ops sensor_pm_ops = {
SET_RUNTIME_PM_OPS(sensor_runtime_suspend,
sensor_runtime_resume, NULL)
};
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static const struct v4l2_subdev_internal_ops sensor_internal_ops = {
.open = sensor_open,
};
#endif
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.s_power = sensor_s_power,
.ioctl = sensor_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = sensor_compat_ioctl32,
#endif
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.s_stream = sensor_s_stream,
.g_frame_interval = sensor_g_frame_interval,
.s_frame_interval = sensor_s_frame_interval,
};
static const struct v4l2_subdev_pad_ops sensor_pad_ops = {
.enum_mbus_code = sensor_enum_mbus_code,
.enum_frame_size = sensor_enum_frame_sizes,
.enum_frame_interval = sensor_enum_frame_interval,
.get_fmt = sensor_get_fmt,
.set_fmt = sensor_set_fmt,
.get_selection = sensor_get_selection,
.set_selection = sensor_set_selection,
.get_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_subdev_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
.pad = &sensor_pad_ops,
};
static int sensor_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct sensor *sensor = container_of(ctrl->handler,
struct sensor, ctrl_handler);
struct i2c_client *client = sensor->client;
int ret = 0;
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
//todo
break;
case V4L2_CID_VFLIP:
//todo
break;
default:
dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops sensor_ctrl_ops = {
.s_ctrl = sensor_set_ctrl,
};
static int sensor_initialize_controls(struct sensor *sensor)
{
const struct sensor_mode *mode;
struct v4l2_ctrl_handler *handler;
u64 pixel_rate = 0;
int ret;
u32 h_blank = 0;
u32 vblank_def = 0;
handler = &sensor->ctrl_handler;
mode = sensor->cur_mode;
ret = v4l2_ctrl_handler_init(handler, 4);
if (ret)
return ret;
handler->lock = &sensor->mutex;
sensor->link_freq = v4l2_ctrl_new_int_menu(handler,
NULL, V4L2_CID_LINK_FREQ,
0, 0, link_freq_menu_items);
pixel_rate = (u32)mode->mipi_freq / mode->bpp * 2 *
sensor->bus_config.bus.lanes;
sensor->pixel_rate = v4l2_ctrl_new_std(handler, NULL,
V4L2_CID_PIXEL_RATE, 0, pixel_rate,
1, pixel_rate);
h_blank = 600;
sensor->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK,
h_blank, h_blank, 1, h_blank);
if (sensor->hblank)
sensor->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
vblank_def = 100;
sensor->vblank = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
V4L2_CID_VBLANK, vblank_def,
vblank_def,
1, vblank_def);
v4l2_ctrl_new_std(handler, &sensor_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
v4l2_ctrl_new_std(handler, &sensor_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
if (handler->error) {
ret = handler->error;
dev_err(&sensor->client->dev,
"Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
sensor->subdev.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device_node *node = dev->of_node;
struct v4l2_subdev *sd;
struct sensor *sensor;
char facing[2];
int ret;
int i;
dev_info(dev, "driver version: %02x.%02x.%02x",
DRIVER_VERSION >> 16,
(DRIVER_VERSION & 0xff00) >> 8,
DRIVER_VERSION & 0x00ff);
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
g_sensor[cam_idx] = sensor;
ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
&sensor->module_index);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
&sensor->module_facing);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
&sensor->module_name);
ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
&sensor->len_name);
if (ret) {
dev_err(dev, "could not get module information!\n");
return -EINVAL;
}
sensor->client = client;
sensor->cur_mode = &supported_modes[0];
for (i = 0; i < MAX_MIPICLK_NUM; i++) {
struct clk *clk = devm_clk_get(dev, mipi_clks[i]);
if (IS_ERR(clk)) {
dev_err(dev, "failed to get %s\n", mipi_clks[i]);
return PTR_ERR(clk);
}
sensor->clks[i] = clk;
}
sensor->pinctrl = devm_pinctrl_get(dev);
if (!IS_ERR(sensor->pinctrl)) {
sensor->pins_default =
pinctrl_lookup_state(sensor->pinctrl,
OF_CAMERA_PINCTRL_STATE_DEFAULT);
if (IS_ERR(sensor->pins_default))
dev_err(dev, "could not get default pinstate\n");
sensor->pins_sleep =
pinctrl_lookup_state(sensor->pinctrl,
OF_CAMERA_PINCTRL_STATE_SLEEP);
if (IS_ERR(sensor->pins_sleep))
dev_err(dev, "could not get sleep pinstate\n");
} else {
dev_err(dev, "no pinctrl\n");
}
mutex_init(&sensor->mutex);
sensor->bus_config.bus.lanes = 2;
sensor->bus_config.bus.bus_type = V4L2_MBUS_CSI2_DPHY;
sensor->is_link = false;
sensor->sync_mode = NO_SYNC_MODE;
sensor->crop.is_enable = false;
sensor->dphy_param = rk3588_dcphy_param;
sd = &sensor->subdev;
v4l2_i2c_subdev_init(sd, client, &sensor_subdev_ops);
ret = sensor_initialize_controls(sensor);
if (ret)
goto err_destroy_mutex;
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sd->internal_ops = &sensor_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
#endif
#if defined(CONFIG_MEDIA_CONTROLLER)
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, 1, &sensor->pad);
if (ret < 0)
goto err_power_off;
#endif
memset(facing, 0, sizeof(facing));
if (strcmp(sensor->module_facing, "back") == 0)
facing[0] = 'b';
else
facing[0] = 'f';
snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
sensor->module_index, facing,
SENSOR_NAME, dev_name(sd->dev));
ret = v4l2_async_register_subdev_sensor_common(sd);
if (ret) {
dev_err(dev, "v4l2 async register subdev failed\n");
goto err_clean_entity;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_idle(dev);
if (cam_idx < RKMODULE_MAX_SENSOR_NUM) {
cam_idx++;
} else {
ret = -EINVAL;
dev_err(dev, "max cam num %d\n", RKMODULE_MAX_SENSOR_NUM);
goto err_clean_entity;
}
return 0;
err_clean_entity:
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
err_power_off:
__sensor_power_off(sensor);
err_destroy_mutex:
mutex_destroy(&sensor->mutex);
return ret;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct sensor *sensor = to_sensor(sd);
v4l2_async_unregister_subdev(sd);
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
v4l2_ctrl_handler_free(&sensor->ctrl_handler);
mutex_destroy(&sensor->mutex);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
__sensor_power_off(sensor);
pm_runtime_set_suspended(&client->dev);
return 0;
}
#if IS_ENABLED(CONFIG_OF)
static const struct of_device_id sensor_of_match[] = {
{ .compatible = "sensor,adapter" },
{},
};
MODULE_DEVICE_TABLE(of, sensor_of_match);
#endif
static const struct i2c_device_id sensor_match_id[] = {
{ "sensor,adapter", 0 },
{ },
};
static struct i2c_driver sensor_i2c_driver = {
.driver = {
.name = SENSOR_NAME,
.pm = &sensor_pm_ops,
.of_match_table = of_match_ptr(sensor_of_match),
},
.probe = &sensor_probe,
.remove = &sensor_remove,
.id_table = sensor_match_id,
};
static int __init sensor_mod_init(void)
{
return i2c_add_driver(&sensor_i2c_driver);
}
static void __exit sensor_mod_exit(void)
{
i2c_del_driver(&sensor_i2c_driver);
}
device_initcall_sync(sensor_mod_init);
module_exit(sensor_mod_exit);
MODULE_DESCRIPTION("sensor adapter driver");
MODULE_LICENSE("GPL v2");