android13/kernel-5.10/drivers/media/platform/rockchip/isp/capture_v1x.c

1269 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020 Rockchip Electronics Co., Ltd. */
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-common.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-dma-sg.h>
#include "dev.h"
#include "regs.h"
#define CIF_ISP_REQ_BUFS_MIN 0
static int mi_frame_end(struct rkisp_stream *stream, u32 state);
static void rkisp_buf_queue(struct vb2_buffer *vb);
static int rkisp_create_dummy_buf(struct rkisp_stream *stream);
static const struct capture_fmt mp_fmts[] = {
/* yuv422 */
{
.fourcc = V4L2_PIX_FMT_YUYV,
.fmt_type = FMT_YUV,
.bpp = { 16 },
.cplanes = 1,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUVINT,
}, {
.fourcc = V4L2_PIX_FMT_YUV422P,
.fmt_type = FMT_YUV,
.bpp = { 8, 4, 4 },
.cplanes = 3,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_NV16,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
}, {
.fourcc = V4L2_PIX_FMT_NV61,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 1,
.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
}, {
.fourcc = V4L2_PIX_FMT_YUV422M,
.fmt_type = FMT_YUV,
.bpp = { 8, 8, 8 },
.cplanes = 3,
.mplanes = 3,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
},
/* yuv420 */
{
.fourcc = V4L2_PIX_FMT_NV21,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 1,
.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
}, {
.fourcc = V4L2_PIX_FMT_NV21M,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 2,
.uv_swap = 1,
.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
}, {
.fourcc = V4L2_PIX_FMT_NV12M,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 2,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
}, {
.fourcc = V4L2_PIX_FMT_YUV420,
.fmt_type = FMT_YUV,
.bpp = { 8, 8, 8 },
.cplanes = 3,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
},
/* yuv444 */
{
.fourcc = V4L2_PIX_FMT_YUV444M,
.fmt_type = FMT_YUV,
.bpp = { 8, 8, 8 },
.cplanes = 3,
.mplanes = 3,
.uv_swap = 0,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
},
/* raw */
{
.fourcc = V4L2_PIX_FMT_SRGGB8,
.fmt_type = FMT_BAYER,
.bpp = { 8 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.fmt_type = FMT_BAYER,
.bpp = { 8 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.fmt_type = FMT_BAYER,
.bpp = { 8 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR8,
.fmt_type = FMT_BAYER,
.bpp = { 8 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.fmt_type = FMT_BAYER,
.bpp = { 10 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.fmt_type = FMT_BAYER,
.bpp = { 10 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.fmt_type = FMT_BAYER,
.bpp = { 10 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.fmt_type = FMT_BAYER,
.bpp = { 10 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.fmt_type = FMT_BAYER,
.bpp = { 12 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.fmt_type = FMT_BAYER,
.bpp = { 12 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.fmt_type = FMT_BAYER,
.bpp = { 12 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.fmt_type = FMT_BAYER,
.bpp = { 12 },
.mplanes = 1,
.write_format = MI_CTRL_MP_WRITE_RAW12,
},
};
static const struct capture_fmt sp_fmts[] = {
/* yuv422 */
{
.fourcc = V4L2_PIX_FMT_YUYV,
.fmt_type = FMT_YUV,
.bpp = { 16 },
.cplanes = 1,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_INT,
.output_format = MI_CTRL_SP_OUTPUT_YUV422,
}, {
.fourcc = V4L2_PIX_FMT_YUV422P,
.fmt_type = FMT_YUV,
.bpp = { 8, 8, 8 },
.cplanes = 3,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_PLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV422,
}, {
.fourcc = V4L2_PIX_FMT_NV16,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_SPLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV422,
}, {
.fourcc = V4L2_PIX_FMT_NV61,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 1,
.write_format = MI_CTRL_SP_WRITE_SPLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV422,
}, {
.fourcc = V4L2_PIX_FMT_YUV422M,
.fmt_type = FMT_YUV,
.bpp = { 8, 8, 8 },
.cplanes = 3,
.mplanes = 3,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_PLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV422,
},
/* yuv420 */
{
.fourcc = V4L2_PIX_FMT_NV21,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 1,
.write_format = MI_CTRL_SP_WRITE_SPLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV420,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_SPLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV420,
}, {
.fourcc = V4L2_PIX_FMT_NV21M,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 2,
.uv_swap = 1,
.write_format = MI_CTRL_SP_WRITE_SPLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV420,
}, {
.fourcc = V4L2_PIX_FMT_NV12M,
.fmt_type = FMT_YUV,
.bpp = { 8, 16 },
.cplanes = 2,
.mplanes = 2,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_SPLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV420,
}, {
.fourcc = V4L2_PIX_FMT_YUV420,
.fmt_type = FMT_YUV,
.bpp = { 8, 8, 8 },
.cplanes = 3,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_PLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV420,
},
/* yuv444 */
{
.fourcc = V4L2_PIX_FMT_YUV444M,
.fmt_type = FMT_YUV,
.bpp = { 8, 8, 8 },
.cplanes = 3,
.mplanes = 3,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_PLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV444,
},
/* yuv400 */
{
.fourcc = V4L2_PIX_FMT_GREY,
.fmt_type = FMT_YUV,
.bpp = { 8 },
.cplanes = 1,
.mplanes = 1,
.uv_swap = 0,
.write_format = MI_CTRL_SP_WRITE_PLA,
.output_format = MI_CTRL_SP_OUTPUT_YUV400,
},
/* rgb */
{
.fourcc = V4L2_PIX_FMT_XBGR32,
.fmt_type = FMT_RGB,
.bpp = { 32 },
.mplanes = 1,
.write_format = MI_CTRL_SP_WRITE_PLA,
.output_format = MI_CTRL_SP_OUTPUT_RGB888,
}, {
.fourcc = V4L2_PIX_FMT_RGB565,
.fmt_type = FMT_RGB,
.bpp = { 16 },
.mplanes = 1,
.write_format = MI_CTRL_SP_WRITE_PLA,
.output_format = MI_CTRL_SP_OUTPUT_RGB565,
}
};
/* configure dual-crop unit */
static int rkisp_stream_config_dcrop(struct rkisp_stream *stream, bool async)
{
struct rkisp_device *dev = stream->ispdev;
struct v4l2_rect *dcrop = &stream->dcrop;
struct v4l2_rect *input_win;
/* dual-crop unit get data from isp */
input_win = rkisp_get_isp_sd_win(&dev->isp_sdev);
if (dcrop->width == input_win->width &&
dcrop->height == input_win->height &&
dcrop->left == 0 && dcrop->top == 0) {
rkisp_disable_dcrop(stream, async);
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"stream %d crop disabled\n", stream->id);
return 0;
}
rkisp_config_dcrop(stream, dcrop, async);
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"stream %d crop: %dx%d -> %dx%d\n", stream->id,
input_win->width, input_win->height,
dcrop->width, dcrop->height);
return 0;
}
/* configure scale unit */
static int rkisp_stream_config_rsz(struct rkisp_stream *stream, bool async)
{
struct rkisp_device *dev = stream->ispdev;
struct v4l2_pix_format_mplane output_fmt = stream->out_fmt;
struct capture_fmt *output_isp_fmt = &stream->out_isp_fmt;
struct ispsd_out_fmt *input_isp_fmt =
rkisp_get_ispsd_out_fmt(&dev->isp_sdev);
struct v4l2_rect in_y, in_c, out_y, out_c;
u32 xsubs_in = 1, ysubs_in = 1;
u32 xsubs_out = 1, ysubs_out = 1;
if (input_isp_fmt->fmt_type == FMT_BAYER)
goto disable;
/* set input and output sizes for scale calculation */
in_y.width = stream->dcrop.width;
in_y.height = stream->dcrop.height;
out_y.width = output_fmt.width;
out_y.height = output_fmt.height;
/* The size of Cb,Cr are related to the format */
if (rkisp_mbus_code_xysubs(input_isp_fmt->mbus_code, &xsubs_in, &ysubs_in)) {
v4l2_err(&dev->v4l2_dev, "Not xsubs/ysubs found\n");
return -EINVAL;
}
in_c.width = in_y.width / xsubs_in;
in_c.height = in_y.height / ysubs_in;
if (output_isp_fmt->fmt_type == FMT_YUV) {
rkisp_fcc_xysubs(output_isp_fmt->fourcc, &xsubs_out, &ysubs_out);
out_c.width = out_y.width / xsubs_out;
out_c.height = out_y.height / ysubs_out;
} else {
out_c.width = out_y.width / xsubs_in;
out_c.height = out_y.height / ysubs_in;
}
if (in_c.width == out_c.width && in_c.height == out_c.height)
goto disable;
/* set RSZ input and output */
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"stream %d rsz/scale: %dx%d -> %dx%d\n",
stream->id, stream->dcrop.width, stream->dcrop.height,
output_fmt.width, output_fmt.height);
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"chroma scaling %dx%d -> %dx%d\n",
in_c.width, in_c.height, out_c.width, out_c.height);
/* calculate and set scale */
rkisp_config_rsz(stream, &in_y, &in_c, &out_y, &out_c, async);
if (rkisp_debug)
rkisp_dump_rsz_regs(stream);
return 0;
disable:
rkisp_disable_rsz(stream, async);
return 0;
}
/***************************** stream operations*******************************/
/*
* memory base addresses should be with respect
* to the burst alignment restriction for AXI.
*/
static u32 calc_burst_len(struct rkisp_stream *stream)
{
struct rkisp_device *dev = stream->ispdev;
u32 y_size = stream->out_fmt.plane_fmt[0].bytesperline *
stream->out_fmt.height;
u32 cb_size = stream->out_fmt.plane_fmt[1].sizeimage;
u32 cr_size = stream->out_fmt.plane_fmt[2].sizeimage;
u32 cb_offs, cr_offs;
u32 bus, burst;
int i;
/* MI128bit and MI64bit */
bus = 8;
if (dev->isp_ver == ISP_V12 ||
dev->isp_ver == ISP_V13)
bus = 16;
/* y/c base addr: burstN * bus alignment */
cb_offs = y_size;
cr_offs = cr_size ? (cb_size + cb_offs) : 0;
if (!(cb_offs % (bus * 16)) &&
!(cr_offs % (bus * 16)))
burst = CIF_MI_CTRL_BURST_LEN_LUM_16 |
CIF_MI_CTRL_BURST_LEN_CHROM_16;
else if (!(cb_offs % (bus * 8)) &&
!(cr_offs % (bus * 8)))
burst = CIF_MI_CTRL_BURST_LEN_LUM_8 |
CIF_MI_CTRL_BURST_LEN_CHROM_8;
else
burst = CIF_MI_CTRL_BURST_LEN_LUM_4 |
CIF_MI_CTRL_BURST_LEN_CHROM_4;
if (cb_offs % (bus * 4) ||
cr_offs % (bus * 4))
v4l2_warn(&dev->v4l2_dev,
"%dx%d fmt:0x%x not support, should be %d aligned\n",
stream->out_fmt.width,
stream->out_fmt.height,
stream->out_fmt.pixelformat,
(cr_offs == 0) ? bus * 4 : bus * 16);
stream->burst = burst;
for (i = 0; i < RKISP_MAX_STREAM; i++)
if (burst > dev->cap_dev.stream[i].burst)
burst = dev->cap_dev.stream[i].burst;
if (stream->interlaced) {
if (!stream->out_fmt.width % (bus * 16))
stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_16 |
CIF_MI_CTRL_BURST_LEN_CHROM_16;
else if (!stream->out_fmt.width % (bus * 8))
stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_8 |
CIF_MI_CTRL_BURST_LEN_CHROM_8;
else
stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_4 |
CIF_MI_CTRL_BURST_LEN_CHROM_4;
if (stream->out_fmt.width % (bus * 4))
v4l2_warn(&dev->v4l2_dev,
"interlaced: width should be %d aligned\n",
bus * 4);
burst = min(stream->burst, burst);
stream->burst = burst;
}
return burst;
}
/*
* configure memory interface for mainpath
* This should only be called when stream-on
*/
static int mp_config_mi(struct rkisp_stream *stream)
{
void __iomem *base = stream->ispdev->base_addr;
/*
* NOTE: plane_fmt[0].sizeimage is total size of all planes for single
* memory plane formats, so calculate the size explicitly.
*/
mi_set_y_size(stream, stream->out_fmt.plane_fmt[0].bytesperline *
stream->out_fmt.height);
mi_set_cb_size(stream, stream->out_fmt.plane_fmt[1].sizeimage);
mi_set_cr_size(stream, stream->out_fmt.plane_fmt[2].sizeimage);
mi_frame_end_int_enable(stream);
if (stream->out_isp_fmt.uv_swap)
mp_set_uv_swap(base);
config_mi_ctrl(stream, calc_burst_len(stream));
mp_mi_ctrl_set_format(base, stream->out_isp_fmt.write_format);
mp_mi_ctrl_autoupdate_en(base);
/* set up first buffer */
mi_frame_end(stream, FRAME_INIT);
return 0;
}
static int mbus_code_sp_in_fmt(u32 in_mbus_code, u32 out_fourcc, u32 *format)
{
switch (in_mbus_code) {
case MEDIA_BUS_FMT_YUYV8_2X8:
*format = MI_CTRL_SP_INPUT_YUV422;
break;
default:
return -EINVAL;
}
/*
* Only SP can support output format of YCbCr4:0:0,
* and the input format of SP must be YCbCr4:0:0
* when outputting YCbCr4:0:0.
* The output format of isp is YCbCr4:2:2,
* so the CbCr data is discarded here.
*/
if (out_fourcc == V4L2_PIX_FMT_GREY)
*format = MI_CTRL_SP_INPUT_YUV400;
return 0;
}
/*
* configure memory interface for selfpath
* This should only be called when stream-on
*/
static int sp_config_mi(struct rkisp_stream *stream)
{
void __iomem *base = stream->ispdev->base_addr;
struct rkisp_device *dev = stream->ispdev;
struct capture_fmt *output_isp_fmt = &stream->out_isp_fmt;
struct ispsd_out_fmt *input_isp_fmt =
rkisp_get_ispsd_out_fmt(&dev->isp_sdev);
u32 sp_in_fmt;
if (mbus_code_sp_in_fmt(input_isp_fmt->mbus_code,
output_isp_fmt->fourcc, &sp_in_fmt)) {
v4l2_err(&dev->v4l2_dev, "Can't find the input format\n");
return -EINVAL;
}
/*
* NOTE: plane_fmt[0].sizeimage is total size of all planes for single
* memory plane formats, so calculate the size explicitly.
*/
mi_set_y_size(stream, stream->out_fmt.plane_fmt[0].bytesperline *
stream->out_fmt.height);
mi_set_cb_size(stream, stream->out_fmt.plane_fmt[1].sizeimage);
mi_set_cr_size(stream, stream->out_fmt.plane_fmt[2].sizeimage);
sp_set_y_width(base, stream->out_fmt.width);
if (stream->interlaced) {
stream->u.sp.vir_offs =
stream->out_fmt.plane_fmt[0].bytesperline;
sp_set_y_height(base, stream->out_fmt.height / 2);
sp_set_y_line_length(base, stream->u.sp.y_stride * 2);
} else {
sp_set_y_height(base, stream->out_fmt.height);
sp_set_y_line_length(base, stream->u.sp.y_stride);
}
mi_frame_end_int_enable(stream);
if (output_isp_fmt->uv_swap)
sp_set_uv_swap(base);
config_mi_ctrl(stream, calc_burst_len(stream));
sp_mi_ctrl_set_format(base, stream->out_isp_fmt.write_format |
sp_in_fmt | output_isp_fmt->output_format);
sp_mi_ctrl_autoupdate_en(base);
/* set up first buffer */
mi_frame_end(stream, FRAME_INIT);
return 0;
}
static void mp_enable_mi(struct rkisp_stream *stream)
{
void __iomem *base = stream->ispdev->base_addr;
struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
mi_ctrl_mp_disable(base);
if (isp_fmt->fmt_type == FMT_BAYER)
mi_ctrl_mpraw_enable(base);
else if (isp_fmt->fmt_type == FMT_YUV)
mi_ctrl_mpyuv_enable(base);
}
static void sp_enable_mi(struct rkisp_stream *stream)
{
void __iomem *base = stream->ispdev->base_addr;
mi_ctrl_spyuv_enable(base);
}
static void mp_disable_mi(struct rkisp_stream *stream)
{
struct rkisp_device *dev = stream->ispdev;
void __iomem *base = dev->base_addr;
mi_ctrl_mp_disable(base);
}
static void sp_disable_mi(struct rkisp_stream *stream)
{
void __iomem *base = stream->ispdev->base_addr;
mi_ctrl_spyuv_disable(base);
}
/* Update buffer info to memory interface, it's called in interrupt */
static void update_mi(struct rkisp_stream *stream)
{
struct rkisp_dummy_buffer *dummy_buf = &stream->ispdev->hw_dev->dummy_buf;
void __iomem *base = stream->ispdev->base_addr;
/* The dummy space allocated by dma_alloc_coherent is used, we can
* throw data to it if there is no available buffer.
*/
if (stream->next_buf) {
mi_set_y_addr(stream,
stream->next_buf->buff_addr[RKISP_PLANE_Y]);
mi_set_cb_addr(stream,
stream->next_buf->buff_addr[RKISP_PLANE_CB]);
mi_set_cr_addr(stream,
stream->next_buf->buff_addr[RKISP_PLANE_CR]);
} else if (dummy_buf->mem_priv) {
mi_set_y_addr(stream, dummy_buf->dma_addr);
mi_set_cb_addr(stream, dummy_buf->dma_addr);
mi_set_cr_addr(stream, dummy_buf->dma_addr);
}
mi_set_y_offset(stream, 0);
mi_set_cb_offset(stream, 0);
mi_set_cr_offset(stream, 0);
v4l2_dbg(2, rkisp_debug, &stream->ispdev->v4l2_dev,
"%s stream:%d Y:0x%x CB:0x%x CR:0x%x\n",
__func__, stream->id,
readl(base + stream->config->mi.y_base_ad_init),
readl(base + stream->config->mi.cb_base_ad_init),
readl(base + stream->config->mi.cr_base_ad_init));
}
static void mp_stop_mi(struct rkisp_stream *stream)
{
if (!stream->streaming)
return;
mi_frame_end_int_clear(stream);
stream->ops->disable_mi(stream);
}
static void sp_stop_mi(struct rkisp_stream *stream)
{
if (!stream->streaming)
return;
mi_frame_end_int_clear(stream);
stream->ops->disable_mi(stream);
}
static struct streams_ops rkisp_mp_streams_ops = {
.config_mi = mp_config_mi,
.enable_mi = mp_enable_mi,
.disable_mi = mp_disable_mi,
.stop_mi = mp_stop_mi,
.set_data_path = stream_data_path,
.is_stream_stopped = mp_is_stream_stopped,
.update_mi = update_mi,
.frame_end = mi_frame_end,
};
static struct streams_ops rkisp_sp_streams_ops = {
.config_mi = sp_config_mi,
.enable_mi = sp_enable_mi,
.disable_mi = sp_disable_mi,
.stop_mi = sp_stop_mi,
.set_data_path = stream_data_path,
.is_stream_stopped = sp_is_stream_stopped,
.update_mi = update_mi,
.frame_end = mi_frame_end,
};
/*
* This function is called when a frame end come. The next frame
* is processing and we should set up buffer for next-next frame,
* otherwise it will overflow.
*/
static int mi_frame_end(struct rkisp_stream *stream, u32 state)
{
struct rkisp_device *dev = stream->ispdev;
struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
bool interlaced = stream->interlaced;
unsigned long lock_flags = 0;
int i = 0;
if (stream->curr_buf &&
(!interlaced ||
(stream->u.sp.field_rec == RKISP_FIELD_ODD &&
stream->u.sp.field == RKISP_FIELD_EVEN))) {
u64 ns = ktime_get_ns();
/* Dequeue a filled buffer */
for (i = 0; i < isp_fmt->mplanes; i++) {
u32 payload_size = stream->out_fmt.plane_fmt[i].sizeimage;
vb2_set_plane_payload(&stream->curr_buf->vb.vb2_buf, i, payload_size);
}
stream->curr_buf->vb.sequence = atomic_read(&dev->isp_sdev.frm_sync_seq) - 1;
stream->curr_buf->vb.vb2_buf.timestamp = ns;
rkisp_stream_buf_done(stream, stream->curr_buf);
stream->curr_buf = NULL;
}
if (!interlaced ||
(stream->curr_buf == stream->next_buf &&
stream->u.sp.field == RKISP_FIELD_ODD)) {
/* Next frame is writing to it
* Interlaced: odd field next buffer address
*/
stream->curr_buf = stream->next_buf;
stream->next_buf = NULL;
/* Set up an empty buffer for the next-next frame */
spin_lock_irqsave(&stream->vbq_lock, lock_flags);
if (!list_empty(&stream->buf_queue)) {
stream->next_buf =
list_first_entry(&stream->buf_queue,
struct rkisp_buffer,
queue);
list_del(&stream->next_buf->queue);
}
spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
} else if (stream->u.sp.field_rec == RKISP_FIELD_ODD &&
stream->u.sp.field == RKISP_FIELD_EVEN) {
/* Interlaced: event field next buffer address */
if (stream->next_buf) {
stream->next_buf->buff_addr[RKISP_PLANE_Y] +=
stream->u.sp.vir_offs;
stream->next_buf->buff_addr[RKISP_PLANE_CB] +=
stream->u.sp.vir_offs;
stream->next_buf->buff_addr[RKISP_PLANE_CR] +=
stream->u.sp.vir_offs;
}
stream->curr_buf = stream->next_buf;
}
stream->ops->update_mi(stream);
if (interlaced)
stream->u.sp.field_rec = stream->u.sp.field;
return 0;
}
/***************************** vb2 operations*******************************/
/*
* Set flags and wait, it should stop in interrupt.
* If it didn't, stop it by force.
*/
static void rkisp_stream_stop(struct rkisp_stream *stream)
{
struct rkisp_device *dev = stream->ispdev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
int ret = 0;
stream->stopping = true;
stream->ops->stop_mi(stream);
if ((dev->isp_state & ISP_START) &&
dev->isp_inp != INP_DMARX_ISP &&
!dev->hw_dev->is_shutdown) {
ret = wait_event_timeout(stream->done,
!stream->streaming,
msecs_to_jiffies(1000));
if (!ret)
v4l2_warn(v4l2_dev, "%s id:%d timeout\n",
__func__, stream->id);
}
stream->stopping = false;
stream->streaming = false;
if (stream->id == RKISP_STREAM_MP ||
stream->id == RKISP_STREAM_SP) {
rkisp_disable_dcrop(stream, true);
rkisp_disable_rsz(stream, true);
}
stream->burst =
CIF_MI_CTRL_BURST_LEN_LUM_16 |
CIF_MI_CTRL_BURST_LEN_CHROM_16;
stream->interlaced = false;
}
/*
* Most of registers inside rockchip isp1 have shadow register since
* they must be not changed during processing a frame.
* Usually, each sub-module updates its shadow register after
* processing the last pixel of a frame.
*/
static int rkisp_start(struct rkisp_stream *stream)
{
int ret;
if (stream->ops->set_data_path)
stream->ops->set_data_path(stream);
ret = stream->ops->config_mi(stream);
if (ret)
return ret;
stream->ops->enable_mi(stream);
stream->streaming = true;
return 0;
}
static int rkisp_queue_setup(struct vb2_queue *queue,
unsigned int *num_buffers,
unsigned int *num_planes,
unsigned int sizes[],
struct device *alloc_ctxs[])
{
struct rkisp_stream *stream = queue->drv_priv;
struct rkisp_device *dev = stream->ispdev;
const struct v4l2_pix_format_mplane *pixm = NULL;
const struct capture_fmt *isp_fmt = NULL;
u32 i;
pixm = &stream->out_fmt;
isp_fmt = &stream->out_isp_fmt;
*num_planes = isp_fmt->mplanes;
for (i = 0; i < isp_fmt->mplanes; i++) {
const struct v4l2_plane_pix_format *plane_fmt;
plane_fmt = &pixm->plane_fmt[i];
/* height to align with 16 when allocating memory
* so that Rockchip encoder can use DMA buffer directly
*/
sizes[i] = (isp_fmt->fmt_type == FMT_YUV) ?
plane_fmt->sizeimage / pixm->height *
ALIGN(pixm->height, 16) :
plane_fmt->sizeimage;
}
rkisp_chk_tb_over(dev);
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev, "%s count %d, size %d\n",
v4l2_type_names[queue->type], *num_buffers, sizes[0]);
return rkisp_create_dummy_buf(stream);
}
/*
* The vb2_buffer are stored in rkisp_buffer, in order to unify
* mplane buffer and none-mplane buffer.
*/
static void rkisp_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct rkisp_buffer *ispbuf = to_rkisp_buffer(vbuf);
struct vb2_queue *queue = vb->vb2_queue;
struct rkisp_stream *stream = queue->drv_priv;
unsigned long lock_flags = 0;
struct v4l2_pix_format_mplane *pixm = &stream->out_fmt;
struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
struct sg_table *sgt;
int i;
memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
for (i = 0; i < isp_fmt->mplanes; i++) {
vb2_plane_vaddr(vb, i);
if (stream->ispdev->hw_dev->is_dma_sg_ops) {
sgt = vb2_dma_sg_plane_desc(vb, i);
ispbuf->buff_addr[i] = sg_dma_address(sgt->sgl);
} else {
ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
}
}
/*
* NOTE: plane_fmt[0].sizeimage is total size of all planes for single
* memory plane formats, so calculate the size explicitly.
*/
if (isp_fmt->mplanes == 1) {
for (i = 0; i < isp_fmt->cplanes - 1; i++) {
ispbuf->buff_addr[i + 1] = (i == 0) ?
ispbuf->buff_addr[i] +
pixm->plane_fmt[i].bytesperline *
pixm->height :
ispbuf->buff_addr[i] +
pixm->plane_fmt[i].sizeimage;
}
}
v4l2_dbg(2, rkisp_debug, &stream->ispdev->v4l2_dev,
"stream:%d queue buf:0x%x\n",
stream->id, ispbuf->buff_addr[0]);
spin_lock_irqsave(&stream->vbq_lock, lock_flags);
list_add_tail(&ispbuf->queue, &stream->buf_queue);
spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
}
static int rkisp_create_dummy_buf(struct rkisp_stream *stream)
{
return rkisp_alloc_common_dummy_buf(stream->ispdev);
}
static void rkisp_destroy_dummy_buf(struct rkisp_stream *stream)
{
struct rkisp_device *dev = stream->ispdev;
rkisp_free_common_dummy_buf(dev);
}
static void destroy_buf_queue(struct rkisp_stream *stream,
enum vb2_buffer_state state)
{
unsigned long lock_flags = 0;
struct rkisp_buffer *buf;
spin_lock_irqsave(&stream->vbq_lock, lock_flags);
if (stream->curr_buf) {
list_add_tail(&stream->curr_buf->queue, &stream->buf_queue);
if (stream->curr_buf == stream->next_buf)
stream->next_buf = NULL;
stream->curr_buf = NULL;
}
if (stream->next_buf) {
list_add_tail(&stream->next_buf->queue, &stream->buf_queue);
stream->next_buf = NULL;
}
while (!list_empty(&stream->buf_queue)) {
buf = list_first_entry(&stream->buf_queue,
struct rkisp_buffer, queue);
list_del(&buf->queue);
vb2_buffer_done(&buf->vb.vb2_buf, state);
}
spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
}
static void rkisp_stop_streaming(struct vb2_queue *queue)
{
struct rkisp_stream *stream = queue->drv_priv;
struct rkisp_vdev_node *node = &stream->vnode;
struct rkisp_device *dev = stream->ispdev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
int ret;
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"%s %d\n", __func__, stream->id);
if (!stream->streaming)
return;
rkisp_stream_stop(stream);
media_pipeline_stop(&node->vdev.entity);
ret = dev->pipe.set_stream(&dev->pipe, false);
if (ret < 0)
v4l2_err(v4l2_dev,
"pipeline stream-off failed:%d\n", ret);
/* release buffers */
destroy_buf_queue(stream, VB2_BUF_STATE_ERROR);
ret = dev->pipe.close(&dev->pipe);
if (ret < 0)
v4l2_err(v4l2_dev, "pipeline close failed error:%d\n", ret);
rkisp_destroy_dummy_buf(stream);
atomic_dec(&dev->cap_dev.refcnt);
tasklet_disable(&stream->buf_done_tasklet);
}
static int rkisp_stream_start(struct rkisp_stream *stream)
{
struct v4l2_device *v4l2_dev = &stream->ispdev->v4l2_dev;
struct rkisp_device *dev = stream->ispdev;
struct rkisp_stream *other = &dev->cap_dev.stream[stream->id ^ 1];
bool async = false;
int ret;
if (other->streaming)
async = true;
ret = rkisp_stream_config_rsz(stream, async);
if (ret < 0) {
v4l2_err(v4l2_dev, "config rsz failed with error %d\n", ret);
return ret;
}
/*
* can't be async now, otherwise the latter started stream fails to
* produce mi interrupt.
*/
ret = rkisp_stream_config_dcrop(stream, false);
if (ret < 0) {
v4l2_err(v4l2_dev, "config dcrop failed with error %d\n", ret);
return ret;
}
return rkisp_start(stream);
}
static int
rkisp_start_streaming(struct vb2_queue *queue, unsigned int count)
{
struct rkisp_stream *stream = queue->drv_priv;
struct rkisp_vdev_node *node = &stream->vnode;
struct rkisp_device *dev = stream->ispdev;
struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
int ret = -1;
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"%s %d\n", __func__, stream->id);
if (WARN_ON(stream->streaming))
return -EBUSY;
atomic_inc(&dev->cap_dev.refcnt);
if (!dev->isp_inp || !stream->linked) {
v4l2_err(v4l2_dev, "check video link or isp input\n");
goto buffer_done;
}
if (atomic_read(&dev->cap_dev.refcnt) == 1 &&
(dev->isp_inp & INP_CSI || dev->isp_inp & INP_DVP)) {
/* update sensor info when first streaming */
ret = rkisp_update_sensor_info(dev);
if (ret < 0) {
v4l2_err(v4l2_dev,
"update sensor info failed %d\n",
ret);
goto buffer_done;
}
}
if (dev->active_sensor &&
dev->active_sensor->fmt[0].format.field ==
V4L2_FIELD_INTERLACED) {
if (stream->id != RKISP_STREAM_SP) {
v4l2_err(v4l2_dev,
"only selfpath support interlaced\n");
ret = -EINVAL;
goto buffer_done;
}
stream->interlaced = true;
stream->u.sp.field = RKISP_FIELD_INVAL;
stream->u.sp.field_rec = RKISP_FIELD_INVAL;
}
/* enable clocks/power-domains */
ret = dev->pipe.open(&dev->pipe, &node->vdev.entity, true);
if (ret < 0) {
v4l2_err(v4l2_dev, "open cif pipeline failed %d\n", ret);
goto destroy_dummy_buf;
}
/* configure stream hardware to start */
ret = rkisp_stream_start(stream);
if (ret < 0) {
v4l2_err(v4l2_dev, "start streaming failed\n");
goto close_pipe;
}
/* start sub-devices */
ret = dev->pipe.set_stream(&dev->pipe, true);
if (ret < 0)
goto stop_stream;
ret = media_pipeline_start(&node->vdev.entity, &dev->pipe.pipe);
if (ret < 0) {
v4l2_err(&dev->v4l2_dev,
"start pipeline failed %d\n", ret);
goto pipe_stream_off;
}
tasklet_enable(&stream->buf_done_tasklet);
return 0;
pipe_stream_off:
dev->pipe.set_stream(&dev->pipe, false);
stop_stream:
rkisp_stream_stop(stream);
close_pipe:
dev->pipe.close(&dev->pipe);
destroy_dummy_buf:
rkisp_destroy_dummy_buf(stream);
buffer_done:
destroy_buf_queue(stream, VB2_BUF_STATE_QUEUED);
atomic_dec(&dev->cap_dev.refcnt);
stream->streaming = false;
return ret;
}
static struct vb2_ops rkisp_vb2_ops = {
.queue_setup = rkisp_queue_setup,
.buf_queue = rkisp_buf_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.stop_streaming = rkisp_stop_streaming,
.start_streaming = rkisp_start_streaming,
};
static int rkisp_init_vb2_queue(struct vb2_queue *q,
struct rkisp_stream *stream,
enum v4l2_buf_type buf_type)
{
q->type = buf_type;
q->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
q->drv_priv = stream;
q->ops = &rkisp_vb2_ops;
q->mem_ops = stream->ispdev->hw_dev->mem_ops;
q->buf_struct_size = sizeof(struct rkisp_buffer);
q->min_buffers_needed = CIF_ISP_REQ_BUFS_MIN;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &stream->ispdev->apilock;
q->dev = stream->ispdev->hw_dev->dev;
q->allow_cache_hints = 1;
if (stream->ispdev->hw_dev->is_dma_contig)
q->dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS;
q->gfp_flags = GFP_DMA32;
return vb2_queue_init(q);
}
static int rkisp_stream_init(struct rkisp_device *dev, u32 id)
{
struct rkisp_capture_device *cap_dev = &dev->cap_dev;
struct rkisp_stream *stream;
struct video_device *vdev;
struct rkisp_vdev_node *node;
int ret = 0;
stream = &cap_dev->stream[id];
stream->id = id;
stream->ispdev = dev;
vdev = &stream->vnode.vdev;
INIT_LIST_HEAD(&stream->buf_queue);
init_waitqueue_head(&stream->done);
spin_lock_init(&stream->vbq_lock);
stream->linked = true;
switch (id) {
case RKISP_STREAM_SP:
strlcpy(vdev->name, SP_VDEV_NAME,
sizeof(vdev->name));
stream->ops = &rkisp_sp_streams_ops;
stream->config = &rkisp_sp_stream_config;
stream->config->fmts = sp_fmts;
stream->config->fmt_size = ARRAY_SIZE(sp_fmts);
break;
default:
strlcpy(vdev->name, MP_VDEV_NAME,
sizeof(vdev->name));
stream->ops = &rkisp_mp_streams_ops;
stream->config = &rkisp_mp_stream_config;
stream->config->fmts = mp_fmts;
stream->config->fmt_size = ARRAY_SIZE(mp_fmts);
}
node = vdev_to_node(vdev);
rkisp_init_vb2_queue(&node->buf_queue, stream,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
ret = rkisp_register_stream_vdev(stream);
if (ret < 0)
return ret;
stream->streaming = false;
stream->interlaced = false;
stream->burst =
CIF_MI_CTRL_BURST_LEN_LUM_16 |
CIF_MI_CTRL_BURST_LEN_CHROM_16;
atomic_set(&stream->sequence, 0);
return 0;
}
int rkisp_register_stream_v1x(struct rkisp_device *dev)
{
struct rkisp_capture_device *cap_dev = &dev->cap_dev;
int ret;
ret = rkisp_stream_init(dev, RKISP_STREAM_MP);
if (ret < 0)
goto err;
if (dev->isp_ver != ISP_V10_1) {
ret = rkisp_stream_init(dev, RKISP_STREAM_SP);
if (ret < 0)
goto err_free_mp;
}
return 0;
err_free_mp:
rkisp_unregister_stream_vdev(&cap_dev->stream[RKISP_STREAM_MP]);
err:
return ret;
}
void rkisp_unregister_stream_v1x(struct rkisp_device *dev)
{
struct rkisp_capture_device *cap_dev = &dev->cap_dev;
struct rkisp_stream *stream;
stream = &cap_dev->stream[RKISP_STREAM_MP];
rkisp_unregister_stream_vdev(stream);
if (dev->isp_ver != ISP_V10_1) {
stream = &cap_dev->stream[RKISP_STREAM_SP];
rkisp_unregister_stream_vdev(stream);
}
}
void rkisp_mi_v1x_isr(u32 mis_val, struct rkisp_device *dev)
{
unsigned int i;
v4l2_dbg(3, rkisp_debug, &dev->v4l2_dev,
"mi isr:0x%x\n", mis_val);
if (mis_val & CIF_MI_DMA_READY)
rkisp_dmarx_isr(mis_val, dev);
for (i = 0; i < RKISP_MAX_STREAM; ++i) {
struct rkisp_stream *stream = &dev->cap_dev.stream[i];
if (!(mis_val & CIF_MI_FRAME(stream)))
continue;
mi_frame_end_int_clear(stream);
if (stream->stopping) {
/*
* Make sure stream is actually stopped, whose state
* can be read from the shadow register, before
* wake_up() thread which would immediately free all
* frame buffers. stop_mi() takes effect at the next
* frame end that sync the configurations to shadow
* regs.
*/
if (stream->ops->is_stream_stopped(stream)) {
stream->stopping = false;
stream->streaming = false;
wake_up(&stream->done);
}
} else {
mi_frame_end(stream, FRAME_IRQ);
}
}
}